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Different Features of a Stability 
Problem of Underconstrained 
Structures 
Stability problem of bearing pin-jointed assemblies, in which the number of equilib- 
rium equations is greater than the equilibrium matrix rank ( underconstrained struc- 
tures), is investigated. Local and overall stability of  initial and loaded states are 
discussed. Theoretical considerations are accompanied by numerical examples. 

1 Introduction 

Pin-jointed assemblies in which nodal displacements do not 
produce elongations of members are traditionally called mecha- 
nisms or kinematic chains. These assemblies cannot bear exter- 
nal load. 

On the contrary pin-jointed assemblies in which nodal dis- 
placements produce elongations of members are traditionally 
called structures. These assemblies can bear external load. 

A specific class of pin-jointed assemblies called undercon- 
strained structures can bear external load even though displace- 
ments exist which do not produce elongations of members. (The 
classification presented above is valid for small displacements.) 

Some interest in the theory of underconstrained structures 
arised lately (Tarnai, 1980; Vilnay, 1990; Calladine and Pelle- 
grino, 1991; Kuznetsov, 1991) in spite of the fact that such 
structures are used in engineering practice for a long time: cable 
nets, tensegric structures, and so on. The linear analysis of 
underconstrained structures, where the features of undercon- 
strained structures behavior are clarified, is investigated in Vo- 
lokh and Vilnay (1997a). It is shown that the rigidity of under- 
constrained structures is provided by initial equilibrium state or 
prestressing in contrast to conventional structures in which the 
rigidity is provided by the elastic properties of the system. This 
difference is because of the lack of members (or constraints) 
of underconstrained structures as compared to conventional 
structures. (The term "underconstrained structures" is derived 
from the lack of constraints.) 

The present paper emphasizes the problem of the analysis of 
stability of underconstrained structures. 

2 Initial Overall Stability 
Arbitrary assembly of pin-jointed bars is in equilibrium if 

the following statical conditions are satisfied: 

AoP0 = Q0. (1) 

A0 is an m by n initial configuration equilibrium matrix, Po is 
an n-dimensional vector of initial member forces; Q0 is an m- 
dimensional vector of initial external loads. 

In the particular case in which Q0 = 0, the self-stress state 
for nontrivial solution of Eq. ( 1 ) is obtained. 

For simplicity, initial elongations and displacements are de- 
fined as zeros, indicating, generally, reference origin but not 
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the physical absence of deformations. In fact, the deformed 
configuration is considered as an initial one. 

Under external load Q Eq. ( 1 ) has to be replaced by 

(A0 + A)(P0 + P) = Q0 + Q (2) 

in which the values without indexes are increments of the con'e- 
sponding initial values. 

By using Eq. (1) and linearizing Eq. (2) the last one takes 
the form 

AoP + APo = Q. (3) 

By adding Hooke's law and kinematic equations, 

P = SA (4) 

A,Iu = A ( 5 )  

where S is the uncoupled stiffness matrix and U is m-dimen- 
sional vector of nodal displacements and A is n-dimensional 
vector of member elongations, a closed system of Eqs. ( 3 ) -  
(5) of the unknown vectors U, P,  A is obtained. 

Since after linearization perturbated equilibrium matrix A 
elements depend linearly upon nodal displacements, the second 
term on the left-hand side of Eq. (3) takes the form 

AP0 = DU 

D -~ D(P0) (6) 

D is an m by m matrix where the elements are linear combina- 
tions of the initial member forces presented by vector P0 compo- 
nents. 

By using Eqs. ( 4 ) - ( 6 ) ,  Eq. (3) takes the form 

KU = Q (7) 

K = AoSA~ + D (8) 

K is an m by m stiffness matrix. 
Matrix K must be positive definite in order to provide overall 

stability of the initial equilibrium state. 
In the case of conventional fully constrained structures, the 

first term on the right-hand side of Eq. (8) is of rank m. Taking 
into account that the first term elements are significantly larger 
than the second ones it is possible to neglect the second term on 
the right-hand side of Eq. ( 8 ). Positive definiteness of S provides 
positive definiteness of K and so initial equilibrium state of fully 
constrained conventional structures is always stable. 

