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Plane frames as semi-underconstrained systems
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Abstract

A di!erent approach to the analysis of slender framed structures is presented. It is based on the theory of
underconstrained systems. It is shown that frames can be interpreted as semi-underconstrained structures.
The approach allows understanding of various features of the mechanical behavior of frames as well as novel
computing techniques. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The assembly shown in Fig. 1a is a xnite mechanism which, generally, does not resist external
loads. There are various ways in which it is possible to transform the mechanism into a structure
which can bear external loads. This transformation is obtained, for example, by imposing
additional constraints on the degrees of freedom of the assembly. A possible way is adding
the diagonal element shown in Fig. 1b, this new constraint introduces rigidity to the initial
assembly. In this case, the price of the rigidity is rather high: the assembly weight grows up and its
internal space is obstruct by the new element. These two features are undesirable in structural
design.

It is possible also to apply initial forces to the assembly in such a way that it becomes sti!. Fig. 1c
exhibits this possibility. The two initial vertical forces insert rigidity to the assembly. It becomes an
inxnitesimal mechanism or underconstrained structure: it possesses in"nitesimal free motions only,
and the overall sti!ness is reached due to appropriate initial member forces. This example is
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Fig. 1. Mechanism, truss, underconstrained structure, frame.

a simple illustration of an underconstrained system; it is somehow arti"cial since the initial vertical
forces are hardly realizable practically. Generally, the initial stress state and rigidity may be
obtained due to prestressing [1}4]. A more conventional way of introducing rigidity to the
assembly is shown in Fig. 1d. In this case the pin joints are replaced by sti! connections and the
assembly is transformed into a framed structure. By comparing the structures shown in Figs. 1c and
d, it is possible to conclude that the role of the sti!ening of the joints in the case of frames (Fig. 1d) is
analogous to the role of the initial stress in the case of underconstrained structures (Fig. 1c).
Because of the resemblance between underconstrained structures and frames, there is a certain
similarity in their behavior. In this work the theory and analysis methods developed to undercon-
strained structures [5] are extended and adopted to frames.

2. Fundamentals

2.1. Equilibrium of frames

Equilibrium of the nodes of a framed structure is provided where generalized nodal displace-
ments v satisfy the following equation:

Kv"r, (1)

where K is the m]m sti!ness matrix and r is the vector of the external loads. Generally, K possesses
the following structure:

K"BTSB, (2)
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Fig. 2. A frame.

where B is an n]m kinematic matrix and S is an n]n uncoupled sti!ness matrix. The generalized
axial forces and bending moments p take the form

p"SBu. (3)

In the case of the frame shown in Fig. 2, which consists of identical elements with cross-section
area A, elasticity modulus E, length ¸, and moment of inertia I, Eq. (1) takes the form (see also
appendix):

EA
¸ C

1.3#9e !0.4#5.2e !1 0 !519.6e !519.6e 0 0
0.8#15e 0 !12e !300e 300e 600e 0

1.3#9e 0.4!5.2e 0 0 !519.6e !519.6e
0.8#15e 0 !600e !300e 300e

40000e 20000e 0 0
80000e 20000e 0

Symmetry 80000e 20000e
40000e

D
]C

u
1

u
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u
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u
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4

D"r. (4)
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Dimensionless parameter e"I/(A¸2) is used above. In practical cases this parameter is very small.
However, by observation of Eq. (4)1, the entries including this parameter may not be small. This is
due to the fact that displacements u

i
and rotations 0

i
have di!erent dimensions, and because of it

their contributions to the sti!ness matrix cannot be compared directly.
In order to exclude rotations, matrix K can be partitioned. In this case Eq. (1) takes the form

K1 u"q, (5)

where

K1 "K
11
!K

12
K~1

22
K

21
, (6)

q"r
1
!K

12
K~1

22
r
2
, (7)

u is a vector of nodal displacements u
i
, matrix K

11
is submatrix of K corresponding to nodal

displacements and external nodal forces, matrix K
22

is submatrix of K corresponding to rotations
and external nodal moments, matrices K

