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Two versions of the asymptotic method, which enables the initial problem to be broken down into two 

simpler problems which can be solved using the classical theory of plates, are considered for solving 

problems in the theory of three-layer plates in the formulation previously proposed (VOLOKH K. Yu., A 

theoretical-experimental investigation and optimization of three-layer plates supported at points. Candi- 

date dissertation, Moscow, 1991). These methods are used for a static and dynamic analysis of a rectangular 

three-layer plate supported on hinges along the contour. Estimates are obtained for the errors of the 

approximate solutions obtained after an arbitrary number of iterations. 

1. THE EQUATIONS of equilibrium in displacements and the natural boundary conditions of the 
theory of three-layer plates with a rigid filler that is uncompressed in a transverse direction were 
obtained by the author using the well-known broken-line hypothesis [l] and Lagrange’s variational 
principle. 

For a mainly bending deformation arranged symmetrically over the thickness of a three-layer 
plate for tangential displacements of the middle planes of the outer bearing layers (i = 1, 2) it is 
necessary to put u1 = -u2 = u and u1 = - u2 = u; there are no tangential surface and external 
contour forces; Et = E2 = E, q = vz = v, hI = h2 = h, where Ei are the moduli of elasticity, vi are 
Poisson’s ratios and hi are the thicknesses of the outer layers. In this case, the equations of 
equilibrium and the boundary conditions on the contour x = const can be written in operator form 
as follows: 

~llou)+~,,(~)+L;3(u)=q 

L~~(w)+L~z(u)+L~~(u)=O, k= 2,3 (1.1) 

L,(W)+ L~(u,u)= 0 e W= 0, Lo+ L~(u,u)= o++ awlax= 0 

Ls(u, u)tLh(w)= 0 cf u = 0, L,(u, u)+L&J(w)= 0 "U = 0 (1.2) 

Here 

L,,(w)=DV4w-Bc2V2w, L12(uJ= 2Bc g- &h V2% 
6 ax 

2 

Lzz(u)= 2A' * t A’(1 -Y’) 
a% 

ax2 
$- 4Bu, L:z3(u)=A*(1 tv*)- 

axay 

L&)=6($ t (2-V) 
aw 

$) -Bc2 ax, L2(u,u)= 2Bcu - 

h a% azu 
-A3 6 (2 + - 

- a% a% 

hay 
Ls(w)=D(- +i7 -) ax2 ay2 
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i -v* au au 

a% 
LB(W) = -A3 $I - v3) - 

a* 

axay ’ 
V2=2 + 

ax2 ayz 

A=Eh 
Eh3 

1 ._ y2 ’ 
D= 

E3h3 

6(1 -v*)’ 
‘43 =- 

1 .__vp ’ 
A’=&!? 

6 

v* = 
VA + v3A3/6 A3h2 Dv +A3v3h2/12 

A* ’ 
ii =Dt- 

12 ’ 
ii= 

D 

The operators L 13 and L33 are obtained from LIZ and Lz2 by replacing x and y and u and v; 
L, = Lji; w is the flexure, E3, y and h3 are the modulus of elasticity, Poisson’s ratio and the 
thickness of the middle layer (the filler) respectively, G3 is the shear modulus of a transversally 
isotropic filler in planes perpendicular to the isotropy plane, and c is the distance between the 
middle planes of the bearing layers. 

If we put E3 = 0 in (1.1) and (1.2) we obtain the equations of three-layer plates with a light filler 

PI. 

2. We will introduce a parameter E into Eqs (1.1) and the boundary condition (1.2) such that L’Fi 

is replaced by &Z(U), ~513 (~1 by ~~513 (~1, LZ (u, v) by -52 ( u, u , and L~(u, u) by EL~(u, u) and we 1 
will seek solutions in the form of series in E 

u= ; e&(i), u=(u,u, w) 
j= 0 

(2.1) 

Substituting series (2.1) into the equations and boundary conditions and equating terms of like 
powers of l , we obtain the iterative process 

Lii(w(i))= _~,2(u(j-1))_~,3(u(j-l))tq(j) (2.2) 

LkZ(U(j))tLk3(U(j))=-Lk1(W(j)), k= 2,3 (2.3) 

with boundary conditions when x = const 

L,(@) = _L2(u(l-i), ,U-1)) t*w (1) = 0, L3(wU)) = _Lq(u(j-i), ,(i- 1)) + 

++ a&)/ax = 0 (2.4) 

L5(&), ,W) = -_L,(k(i)) .ou(i) = 0, L,cu(j), ,W) = _L8(w(j)) ,,(i) = 0 

where ,&i) = y(-1) = 0; 4 co) = 4; q(j) = 0 for j 2 1. 