In the case of nonconventional underconstrained structures, 
the situation is more subtle. This is because the second term on 
the right-hand side of Eq. (8) cannot be neglected since rank 
(AoSAo T) < m. Generally speaking, it is necessary to check 
positive definiteness of matrix K by using both terms of Eq. 
(8).  This straightforward approach is rough and abundant. Sim- 
plification of the problem is reached in the following manner: 
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Let the displacement vectors be resolved into two mutually 
orthogonal vectors 

U = U k + U ~. (9)  

U k are "kinematic"  displacement vectors, which do not pro- 
duce member elongations, and U ~ are "elastic" displacement 
vectors, which do produce members elongations. It is obvious 
from the homogeneous Eq. (5) that "kinematic"  displacement 
vectors are presented in the form 

o r  

U k = Z l e l  -q- . . . + Z m - r e m - r  ( 1 0 )  

U k = W Z  

W = ( e ,  . . . . .  em-~} ,  Z = {Zl . . . . .  Zm-r} T. ( l l )  

e~ is the vector of matrix A0 T nullspace, zi is the arbitrary scalar, 
r is the matrix A0 T rank. 

The "elastic" displacement vector belongs to the orthogonal 
complement subspace of R m and it takes the form 

U e = Zm-r+lem-r+l + . . .  + Zmem (12) 

or 

U e = ~ V Z  

~ V  = {em-~+, . . . . .  e~},  Z = {z, ,- ,+, . . . . .  zm} r. (13) 

e~ is the vector of matrix At  T row space and zi is an arbitrary 
scalar. 

By substituting Eqs. (9) ,  (11),  and (13),  Eq. (7) takes the 
form 

AoSAoT~VZ + D~VZ + D W Z  = Q. (14) 

Arbitrary vectors of the null space and the row space may 
be presented in the form: 

V = WY (15) 

= f v £  

y =  {y, . . . . .  y . . . .  iT, ¢Z= {Y~-r+~ . . . . .  ym} r (16) 

Multiplying scalarly Eq. (14) by vectors V T, ~rX, it is possi- 
ble to obtain correspondingly 

yT(WTD~VZ + W T D W Z )  = y T W T Q  (17) 

~T(~VTAoSAoTV~VZ + ~VTD~V2 + ~VTDWZ) 

= ~zT~vTQ. (18) 

The physical sense of the projecting is the utilization of the 
principle of virtual work. Since Eqs. (17),  (18) should be satis- 
fied under arbitrary vectors Y, Y, the equations can be rewritten 
in the form 

(K  e + ~TVTD~TV)Z + ~VTDWz = ~VTQ (19) 

W T D ~ Z  + KkZ = w T Q  (20) 

where 

K ~ = WTAoSA0X~V (21) 

K k = W T D W .  (22) 

After some transformations Eqs. (19),  (20) take the form 

{K" + WXD~V - ~vTDW (Kk)-~WTD~V}~ 

= {~V T - ~VTDW(Kk)-~WT}Q (23) 

{K k - WTD~V(K ~ + "~VTD~TV)-~VTDW }Z 

= { W  T - WTD~V(K e + ~VTD~V)-t~vT}Q. (24)  

By using the estimate 

I{K~[{ ~ ¢[S{I >> IIKkll ~ lIoll ~ {[Po{[ (25)  

where norms indicate, for example, maximum absolute values 
of elements, and neglecting small values, Eqs. (23) and (24) 
take the form 

K'Z = RQ (26)  

KkZ = RQ (27)  

where 

~t = ~V T - ~V+DW ( K k ) - l W  r (28) 

R = W + - W XD~V(Ke)-I~V T. (29) 

This means that K k is an m - r by m - r "kinematic"  stiffness 
matrix and K e is an r by r "elast ic" stiffness matrix. 

The two matrices K k and K e must be positive definite to 
provide overall stability of initial equilibrium state. Matrix K e 
is always positive definite due to its framework. It is implied 
that det (K  e + ~VTD~?q) ~ 0, otherwise the state is unstable. 

Matrix K k positive definiteness must be checked under initial 
configuration design. 

Suppose that the initial forces are induced due to prestressing. 
In this case, solution of homogeneous Eq. (1) is presented in 
the form 

Po = t~p~ + . . .  + tn-,P,-r (30) 

ti is an arbitrary scalar and Pi is the matrix A0 nullspace basis 
vector. 