12
"KT

21
are chosen appropriately. Vector r

1
includes

external nodal forces only while vector r
2

includes external nodal moments only.
Solution of Eq. (5) immediately provides solution of Eq. (1):

v"C
u

0D"C
u

!K~1
22

K
21

u#K~1
22

r
2
D. (8)

In the example, considered here, matrix K
11

is the 4]4 upper left submatrix of Eq. (4), matrix
K

22
is the 4]4 lower right submatrix of Eq. (4), matrices K

12
and K

21
are the 4]4 upper right and

lower left submatrices of Eq. (4) correspondingly. In this case the reduced sti!ness matrix K1 takes
the form

K1 "K1
axial

#K1
bending

, (9)

K1
axial

"

EA
¸ C

1.3 !0.4 !1 0

0.8 0 0

1.3 0.4

Symmetry 0.8D,
K1

bending
"e

EA
¸ C

1.2 2.4 0.3 !1.9

6.4 1.9 !6.1

1.2 !2.4

Symmetry 6.4 D.
Matrix K1 is a sum of two matrices; the "rst matrix is related to the axial sti!ness of the assembly
while the second one is related to the bending sti!ness of the assembly. The elements of the "rst
matrix are dominant, they are much larger than the elements of the second one. Nevertheless, the
second matrix cannot be ignored since the "rst matrix is singular. The fact that the "rst matrix is

1Here and further numerical results are signi"cantly rounded for the sake of compactness.
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dominant and singular is crucial to the analysis of the structure. This feature of frames makes them
similar to underconstrained structures. This fact can be easily demonstrated by studying the
assembly shown in Fig. 1c.

2.2. Equilibrium of underconstrained systems

The analogy of the sti!ness matrices of frames and underconstrained structures is studied
explicitly considering the example studied before. The frame shown in Fig. 2 can be transformed
into an underconstrained structure where the sti! joints are replaced by pin joints and initial stress
state is introduced due to vertical nodal forces Q as shown in Fig. 1c. In this case the sti!ness matrix
of the underconstrained structure takes the form (see [5] for details)

K"K
axial

#K
prestress

, (10)

K
axial

"

EA
¸ C

1.3 !0.4 !1 0

0.8 0 0

1.3 0.4

Symmetry 0.8D,
K

prestress
"k

EA
¸ C

1.7 0 !0.6 0

1.7 0 !0.6

1.7 0

Symmetry 1.7 D,
in which k is a parameter; k"Q/(EA). k is small because Q initial stresses are signi"cantly smaller
than the modulus of elasticity.

Eqs. (9) and (10) demonstrate the similarity of the sti!ness matrices of frames and undercon-
strained structures. The "rst terms on the right-hand sides of Eqs. (9) and (10) are identical because
these terms correspond to the axial sti!ness of the bars which is the same in both cases. The second
terms of Eqs. (9) and (10), being both small in comparison to the "rst ones, are di!erent. In the case
of frames they are related to the bending sti!ness, and in the case of underconstrained structures, to
the initial stresses. The similar nature of the sti!ness matrices allows to extend the analysis method
developed for underconstrained structures to frames.

It should be stressed that frames are not underconstrained systems, they are not in"nitesimal
mechanisms and do not possess in"nitesimal motions, and, strictly speaking, cannot be called
underconstrained. Thus, it is better to refer to frames as semi-underconstrained.

2.3. Decomposition of the stiwness matrix and its ill-conditionedness

The reduced sti!ness matrix of frames may be represented in the form

K1 "K1
axial

#K1
bending

, (11)
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Fig. 3. The portal frame.

in which

DDK1
axial

DD<DDK1
bending

DD, (12)

where

Det(K1
axial

)"0. (13)

The fact that matrix K1
axial

which corresponds to the axial sti!ness of the elements is singular
means that the skeletal (truss) structure, where sti! connections are replaced by pin joints, is a "nite
mechanism and the bending sti!ness of the joints is necessary to provide the overall sti!ness of the
frame. If matrix K1

axial
is of full rank, the second term on the right-hand side of Eq. (11) could be

ignored and the assembly does not need any additional sti!ness to the axial sti!ness of its members.
Such frames are actually trusses in which the sti!ness of their joints is not necessary for their overall
sti!ness.