(2.5) 

According to the proposed scheme we first solve Eq. (2.2) with the pair of boundary conditions 
(2.4), whence we find w (j). This boundary-value problem, apart from the coefficients, is identical to 
the problem of the bending of plates lying on an elastic foundation in classical theory, where the 
elastic foundation opposes the rotation of the sections of the plate producing a resistance in the form 
of a moment load Bc2dwldx and Bc2dwl~y distributed over the area. We then solve the plane 
problem of the theory of elasticity on an elastic foundation (2.3) and (2.5). The resistance forces of 
the elastic foundation are simulated by the terms 4Bu and 4Bu in the operators Lz2 and L33. After 
finding u(j) and u(j) we put we put E = 1 and, summing the series (2.1), we obtain the required 
solution, provided the series converge. 

The second version of the iterative process is obtained if in (1.1) we additionally introduce a small 
parameter E into the operators L22 and L,, in front of the terms 4Bu and 4Bu. In this case, at thejth 
iteration, we will solve the plane problem (2.3) and (2.5) without an elastic foundation. 
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The terms on the right-hand sides of (2.2)-(2.5) can be assumed to be additional fictitious loads, 
determined in the previous iteration. 

Hence, the proposed approach enables us to split the initial problem into two simpler problems, 
for which there are well-developed numerical methods of solution and for which it becomes possible 
to use approved software. 

We will now introduce the small parameter E into the eigenvalue problem. In this case in Eqs (1.1) 
and the boundary conditions (1.2) L 12 u ( ) is replaced by l LlZ(u), LIP by ELI~(u) - AMI (w), 
L2(u, u) by eL2(u, v) + dM2(w) and L4(u, u) by eL4(u, u). 

If 
M, (w) = PHW, M,(w) = 0, x = w* 

HE ; hi, ,=’ g pihi 
i= 1 H i=l 

where pi is the density of the ith layer, and w is the angular frequency of the free vibrations, we have 
the problem of the low-frequency mainly bending free vibrations of a three-layer plate, which is 
obtained after separation of the variables. 

If M,(w) = -v2 W, L&(W) = dwldx, A = No, where No are the compressive forces along the 
contour of the plate, we have a problem of stability. 

Substituting the series (2.1) and 

h = ; ,ix(i) 
j= 0 

into the modified equations and boundary conditions, we obtain an iterative process, similar to that 
given by Eqs (2.2)-(2.5), with the sole difference that instead of Eq. (2.2) we have 

Ll,(w(i))_ EM,)= -L,2(u(j-*))-L,3~u(j-i))t i X(i)M1(w(i-i)) 
(2.6) 

i= 1 

and instead of the boundary conditions (2.4) we have 

Ll(w(i))= _~2(uV-1), ,(i-1) 
i- 1 

)_ x h(i)M2(w(i-l-i)),w(i)= 0 

i=O 

~J(w(i))=-~4(u(j-l), ,(i-1)) +,aw(i)px = 0 (2.7) 

We put w(j) = w(lj) + WY), where wji) is found from the solution of the homogeneous equation 
(2.6) with non-homogeneous boundary conditions (2.7). To find WY’ we have Eq. (2.6) with 
homogeneous boundary conditions (2.7). Taking into account the symmetry of the operator on the 
left-hand side of (2.6), after scalar multiplication of Eq. (2.6) by w(O) we obtain the following 
formula for the eigenvalues 

Ati) = 
(w(0),~,2~u(j-*))t~,j(u(j-~))) j- 1 (w(O), ~~ (tiCi-- l-9)) 

(w (O), w CO)) 
- x x(i) 

(w(o), w(w) . (2.8) 
i= 1 

The second iterative scheme has the same differences as in the equations of statics, and Eq. (2.8) 
holds for it. 