In this case the "kinematic"  stiffness matrix takes the form 

K k = tlK1 k + . . .  + tn_rKkn_r (31) 

K~ = WTD(p i )W.  (32)  

If the set of parameters ti leads to positive definiteness of 
matrix K k, initial overall stability is provided. Generally speak- 
ing, an appropriate set of the parameters could be found under 
the design of a structure with the help of an algorithm such as 
that of Calladine-Pellegrino (1991) (CP procedure). The idea 
of the above algorithm can be described briefly as follows: 

For this purpose, it is necessary to maximize parameter e by 
varying t~ under constraints 

n-r  

b ~ ( ~  t~K~)bj-> e - > 0 ,  j =  1 . . . .  1 (33)  
i=1 

t~ -< ti ~ t ~ .  (34) 

bj  is the vector of m-dimensional Euclidian space Rm; C ,  t~ 
are lower and upper boundaries for parameter 6. 

On first iteration, bjs are selected as unit base vectors in R m 
and l = m. Under replacing parameters ti by subtraction of 
two positive values, the initial problem is nothing but linear 
programming problem. If its solution {t~ ~) . . . . .  t~2~} leads to 
positive definite K k (all eigenvalues are positive) then the pro- 
cedure is finished. Otherwise, existing unit vectors bj  are com- 
pleted by m new vectors which are eigenvectors of matrix: 

(1) n--r 

K k  = E tll)K~ ' 
i=1 

and all the calculations are repeated. 
The new solution of the linear programming problem { t~ 2), 

• . . ,  t~), } leads to a new matrix 
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(2) n - r  

K k  = Z t l2 'K~ 
i-I 

in which its positive definiteness is checked and so on. 
Finally two cases are possible: (a) where a suitable set of 

nonzero parameters ti is found or (b) where the found set is 
comprised of zeros. The latter means that the structure is unsta- 
ble and can not be stiffened by prestressing. 

The assembly shown in Fig. 1 is comprised of 12 members 
which form a regular quadratic net in plane. Nodes A, B, C, D 
are of the same height. The initial equilibrium matrix is 12 × 
12 but of rank I I .  It is easy to find self-stress distributions 
which satisfy the homogeneous Eq. ( l ). The initial force projec- 
tions on the x-axis of members 1 - 6  should be equal to each 
other in order to satisfy the nodal eqtiilibrinm equations. This 
argument is valid also for members 7 - 1 2  in the y direction. 
The signs of the force values must be different for the two 
families of members ( l - 6  and 7 - 1 2 )  in order to satisfy the 
nodal equilibrium equations in the z-direction. For example, 
members 1 - 6  are under tension and members 7 - 1 2  are under 
compression. 

This means that the assembly possesses "kinematic"  dis- 
placements and may be a mechanism or underconstrained struc- 
ture. The latter takes place when the self-stress state is stable 
and matrix K k is positive definite. It is easy to observe without 
any calculation that the assembly is not stable. If it were stable 
under a given distribution of self-stresses, the matrix K k eigen- 
values would be positive. Let us, for instance, change the signs 
of the initial member forces so that members 1 -6  are under 
compression and members 7 - 1 2  are under tension. In this case, 
the matrix K k eigenvalue signs are changed too and, conse- 
quently, the matrix becomes negative definite, which implies 
that the new state is unstable. This means that the stability 
depends upon the numeration of members: If tensioned mem- 
bers are numerated from 1 to 6, the assembly will be stable, 
otherwise, it will be unstable. This conclusion contradicts the 
physical sense since the concept of stability is invariant to the 
transformation of the notation. Finally, initial assumption of the 
stability of the initial state of the assembly is invalid, and the 
assembly is an unstable mechanism. 

This example emphasizes that the existence of a self-stress 
state is not enough to indicate that the assembly is a stable 
structure. 

Consider the assembly shown in Fig. 2 (Volokh and Vilnay, 
1997b). This assembly was created by adding nodes E, F, G, 
H and members 13-22  to the previous one. The assembly pos- 
sesses 24 degrees-of-freedom and 22 members. Consequently, 
the initial equilibrium matrix is of the 24 × 22 dimension. 
Again the assembly is a mechanism or an underconstrained 
structure since the equilibrium matrix rank is smaller than the 
number of degrees-0f-freedom. The rank of the above equilib- 
rium matrix is found to be 19. 