Mathematically, in the case of frames, matrix K1 is ill-conditioned because of Eqs. (12) and (13).
The fact that the sti!ness matrix of frames is ill-conditioned was pointed out already by Livesley

[6], who studied the behavior of the simple portal frame shown in Fig. 3a. He also noted that the
addition of the diagonal element (Fig. 3b) transforms the sti!ness matrix from ill-conditioned to the
well-conditioned. These observations are in good accordance with the analysis presented here. It
should be noted that the use of the sti!ness matrix K instead of the reduced sti!ness matrix K1 may
lead to ill-conditionedness even for potentially well-conditioned problems of the type shown in Fig.
3b because of the di!erent dimensions of rotations and displacements. Thus, generally, it is safer to
use matrix K1 .

2.4. Orthogonal decomposition of displacements

The fact that Det(K1
axial

)"0 implies the following decomposition of the displacements:

u"u
a
#u

b
, (14)

u
a
"WI z8 , u

b
"Wz. (15)
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Vector u
a
is associated with nodal displacements due to axial deformations of the members and it is

a linear combination of vectors which form the orthonormal basis of the range of matrix K1
axial

.
Vector u

b
is associated with nodal displacements in which no axial deformations of the members

take place and only bending of members occurs. It is represented by a linear combination of vectors
which form the orthonormal basis of the null space of matrix K1

axial
. Consequently, the columns of

matrix W span the null space of K1
axial

and the columns of matrix WI span the range of K1
axial

K1
axial

W"0, WTWI "0. (16)

By using Eqs. (14) and (15), Eq. (5), pre-multiplied by matrix [WI W]T from the left, takes the form

C
K

a
L

LT K
b
DC

z8

zD"C
WI T q

WT q D, (17)

where

K
a
"WI TK1 WI , K

b
"WTK1 W, L"WI TK1 W. (18)

The new (reduced) sti!ness matrix, transformed from the old one, possesses a more attractive
framework. The left upper square submatrix K

a
, of the dimension equals to the Rank(K1

axial
), is

dominant since its elements depend on the axial sti!ness. The rest submatrices K
b
and L depend on

the bending sti!ness only

K
b
"WTK1 W"WTK1

bending
W, L"WI TK1 W"WI TK1

bending
W. (19)

In the example presented here, matrices W, WI , K
a
, K

b
, and L take the form

W"C
!0.61

!0.35

!0.61

0.35 D, WI "C
!0.79 0 0

0.27 !0.77 0.45

0.47 0.59 0.24

!0.27 0.24 0.86D, (20)

K
a
"

EA
¸ C

2 0.32 0.55

1.04 0.31

Symmetry 0.96D#e
EA
¸ C

1.92 !1.71 !1.2

4.47 1.47

Symmetry 0.81 D,
K

a
+

EA
¸ C

2 0.32 0.55

1.04 0.31

Symmetry 0.96D, (21)

K
b
"e

EA
¸

[8], L"e
EA
¸ C

!3.1

5.74

2.35 D.
In fact, the proposed congruence transformation leads to the concentration of the elements of large
numerical value in the left upper submatrix. This domination leads to well-conditioned submatri-
ces at the upper left and lower right. Indeed, by using Laplace's resolution of determinant, it is
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Table 1

Eigenvalues Condition numbers:
i
2
(v)"DDvDD

2
DDv~1DD

2

KM e"10~5: 2.37 1.0 0.63 8]10~5 &30000
(EA/¸"1) e"10~3: 2.37 1.0 0.63 8]10~3 &300

KM
a

e"10~5: 2.37 1.0 0.63 * &4
(EA/¸"1) e"10~3: 2.37 1.0 0.63 * &4

KM
b

e"10~5: * * * 8]10~5 1
(EA/¸"1) e"10~3: * * * 8]10~3 1

possible to "nd, approximately, `largea eigenvalues of the reduced sti!ness matrix K1 as eigenvalues
of matrix K

a
and `smalla eigenvalues of K1 as eigenvalues of matrix K

b
. Thus, the spectrum of each

submatrix is narrower than the spectrum of the sti!ness matrix K1 as a whole. These submatrices are
signi"cantly better conditioned as compared to the sti!ness matrix. Table 1 represents eigenvalues
and the 2-norm condition numbers i

2
of matrices K1 , K

a
, K

b
for various magnitudes of e considering

the example discussed here.
Since the submatrices of Eq. (17) are well-conditioned, the block Gaussian elimination procedure

is expected to be accurate considering round-o! error.

