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Abstract

It is proved that the potential energy of any pin-bar assembly with totally tensioned members possesses strict
minimum independently of the assembly topology, geometry and magnitudes of member forces. # 2000 Elsevier

Science Ltd. All rights reserved.

1. Introduction

The fact that pre-tensioning sti�ens cable systems is well-known to engineers and widely used in design.
Probably, the experience of sti�ening a single string by pre-tension served as a spur for the development of
cable systems. The phenomenon of sti�ening strings by pretension is observed by almost everybody, so it
does not need any theoretical support and may be accepted as a law of nature. However, the situation with
cable systems is much more subtle. Only few of the in®nite number of possible pre-tensioned cable systems
were practically realized. Though sti�ening has been observed in all these cases, there is not enough
evidence to extrapolate from these results to other systems that have not been examined yet.

A more accurate and general formulation of the problem may be proceeded in the following way. An
assembly of straight members resisting to tension or compression and jointed by pins is considered. This
assembly is, generally, a space truss or, in the particular case of total tensioning, it may be a cable system.
Sti�ness of a speci®c state of the assembly is de®ned as a stability of this state from the point of view of the
minimum of the potential energy corresponding to it. The latter means that the tangent sti�ness matrix of
the assembly corresponding to the examined state must be strictly positive de®nite. To summarize: positive
de®niteness of the tangent sti�ness matrix means that the assembly possesses sti�ness at the considered
state. The observed experimental facts of sti�ening cable systems by pretension suggest the following
general question: Does total tensioning provide stability of an assembly independently of its topology,
geometry and speci®c magnitudes of member forces? The answer is: yes, it does. The proof suggested below is
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based on the analysis of location of eigenvalues of the tangent sti�ness matrix which, in turn, is based on
the extension of some results of linear algebra on location of matrix eigenvalues.

Though the contents of the second section of the present note is motivated by the contents of the fourth
section, we found it more suitable to change the `historical' order for the sake of compactness of the
presentation.

2. An extension of some linear algebra results on location of eigenvalues

LetG(A) designates the union of rGershgorin discs where all eigenvalues of an r by rmatrixA are located:

G�A� �
[r
i�1

�
z:jzÿ aiijE R 0i �A�

	
, where R 0i �A� �

Xr
j�1
j6�i

jaijj, 1 E i E r:

Then the following lemma takes place.

Lemma. Let A be an r by r matrix and let l be an eigenvalue of A that lies on the boundary of G(A). Let
Ax � lx, x 6� 0, and suppose p is an index such that

jxpj � max
1EiEr

jxij � kxk1 6� 0:

Then

1. If k is any index such that jxkj � jxpj, then jlÿ akkj � R 0k; that is, the kth Gershgorin circle passes
through l; and

2. If jxkj � jxpj for some k � 1, . . . , r and if akj 6� 0 for some j 6� k, then jxjj � jxpj as well.

Proof. See Horn and Johnson (1985).

Let property GSC be introduced now.

De®nition 1. An r by r matrix A is said to have the generalized property SC (GSC) if it is possible to
®nd g, 1 E g E r, nonintersecting sets of distinct integers (covering all integers from 1 to r ) among
integers from 1 to r, so that for every pair of integers pt, qt of the tth set there is a sequence of distinct
integers, belonging to the same set, k1 � pt, k2, . . . , km � qt, 1 E m E r, such that all of the matrix
entries ak1k2 , ak2k3 , . . . , akmÿ1km are nonzero.

Then the following theorem and its corollary may be formulated and proved.

Theorem. Let A be an r by r matrix, and suppose that l is an eigenvalue of A that lies on the boundary
of G(A). If A has property GSC, then

1. Every Gershgorin circle of at least one of g sets, de®ned by property GSC, passes through l; and
2. If Ax � lx, x 6� 0, then jxij � jxjj for at least all i, j belonging to the same set.