~ 1 ~  3 "I~5, 

Fig. 1 12-bar assembly 

Thus, the self-stress state is obtained with the accuracy of 
the three unknown parameters t = { 6 ,  tz, t3 }. These nonzero 
parameters may be obtained by the described CP-procedure to 
provide the initial overall stability. For example, in the case of 
the nodal heights, 

ha = h~ = hc = ho = 10, hE = hF = ha = hn = 8.2, 

the following distribution of the initial member forces leads to 
matrix K k positive definiteness 

Pol  = P03 = Po4 = P06 = 523.54 

Po2 = Po5 = 468.28 

eo13 = Po15 = eo16 = Po18 = 310.28 

Po14 = /)Ol7 = 2 8 7 . 0 3  

Pro9 = Po2o = Po21 = Po22 = 1 1 7 . 6 8  

Po7 = Po9 = Polo  = Po12 = - 7 8 6 . 6 8  

Po8 = Pot1 = -703.646 (*) 

where minus indicates compression. 
In the case of changing the heights of the nodes to 

hA = hB = h c =  hj~ = 20, h E =  hF = hc = hn = 18.2, 

the new assembly will not be in equilibrium under the initial 
member forces given by formula (*) .  It is possible to change 
only some of the initial member forces, in order to equilibrate 
the assembly. If the member forces values are changed as fol- 
lows, 

Pol3 = Pol5 = Pro6 = Pol8 = 279.59 

Po14 = Po17 = 258.64 

Pro9 = Po2o = Po21 = Po22 = 235.37, 

and the rest remain the same, the structure will become unstable 
and it is necessary then to find another distribution of initial 
member forces to stabilize it. 

As a whole, it is evident that the assembly shown in Fig. 
2 can be stiffened by prestressing and can be defined as an 
underconstrained structure. 

3 Loaded State Overall Stability 

Instability of a loaded state can be interpreted in the tradi- 
tional way; a bifurcation of the equilibrium problem. In the case 
of the bifurcation of the equilibrium state, nonzero perturbations 
A ' ,  P '  exist, 

(Ao + A + A')(Po + P + P') = Qo + Q, (35) 

by expanding Eq. (35) and omitting values of higher order 

where 

AoP' + A'(Po + P) = 0 (36) 

p ,  = SA~6U e 

A ' ( P 0  + P) = D ' 3 ( U  e + U k) 

(37) 

D '  ~ D(P0) + D ( P ) .  (38) 

This means that equilibrium equations in terms of displacements 
can be obtained directly from Eqs. (19),  (20) with the help of 
the following replacements: 

Journal of Applied Mechanics DECEMBER 1997, Vol. 64 / 925 

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 04/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



B 3 ~ 2 0  

. . . .  

Fig, 2 22-bar assembly 

Z ~ 6 Z ,  Z ~ 6 Z ,  D ~ D ' , Q ~ 0  

which take the form 

(K ~ + W T D ' W ) 6 Z  + W T D ' W 6 Z  = 0 

WI"D'~di6Z + I~k6z : 0 

where 

(39) 

(40) 

fKk = W-rD,W. (41) 

P is obtained from Eqs. (5), (4), (9), (13), (26), 

P = SA~U e = SA~'~V(K e) 1RQ. (42) 

In the case where the external load Q grows up proportionally 
by parameter u, thcn member forces take the form uP, and 
consequently 

D '  =- D(P0) + uD(P).  

Nonzero displacements appear under such values of parameter 
u, which lead to the following equality: 

det WTD,,~ r Kk = 0. (43) 

Estimate (25) indicates that the left upper submatrix elements 
are significantly larger than the rest. By using Laplace's resolu- 
tion of the determinant, it is possible to replace approximately 
Eq. (43) by the following one: 

det (K e + ~?ga'D'~¢) det I~ k = 0. (44) 

By using estimate (25) it is obvious that the minimum value 
of u is obtained by using equation 

det I~ k = 0 (45) 

or equation 

det {K k + uWTD(P)W} = 0. (46) 

Equation (46) represents the bifurcation of equilibrium problem 
of underconstrained structures. 

It is interesting to compare this equation and the analogous 
one for conventional fully constrained structures 

det {K + uD(P)} = 0. (47) 

K is defined by Eq. (8). 
The magnitudes of matrix K elements, which are determined 

by the elastic properties of the members, are significantly larger 
than the ones of matrix K k, which are determined by the values 
of the initial member forces only. As a consequence of this, the 
magnitude of the critical parameter u~.r is determined by the 

elastic properties of the members in the case of fully constrained 
structures but not in the case of underconstrained structures. It 
is necessary to note that the increments of the member forces 
included in the second terms in the braces of Eqs. (46), (47) 
depend upon the correlations between the member stiffnesses 
and not upon the magnitude of their stiffnesses. In summary, 
the influence of the elastic properties of the members on the 
critical bifurcation load is negligible in the case of undercon- 
strained structures which is in contrast to fully constrained ones. 