2.5. Fitted and non-xtted loads

It is useful to rewrite Eq. (17) in the following form:

(K
a
!LK~1

b
LT)z8 "(WI T!LK~1

b
WT)q, (22)

(K
b
!LTK~1

a
L)z"(WT!LTK~1

a
WI T)q. (23)

The second terms in the parentheses on the left-hand sides of Eqs. (22) and (23) are small as
compared to the "rst ones. Particularly, the second terms take the following forms for the
considered numerical example:

LK~1
b

LT"e
EA
¸ C

1.2 !2.22 !0.91

4.12 1.69

Sym. 0.69 D,
LTK~1

a
L"e2

EA
¸

[48.4].

These terms may be ignored and Eqs. (22) and (23) take the form:

z8 "K~1
a

(WI T!LK~1
b

WT)q, (24)

z"K~1
b

(WT!LTK~1
a

WI T)q. (25)

This formulation allows to distinguish between `axiala and `bendinga displacements u
a
(z8 ) and u

b
(z).
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(i) If the external load q belongs to the range of matrix K1
axial

, that is WTq"0, then

z8 "K~1
a

WI Tq, (26)

z"!K~1
b

LTK~1
a

WI Tq (27)

and `bendinga displacements are not larger than `axiala ones: DDu
b
DD&DDu

a
DD. This kind of loading

may be called non-exciting or xtted since the skeletal structure (with nodal pins) bears the given load
and the contribution of the bending sti!ness is negligible.

(ii) If the external load is general, i.e. it possesses both "tted and non-xtted component which
belongs to the null space of matrix K1

axial
(WTqO0), then

z8 "K~1
a

(WI T!LK~1
b

WT)q, (28)

z+K~1
b

WTq (29)

and `bendinga displacements are signi"cantly larger than `axiala ones: DDu
b
DD<DDu

a
DD and the

contribution of the bending sti!ness in bearing given loads is crucial.
In the case of the frame shown in Fig. 2, where the cross-section of the elements is 1]1 cm, length

¸"100 cm, and the elasticity modulus E"2]106 kg/cm2, the following `bendinga and `axiala
displacements for "tted and non-"tted loading are obtained:

q
fitted

"C
0

1

0

1 D (kg), u
a
"C

1.4

7.5

!1.4

7.5 D]10~5 (cm), u
bC

0

0

0

0 D (cm), (30)

q
nonvfitted

"C
0

1

0

1/2D (kg), u
a
"C

0.8

6.1

!1.3

5.2 D]10~5 (cm), u
bC

8.1

4.7

8.1

!4.7D]10~2 (cm). (31)

The fact that the `bendinga displacements are dominant in the case of non-"tted load indicates that
geometrically non-linear analysis is necessary as in the case of underconstrained systems [7]. The
appropriate numerical example is considered in the next section.

3. Buckling

Overall buckling of statically loaded elastic structures is usually associated with drastic and
visible changes in their con"guration. The problem of buckling analysis may be formulated as
a non-linear eigenvalue problem. Its solution requires tracing of the equilibrium paths in the state
space and checking their stability.

Traditionally, structural analysis is restricted to the classical linear buckling analysis formulated
by a linear eigenvalue problem (see, for example, [8]). Despite of its relative simplicity the formal
assumption of linear buckling may lead to incorrect conclusions in cases where behavior of the
structure is non-linear.
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Table 2

Critical loadsCt 1 4 8

Exact method 92.3751 23644.5 378128
Degenerate method 92.3768 23651.3 378566

Table 3

u
1

u
2

u
3

u
4

0
1

0
2

0
3

0
4

Exact 0.612 0.353 0.612 !0.353 0.012 !0.002 !0.002 0.012
Degenerate 0.612 0.353 0.612 !0.353 0.012 !0.002 !0.002 0.012

Below the classical linear buckling analysis of frames is studied by using the approach developed
in this work, and it is shown how the validity of the classical linear buckling can be examined.

