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Many soft materials and biological tissues comprise isotropic
matrix reinforced by fibers in the characteristic directions. Hyper-
elastic constitutive equations for such materials are usually formu-
lated in terms of a Lagrangian strain tensor referred to the initial
configuration and Lagrangian structure tensors defining character-
istic directions of anisotropy. Such equations are “pushed
forward” to the current configuration. Obtained in this way, Euler-
ian constitutive equations are often favorable from both theoretical
and computational standpoints. In the present note, we show that
the described two-step procedure is not necessary, and anisotropic
hyperelasticity can be introduced directly in terms of an Eulerian
strain tensor and Eulerian structure tensors referring to the
current configuration. The newly developed constitutive equation
is applied to the particular case of the transverse isotropy for the
sake of illustration. [DOI: 10.1115/1.4049077]
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Let m(i)
0 denote a unit vector in the ith characteristic material direc-

tion in the initial configuration Ω0 defined at time t0. Let F denote
the deformation gradient between Ω0 and the current material con-
figuration Ω at time t. Then, the characteristic direction in the
current configuration becomes

m(i) = Fm(i)
0 (1)

This is the Lagrangian description. Its Eulerian equivalent is
obtained by differentiation with respect to time as follows:

ṁ(i) = Ḟm(i)
0 (2)

Substituting m(i)
0 = F−1m(i) from Eq. (1) into Eq. (2), we obtain

ṁ(i) = ḞF−1m(i) (3)

Introducing the velocity v gradient

L = gradv = ḞF−1 (4)

we can rewrite Eq. (1) in the purely Eulerian form of the evolution
equation

ṁ(i) = Lm(i) (5)

Note that vector m (i) can always be replaced by vector −m (i) in
the reverse direction to define the characteristic anisotropy. To get
rid of this nonuniqueness, it is helpful to introduce the so-called
structure (or fabric) tensor in the form

M(i) =m(i) ⊗m(i) (6)

By using Eq. (5), we derive its evolution equation

Ṁ
(i)
= LM(i) +M(i)LT (7)

The left Cauchy–Green tensor defines strains in the Lagrangian
description

B = FFT (8)

Differentiating Eq. (8) with respect to time, we get

Ḃ = ḞFT + FḞ
T

= Ḟ(F−1F)FT + F(F−1F)TḞ
T

= (ḞF−1)(FFT) + (FFT)(F−TḞ
T
)

= LB + BLT

(9)

Thus, evolution equation

Ḃ = LB + BLT (10)

defines the left Cauchy–Green tensor in the Eulerian description.
In summary, we have kinematic tensors for strain B and anisot-

ropy M (i), which are defined in the Eulerian description via evolu-
tion equations (10) and (7) accordingly.
We further assume that deformation is purely hyperelastic and the

internal dissipation vanishes

Dint = σ:D − ϱẇ = 0 (11)

where σ is the Cauchy stress tensor, D= (L+LT)/2 is the sym-
metric deformation rate tensor, ϱ is the current mass density, and
w is the specific free energy per unit mass.
Targeting the Eulerian description, we assume that the specific

free energy w is a function of kinematic variables B and M (i). Con-
sequently, we calculate the rate of the free energy as follows:

ẇ(B, M(i)) =
∂w
∂B

:Ḃ +
∑
i

∂w

∂M(i) :Ṁ
(i)

(12)

It cannot be overemphasized that the structure tensor M (i)=
m (i) ⊗m (i) is a kinematic variable in the Eulerian description.
In the Lagrangian description, the initial structure tensor M(i)

0 =
m(i)

0 ⊗m(i)
0 is fixed and, because of that, it is not a kinematic

variable.
Substitution of Eqs. (10) and (7) in Eq. (12) yields

ẇ = 2A:L (13)

where

A =
∂w
∂B

B +
∑
i

∂w

∂M(i) M
(i) (14)

With account of Eq. (13), dissipation equation (11) reads

Dint = σ:D − ϱ(A + AT):D − ϱ(A − AT):W = 0 (15)

where W= (L−LT)/2 is the antisymmetric spin tensor.
Noting that components of D and W are independent and using

Eq. (14), we requireA=AT and finally obtain the constitutive equa-
tion of anisotropic hyperelasticity as follows:

σ = 2ϱ
∂w
∂B

B +
∑
i

∂w

∂M(i) M
(i)

[ ]
(16)
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By way of example, let us consider transverse isotropy with
one characteristic direction m, which is defined by the free
energy w(I1, I2, I3, I4, I5) depending on five invariants

I1 = 1:B

I2 =
1
2
(I21 − 1:B2)

I3 = det B

I4 = 1:M

I5 = B:M

(17)

where 1 is the identity tensor and M = m ⊗ m.
Three first invariants are the principal ones, while the last two

invariants correspond to the characteristic direction of anisotropy.
We note again that in the Eulerian description, “anisotropic invari-
ants” are generally functions of both B and M.
We calculate the following nontrivial derivatives of invariants

∂I1
∂B

= 1

∂I2
∂B

= I11 − B

∂I3
∂B

= I3B−1

∂I4
∂M

= 1

∂I5
∂B

=M

∂I5
∂M

= B

(18)

Then, we get

∂w
∂B

=
∑
n

wn
∂In
∂B

= (w1 + w2I1)1 − w2B + w3I3B−1 + w5M (19)

and

∂w
∂M

=
∑
n

wn
∂In
∂M

= w41 + w5B (20)

where wn≡∂w/∂In.
Substitution of Eqs. (19) and (20) in Eq. (16) yields (compared

with Ref. [1])

σ = 2ϱ (w1 + w2I1)B − w2B2 + w3I31
[

+w4M + w5(MB + BM)] (21)
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