Proof. Let Ax � lx with jxijEjxpt j � kxk1 for all I � 1, . . . , r. Then jlÿ aptpt j � R 0pt by the Lemma. Let
qt be any other index which belongs to the same tth set as pt, 1EqtEr, qt 6� pt. Since A has property
GSC, there is a sequence of distinct indices k1 � pt, k2, . . . , km � qt such that all of the matrix entries
ak1k2 , ak2k3 , . . . , akmÿ1km are nonzero. Since ak1k2 � aptk2 6� 0, we conclude by assertion (2) of the Lemma

K.Yu. Volokh, O. Vilnay / International Journal of Solids and Structures 37 (2000) 1809±18161810



that jxpt j � jxk2 j. But then ak2k3 6� 0 and so jxk2 j � jxk3 j � jxpt j. Proceeding in this way we obtain that
jxki j � jxpt j for all i � 1, . . . , m and hence, by assertion (1) of the Lemma, jlÿ akmkm j � jlÿ aqtqt j � R

0
qt
;

that is, the qth Gershgorin circle passes through l and jxpt j � jxqt j. But since qt was an arbitrary index
among those belonging to the tth set, we conclude that every Gershgorin circle of this set passes through
l and that jxij � jxpt j for at least all i belonging to the set. (End of the proof ).

Corollary. Let A be an r by r matrix and suppose that A has property GSC. If A is diagonally
dominant, that is jaiijeR 0i , and jajjj > R 0j for at least one value of j � k1 � pt, k2, . . . , km � qt for every
of g sets, the A is invertible.

Proof. If A were not invertible, then 0 would be an eigenvalue of A. Since A is diagonally dominant, 0
cannot be an interior point of G(A) and hence it must be a boundary point. The theorem says that every
Gershgorin circle of at least one of g sets de®ned by property GSC must pass through 0, but there is
jajjj > R 0j for every of g sets, then the jth circle cannot pass through 0. Consequently, no one of
Gershgorin circles passes through 0. (End of the proof ).

By assuming g=1 in the above stated De®nition 1 of property GSC, we obtain the well-known
property SC and the Theorem and its Corollary are reduced to the `better theorem' and `better
corollary' presented by Horn and Johnson (1985).

Property GSC of matrix A may be visualized by introducing a concept of a weakly connected graph.

De®nition 2. A directed graph G consisting of r nodes is said to be weakly connected if there are g with
1 E g E r nonintersecting sets of distinct nodes (covering all nodes from 1 to r ) among nodes from 1 to
r, so that for every pair of nodes pt, qt of the tth set there is a directed path of ®nite length, belonging to
the same set, that begins at pt and ends at qt.

The property GSC of matrix A means that graph G(A) of this matrix is weakly connected and vice
versa. Again, assuming g=1 in De®nition 2 the `weakly connected' should be replaced by the `strongly
connected' as in Horn and Johnson (1985).

3. The structure of the tangent sti�ness matrix

The internal strain energy of an arbitrary pin-bar assembly takes the following form:

V �
Xm
i�1

�
1

2

EiAi

li
D2
i � PiDi

�
�1�

where Ei, Ai, li, Pi, Di are the ith member elasticity modulus, cross-section area, initial length, initial
force and elongation correspondingly. Member elongations and, consequently, the strain energy is a
function of nodal displacements Ui.

In the case of the `dead' load the current state of the assembly is stable where the Hessian or tangent
sti�ness matrix @2V=@Ui@Uj is positive de®nite at the vicinity of the current state: U=0. The zero
means that the current state is referred to as the initial one for the sake of simplicity. This criterion is
general, but it may be simpli®ed in the case of kinematically indeterminate assemblies (Calladine and
Pellegrino, 1991; Kuznetsov, 1991; Volokh and Vilnay, 1997).