3.1. Classical linear buckling analysis

The linear buckling analysis is associated with the (generalized) eigenvalue problem

(K#lD)v"0, (32)

where D is the geometrical sti!ness matrix; l is a load parameter: r"lrH (rH is a "xed initial load
vector); and vector v represents buckling modes. Matrix D is associated with internal bending
moments and axial forces computed from Eqs. (1)}(3) with external load rH (see appendix for
details). Generally, only the smallest eigenvalue l

.*/
and the corresponding eigenvector are

required and the critical buckling load takes the form: r
critical

"l
min

rH.
Let the frame considered in this work be loaded as follows: rH"[0, 1, 0, 1, 0, 0, 0, 0]T (kg). The

vertical nodal forces are in the directions of u
2
, u

4
(see Fig. 2). The critical buckling loads for various

square cross-section (t]t) were found and are given in the "rst row of Table 2. The buckling mode
corresponding to r

critical
for t"1 cm is shown in the "rst row of Table 3.

In the case where the approach considered in Section 2 is applied to Eq. (32), the reduced linear
buckling equation takes the form

(K1 #lD1 )u"0. (33)

The reduced sti!ness matrix K1 is de"ned by using Eq. (6) and the reduced geometrical sti!ness
matrix D1 is obtained by removing zero rows and columns corresponding to rotational degrees of
freedom from matrix D.

The problem may be reduced further with the help of the congruence transformation described
in Section 2.4:

C
K

a
#lWI TD1 WI L#lWI TD1 W

LT#lWTD1 WI K
b
#lWTD1 WDC

z8

zD"0 (34)
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and eigenvalues may be found from the following equation:

((l)"detGC
K

a
#lWI TD1 WI L#lWI TD1 W

LT#lWTD1 WI K
b
#lWTD1 WDH"0. (35)

Since DDK
a
DD<DDLDD, DDD1 DD, DDK

b
DD, then the left upper submatrix is dominant under condition that

l;DDK
a
DD. The latter is satis"ed for `smalla eigenvalues which are of the most interest. Particularly,

the lowest eigenvalue, corresponding to the critical load, is of interest in the buckling problem.
Proceeding further with Laplace's resolution of determinant, it is possible to obtain approximately

((l)"detM(K
a
#lWI TD1 WI )(K

b
#lWTD1 W)#small termsN

+detM(K
a
#lWI TD1 WI )(K

b
#lWTD1 W)N

"detM(K
a
#lWI TD1 WI )NdetM(K

b
#lWTD1 W)N"0. (36)

Recalling the fact that DDK
a
DD<DDK

b
DD, Eq. (36) is further reduced to

det(K
b
#lWTD1 W)"0. (37)

This equation could be naturally called the reduced buckling equation, or, keeping in mind that
reduction was made twice, it is better to call it the degenerate linear buckling equation. It may be
directly observed from this degenerate equation that the critical buckling load is a!ected by the
bending sti!ness of the frame elements (K

b
).

The buckling mode correspondent to l
.*/

, computed by using Eq. (34), takes the form:
u"Wz#WI z8 , where z lies in the null space of matrix (K

b
#l

.*/
WTD1 W) and

z8 "(K
a
#l

.*/
WI TD1 WI )~1(L#l

.*/
WI TD1 W)z. However, DDz8 DD;DDzDD and the buckling mode takes the

following form:

u+Wz. (38)

The buckling mode as a function of v is obtained by using Eqs. (8) and (38).
Tables 2 and 3 show the results obtained by using the exact method and the degenerate

equations presented in this work. Comparison of the exact and degenerate methods does not need
any comment. It should be noted that the reduction of the dimensions of the problem is signi"cant.
The exact method eigenvalue problem is an 8]8 while in the degenerate method it is 1]1 only.