The displacement modes at the bifurcation point are obtained 
in the following way: first, the nullspace of the matrix in the 
braces of Eq. (46) is calculated; this is no other but vector ~Z 
with the accuracy of constant. Secondly, "kinematic" displace- 
ments are calculated with the help of Eq. ( 11 ) by replacing Z 
by 6Z. Vector 3Z and the "elastic" displacements may be 
obtained from Eq. (39) but they are negligible, and so it is 
possible to claim (at least in an approximate manner) that the 
displacements modes at the bifurcation point are purely kine- 
matic. 

In the case of the underconstrained truss shown in Fig. 2, 
where the product of the Young's modulus and cross-section 
area is the same for all members, 

Ei Si = ES, 

the critical values of the external loads for the four loading 
cases shown in Fig. 3 were calculated by using Eq. (46). The 
results take the form 

lJcr = 13.1342 for case a; 

u~.r = 13.9680 for case b; 

uc,. = 85.5169 for case c; 

u,.r = 85.5169 for case d. 

The modes of displacement for the critical value of the load 
for case a are presented in Table 1 and Fig. 4, 

In order to check the absence of the influence of the member 
elastic properties on the overall stability, the member stiffness 
was replaced significantly as follows: 

Ei Si ~ l~ ES. 

Nevertheless, the new critical values of the external loads practi- 
cally coincide with the previous ones 

uc, = 13.4986 for case a; 

uc, = 12.9478 for case b; 

uc,. = 86.4936 for case c; 
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Fig. 4 Buckling mode 
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Fig. 3 Cases of  loading 

uc, = 86.4936 for case d. 

4 Initial and Load e d  States Local  Stabil i ty 
A local stability problem may be formulated as the loss of 

stability of one member which unconditionally leads to a general 
collapse of an underconstrained structure. Figure 5 and the fol- 
lowing arguments show that the local stability problem can be 
formulated as a classical Euler's bifurcation problem for a 
hingely supported column. Let us cut member i with member 
force Pi with ajacent members as shown in Fig. 5 (a ) .  This 
fragment of the structure must be in equilibrium. To replace 
action of the adjacent members on the nodes by summary load, 
it is necessary to consider the equilibrium of the nodes (Fig. 
5 (b) ) .  Evidently, the equilibrium of the nodes is satisfied where 
the sums of the adjacent member forces equal the member force 
Pi in the opposite direction. By these means the ith member is 
under external load Pi (Fig. 5 (c ) )  and, consequently, Euler 's 
classical problem takes a place (Fig. 5 (d) ) .  Thus, stability of 
the ith member is defined by 

Table 1 

Nodes/displacement 
direction x y z 

A 0.15 -0.15 -0.30 
B 0.15 0.15 0.30 
C -0.15 -0.15 0.30 
D -0.15 0.15 -0.30 
E 0.12 -0.09 -0.30 
F 0.12 0.09 0.30 
G -0.12 -0.09 0.30 
H -0.12 0.09 -0.30 

~r2E, L 
P i  - 

Since Pi may be due to prestressing or external load, this ap- 
proach to local stability does not differ for initial and loaded 
states. 

In the case of the assembly shown in Fig. 2, where dimensions 
are given inn meters, the prestressing forces calculated by using 
formulae (*) are given in kilograms and the compressed mem- 
bers 7, 9, 10, 12 are made of steel with circular cross sections, 
the moment of inertia takes the form 

71-/, ,4 
1 = 1 7  = 1 9 = 1 1 0 = I 1 2  = - -  

4 

where r is the radius of the cross sections. In the case where 
Young's  modulus is the same to all members, 

E = E7 = E9 = El0 = El2 = 2.1.106 kg/cm 2, 

it is possible to obtain a critical radius to the members, taking 
into account that the member length is 2236 cm 

= 41786.68'4"22362 
,c,. 11 7-i57i   4cm. 

5 Conc lus ions  
1 The stability of the initial state of underconstrained struc- 

tures is not provided automatically. The formal existence of a 
self-stress state does not indicate that the structure is stable. 
This is contrary to the conventional fully constrained structures. 

2 Overall stability of loaded underconstrained structures is 
affected by the initial equilibrium state or prestressing, not by 
the elastic properties of the system as in conventional structures. 

=> 

P~ 

P 

a.  b. c. d. 

Fig. 5 On the formulation of the local stability prob lem 
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3 Local stability of underconstrained structures is affected 
by elastic properties of members and can be formulated in the 
classical Euler's manner, 
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