In principle, analysis of the initial tangent sti�ness matrix may be carried out numerically for every
particular case. However, in this work the properties of the initial tangent sti�ness matrix are
investigated without referring to a speci®c structural topology, geometry or member forces' distribution.
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An arbitrary kth row of the sti�ness matrix takes the form:

aki � @

@Ui

�
@V

@Uk

�����
U�0

i � 1, . . . r �2�

where r is the number of degrees of freedom.
Taking into account that Uk is included only into the change of the length of the members

corresponding to the appropriate node, it is possible to reduce the strain energy expression given in eqn
(2) to the form:

V1 �
Xr
n�1

�
EinAin

2lin
D2
in
� PinDin

�

Din � ~l in ÿ lin

~l in �
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ
Xk �Uk ÿ Xsn ÿUsn

�2�ÿXk�1 �Uk�1 ÿ Xsn�1 ÿUsn�1
�2�ÿXk�2 �Uk�2 ÿ Xsn�2 ÿUsn�2

�2q
;

lin �
������������������������������������������������������������������������������������������������ÿ
Xk ÿ Xsn

�2�ÿXk�1 ÿ Xsn�1
�2�ÿXk�2 ÿ Xsn�2

�2q
�3�

(see also Fig. 1).
In this case the ®rst and the second derivatives take the form:

Fig. 1. An arbitrary node of the assembly.
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@V

@Uk
� @V1

@Uk
�
Xr
n�1

�
EinAin

lin
Din

@Din

@Uk
� Pin

@Din

@Uk

�
�4�

@V

@Ui@Uk
� @V1

@Ui@Uk
�
Xr
n�1

(
EinAin

lin

�
@Din

@Ui

@Din

@Uk
� Din

@2Din

@Ui@Uk

�
� Pin

@2Din

@Ui@Uk

)
�5�

It is possible to obtain, omitting details, the following formulae for i � k, k� 1, k� 2 and
i � sn, sn � 1, sn � 2:

@Din

@Uk
� ÿ @Din

@Usn

� Xk �Uk ÿ Xsn ÿUsn

~l in

@Din

@Uk�1
� ÿ @Din

@Usn�1
� Xk�1 �Uk�1 ÿ Xsn�1 ÿUsn�1

~l in
�6�

@Din

@Uk�2
� ÿ @Din

@Usn�2
� Xk�2 �Uk�2 ÿ Xsn�2 ÿUsn�2

~l in

@2Din

@U2
k

� ÿ @2Din

@Usn@Uk
� 1

~l in

�
1ÿ

�
@ ~l in
@Uk

�2�
� 1

~l in

�
1ÿ @Din

@Uk

� �2�
�7�

@2Din

@Uk�1@Uk
� ÿ @ 2Din

@Usn�1@Uk
� ÿ 1

~l in

@ ~l in
@Uk�1

@ ~l in
@Uk
� ÿ 1

~l in

@Din

@Uk�1

@Din

@Uk

@2Din

@Uk�2@Uk
� ÿ @ 2Din

@Usn�2@Uk
� ÿ 1

~l in

@ ~l in
@Uk�2

@ ~l in
@Uk
� ÿ 1

~l in

@Din

@Uk�2

@Din

@Uk
�8�

By substituting eqns (6)±(8) into eqn (5) and assuming U=0, the elements of the kth row of the
sti�ness matrix take the form

aksn � ÿ
�
EinAin

lin
ÿ Pin

lin

��
Xk ÿ Xsn

lin

�2

ÿPin

lin
�9�

aksn�1 � ÿ
�
EinAin

lin
ÿ Pin

lin

��
Xk ÿ Xsn

lin

��
Xk�1 ÿ Xsn�1

lin

�

aksn�2 � ÿ
�
EinAin

lin
ÿ Pin

lin

��
Xk ÿ Xsn

lin

��
Xk�2 ÿ Xsn�2

lin

�
�10�

akk � ÿ
Xr
n�1

aksn �11�
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akk�1 � ÿ
Xr
n�1

aksn�1

akk�2 � ÿ
Xr
n�1

aksn�2 �12�

It is important to note that in case of a support point without degrees of freedom sn, sn � 1, sn � 2 the
corresponding elements aksn , aksn�1, aksn�2 should be zeroed and corresponding matrix rows and columns
removed, while elements akk, akk�1, akk�2 are calculated without changes in accordance with eqns (9)±
(12).