3.2. Applicability of the linear buckling analysis

Linear buckling analysis is valid in cases where the external loads are "tted loads

WTq"0. (39)

Suzciency of this requirement is obvious. In this case, the external loads are equilibrated by the
axial forces only, the bending sti!ness is not necessary and the skeletal truss bears the loads.

There are two arguments to support the necessity of this statement.
The "rst one is `by analogya, it was shown in Section 2.5 that in the case of "tted loads the
`bendinga displacements are of the same order of magnitude as the `axiala ones, thus non-linear
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terms of equilibrium equations can be ignored, and the case is of linear buckling. Only in the case of
non-"tted loads the `bendinga displacements are dominant and non-linear terms of equilibrium
equations should be retained. This case is analogous to the case of non-"tted loads of undercon-
strained systems. Non-linear analysis is necessary when `kinematica (analogous to `bendinga)
displacements are signi"cantly larger than `elastica (analogous to `axiala) ones (see [7]). For the
numerical example considering here, it is possible to "nd that linear buckling analysis leads to the
value l

.*/
"123 in the case of non-"tted loading represented in Section 2.5. If this value were valid,

both linear and nonlinear analyses up to the corresponding critical load would give the same
displacements. Computations show signi"cant di!erences in numerical results of linear and
non-linear analyses even at l"70

r"[0, 70, 0, 35, 0, 0, 0, 0]T (kg, kg cm),

v
linear

"[5.68, 3.29, 5.68, !3.28, 5.47, !2.19, !2.19, 5.47]T (cm, rad),

v
nonvlinear

"[13.36, 9.24, 12.19, !5.97, 13.29, !4.4, !6.01, 11.69]T (cm, rad).

Non-linear computations were carried out on the base of the co-rotational 2D-beam element
described in appendix.

The second argument is supported by the following property of the bifurcation point [9];

qTu"0, (40)

in which vector u represents an appropriate buckling mode. It was shown in Section 3.1 that this
buckling mode may be represented by Eq. (38), and one returns to Eq. (38) after substitution of
Eq. (38) in Eq. (40). Thus the critical point is a bifurcation point in the case of "tted loads only.
Otherwise, this critical point is a limit point. The limit point, however, cannot be reached, in
principle, within the frame of linear analysis.

4. Vibrations

The equations of undamped free vibrations take the form

MvK#Kv"0, (41)

where M is a `lumpeda mass matrix with diagonal elements or a `consistenta mass matrix
including non-diagonal elements [10]. The latter is of special interest where the "nite element
formulation is used. In this case matrix M should be consistent with the base functions approxima-
tion. In the case where exact beam elements are used the consistency of the `consistenta mass
matrix is less obvious. Because of its simplicity, the diagonal mass matrix is preferable. In practical
cases, independently of matrix M structure

DDKDD<DDMDD. (42)

The amplitude}frequency transformation of Eq. (41) takes the following form:

(K!u2M)v"0, (43)
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where u is an angular frequency and v is the corresponding vector of free vibrations amplitudes. By
excluding rotations from Eq. (43) it takes the form

(K1 !u2M1 )u"0, (44)

where K1 , M1 are reduced sti!ness and mass matrices (DDK1 DD<DDM1 DD).
Eq. (44) represents a generalized eigenvalue problem of free vibrations and it may be treated in

the same manner as the linear buckling eigenvalue problem considered before in Section 3.1, it is
only necessary to replace matrix D1 of the buckling problem by matrix M1 and parameter l by
parameter !u2. It is possible to write the degenerate linear vibrations equation

detM(K
b
!u2WTM1 W)N"0 (45)

and the amplitudes of vibration modes take the form

u+Wz. (46)

Approximations (45) and (46) are valid for the most important frequencies* the low frequencies.
The number of columns of matrix W de"nes their number. It may be observed again, like in the
case of the degenerate buckling Eq. (37), that the low frequencies of free vibration are a!ected by the
bending sti!ness of the frame members.

Assuming that the mass matrix of the numerical example discussed in this work (Fig. 2) consists
of unit diagonal elements corresponding to nodal translations only, Eq. (45) degenerates to 1]1
case and the squared low angular frequency coincides with the eigenvalue of matrix K

b
shown in

the bottom row of Table 1, the whole spectrum of squared angular frequencies is given in the
second row of the same table.