3. Consider the static problem and the eigenvalue problem for a rectangular plate hinge 
supported along the contour. 

The boundary conditions at x = 0 and x = a have the form 

w=o, L~(w)+L~(u,u)=o, ~5(u,u)+L&)=O, u=o (3.1) 

The corresponding conditions on the contours y = 0 and y = b are obtained by making the 
substitutions utu and xzy in conditions (3.1). 
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We obtain the solution of the problem in the form of series (summation is carried out over all rn 
and n) 

w= ~ww,. sin(ar) u = Cu,, cos(ax) sin(@), u = E u,, sin(ax)cos(&) (3.2) 

which identically satisfy the boundary conditions. 
Here, it is necessary to represent the transverse load in the form 

4=x&” sin (ax) sin (fly), a = mm/a, /3 = nn/b (3.3) 

After substituting (3.2) and (3.3) into (1.1) we obtain 

W,, =H,i(l - tm;nn)-14mn, urn, = ?4aye2(t;;;i -Fmn)-’ 

I+,,,,=~Q-~u~~, Hm,=by4 +Bc2T2, Fm,=Bc+ABy2h/12 (3.4) 

‘grnn = 2Fm, H,$(A* + Gmnj-l, Cm,, = 28~~~. 7’ = a2 +p 

In the eigenvalue problem we obtain 

PHhrnn = Hmn Cl- Fmn tn) (3.5) 

Problems using recurrent relations (2.2)-(2.5) and (2.3), (2.5), (2.6) and (2.7) are solved in the 
same way. We can obtain the following estimates of the error of the iterative process. 

In the case of the first scheme with two elastic foundations, we have for the kth approximation 

n(k) = n(k) = 
w u 

nCk) = [F,, &,,,,I k + ‘, 
V 

pHXc; = H,, , 

pHii; = -FmnHmn tmn. A,($) = 0 
(3.6) 

In the case of the second scheme with a single elastic foundation, we have 

*7(O) = 1 -HLt (1 -&n)-‘s nIy*) =Fmn&mn [Smn]‘, nF’=nr)= [Cm”]*+’ 

~~k’=-F,.k.(l-Fm.kn)“[-Gm”/A*]k, t,=2F:,H~:,IA’-Cm.fA’ (3.7) 

,+k) = ‘.mn - s’,k’ 
r 

, &k) = ; #) (r = u, U, W. A) 
rmn 

r i=o mn 

Note that the expressions in square brackets in (3.6) and (3.7) are considerably less than unity 

over a wide range of variation of the geometrical and physical parameters of three-layer plates [3], 
which indicates that the methods converge well. 

We will consider a numerical example. Suppose a = b = 1 m, q = const = qo, E = 10’ MPa, E3 = 2.5 X 10” 
MPa, h = 0.025 m, h3 = 0.1 m and v = y = 0.25. 

Below we give the results of calculations (the number of the column corresponds to the number of the 
approximation, beginning with the zeroth approximation). 

For the first iterative scheme 

wz x 10*/q; 4.51 133 38 10 

ld$ix x lO’/q, 256 72 23 8 

pH?,if) m-’ 3197 -854 0 

For the second iterative scheme 

W;h x lO’/q, 451 182 -1 

UZA x 14/q, 361 -2 0 

PH~$ me’ 3197 -1173 438 -163 61 -23 9 -3 1 

It follows from the numerical results obtained that the iterative scheme with two elastic foundations is 
preferable in problems of dynamics and stability, while the scheme with a single elastic foundation is preferable 
in problems of statics. This is confirmed by the results presented in the dissertation referred to in the abstract, 
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where the iterative scheme with a single elastic foundation was used to make a static calculation of circular 
plates with a point support. Satisfactory results were obtained at the zeroth-first approximations. 

It should be noted that a similar method was effectively used in [4] for shallow shells. 
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