The sti�ness matrix A whose kth row elements are presented by eqns (9)±(12) may be written in the
matrix form as follows

A � BT SB� D �13�

An m by r matrix B is a standard (kinematic) matrix of direction cosines: bink � �Xk ÿ Xsn �=lin .
An m by m matrix S is a modi®ed uncoupled sti�ness matrix with nonzero diagonal elements:

Sinin �Ain�Ein ÿs0in �=lin , where s0in is the current stress in the inth member. The standard uncoupled
sti�ness matrix S is obtained from �S by zeroing the initial stresses.

An r by r symmetric matrix D is the geometric sti�ness matrix with elements:

dksn � ÿPin=lin , dksn�1 � 0, dksn�2 � 0 �14�

dkk � ÿ
Xr
n�1

dksn , dkk�1 � 0, dkk�2 � 0 �15�

Again non-diagonal element dksn should be zeroed and proper rows and columns removed in case of a
support point corresponding to the snth degree of freedom, while the same term should be kept on the
right hand side of eqn (151).

4. Positive de®niteness of the tangent sti�ness matrix

The proof of positive de®niteness of matrix A includes two steps. At the ®rst step we prove that the
®rst term on the right hand side of eqn (13) is positive semi-de®nite, and at the second step we prove
that the second term on the right hand side of eqn (13) is strictly positive de®nite.

4.1. Step 1

Note that elements of diagonal matrix S are positive, that is Ein > s0in . This assumption means that the
current stress cannot be larger in magnitude than the elasticity modulus and it seems to be correct for
all existing materials. Moreover, our considerations are restricted by the elastic region of the material
behavior. Thus introducing diagonal matrix

����
�S

p
whose elements are square roots of the corresponding

elements of matrix S and designating Euclidean norm as k k2, it is possible to obtain for an arbitrary
vector x:
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xTBT SBx � xTBT
���
S

p T ���
S

p
Bx � k

���
S

p
Bxk22 e 0 �16�

and the ®rst step is completed.

4.2. Step 2

This step is decomposed, in turn, into the following two moves:

1. It immediately follows from eqns (14) and (15) with account for total tension �Pin > 0� that matrix D
enjoys diagonal dominancy:

dkke
Xr
n�1
jdksn j �

Xr
i�1
i 6�k

jdkij � R0k�D� �17�

This weak inequality transforms into equality if the terms corresponding to support points are not
present in the kth row, otherwise, strict inequality is obtained. On the other hand, dkk is positive for
all k. The latter means that Gershgorin discs G(D) do not include negative numbers and matrix D is,
at least, positive semi-de®nite.

2. In order to prove that D is strictly positive de®nite, it is necessary to prove that it is invertible. The
theory developed in the second section of the paper serves this purpose.

Let us show that the Corollary is applicable to matrix D.
The fact that matrix D is diagonally dominant has been already proved above. Let us show that

matrix D enjoys property GSC. For this purpose, we distinguish three sets ( g=3) of matrix elements:

dkk, dksn ;

dk�1k�1, dk�1sn�1;

dk�2k�2, dk�2sn�2;

where indices of the ®rst set correspond to degrees of freedom in the x direction; indices of the second
set correspond to degrees of freedom in the y direction; and indices of the third set correspond to
degrees of freedom in the z direction of the global coordinate system. The graph of matrix D is
decomposed into three non-connected parts in accordance with above de®ned sets. Every part of the
graph is nothing but the physical structure itself. Thus graph G�D�, being strongly connected for every
of this three parts (otherwise the pin-bar assembly is incompatible, that is it does not exist), is weakly
connected as a whole.

Finally, every of the above mentioned sets possesses, at least, one integer j corresponding to a
supporting point, such that

djj >
Xr
i�1
i6�j

jdjij � R 0j �D� �18�

Summarizing, we conclude that matrix D satis®es all requirements of the Corollary and, therefore, it
is invertible. That completes the general proof of positive de®niteness of D and, consequently, of A.
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5. Conclusion

It was proved that the equilibrium state of any pin-bar assembly is stable under condition that all
members are tensioned. This result does not depend on speci®c structural topology, geometry and
magnitudes of member forces and, consequently, explains why pre-tensioning always sti�ens cable
systems.
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