5. Concluding remarks

A speci"c approach to the analysis of frames has been developed in this paper. Frames are
considered as underconstrained trusses whose lack of constraints is compensated by the bending
sti!nesses of the joints. In this case there are two sources of rigidity to the frame: the bending and
axial sti!ness of the elements, in which the bending sti!ness is small to compare to the axial one.
The latter a!ects the whole structural behavior. This fact implies that:

f linear equilibrium equations in terms of displacements are ill-conditioned;
f because of the ill-conditionedness the geometrically non-linear analysis may be necessary for the

correct solution;
f the low frequencies of free vibrations as well as the critical buckling (bifurcation) load are

a!ected by the bending sti!ness and not the axial sti!ness of frames.

All the qualitative conclusions, considered above, were obtained by considering the reduced
equilibrium equations in terms of displacements in combination with a speci"c orthogonal
decomposition of displacements. This method leads to some novel computational schemes which
make computations more reliable and simple. In particular:
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f A simpli"ed (degenerate) forms of linear buckling and vibrations analysis are proposed (Eqs. (37)
and (45)). These forms allow to signi"cantly reduce the problems' dimensions.

f A simple su$cient criterion of the validity of linear buckling analysis is introduced (Eq. (39)).
f A block form of equilibrium equations is presented (Eq. (17)) allowing improvement of the

problem conditioning and, consequently, avoiding accumulation of rounding errors.

Appendix. 2D beam

The co-rotational 2D beam element [11] and its linearization is used for computations within
the work. The sample kth element between the ith and jth nodes is shown before and after
deformation in Fig. 4. Kinematic relations take the form

*
k
"l

k
!¸

k
, 0

ki
"0

i
!a

k
, 0

kj
"0

j
!a

k
, (A.1)

where

l
k
"J(x

j
#u

j
!x

i
!u

i
)2#(x

j`1
#u

j`1
!x

i`1
!u

i`1
)2,

¸
k
"J(x

j
!x

i
)2#(x

j`1
!x

i`1
)2,

a
k
"Arc sinM[(x

j
!x

i
)(u

j`1
!u

i`1
)!(x

j`1
!x

i`1
)(u

j
!u

i
)](l

k
¸
k
)~1N, !p/2)a

k
)p/2.

x
i
, x

i`1
(x

j
, x

j`1
) are horizontal and vertical coordinates of the corresponding nodes and

u
i
, u

i`1
(u

j
, u

j`1
) are appropriate displacements.

Constitutive relations take the form

p
k
"S

k
e
k

or C
N

k
M

ki
M

kj
D"E

k
A

k
¸

k C
1 0 0

0 4r2
k

2r2
k

0 2r2
k

4r2
k
D C

*
k

0
ki

0
kj
D, (A.2)

where N
k
, M

ki
, M

kj
are axial force and bending momdents of the kth member, r

k
"JI

k
/A

k
is the

radius of gyration, and E
k

is the elasticity modulus.
By di!erentiating Eq. (A.1) the transposed equilibrium matrix of the kth member B

k
is obtained

de
k
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k
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,
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in which
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Fig. 4. The co-rotational 2D beam element.

The kth element tangent sti!ness matrix C
k
takes the form

C
k
"BT

k
S
k
B
k
#D

k
. (A.4)

The geometrical sti!ness matrix D
k
is present as follows:

D
k
"

L(BT
k
p
k
)

Lv
k

, (A.5)

where p
k
is "xed. Componentwisely, Eq. (A.5) takes the form

D
k
"C

!2csM#s2N !csN#(c2!s2)M 2csM!s2N csN!(c2!s2)M 0 0
c2N#2csM csN!(c2!s2)M !c2N!2csM 0 0

!2csM#s2N !csN#(c2!s2)M 0 0
c2N#2csM 0 0

Symmetry 0 0
0
D ,

c,c
k
, s,s

k
, N,N

k
l~1
k

, M,(M
ki
#M

kj
)l~2
k

.
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Gathering tangent sti!ness matrices of all members and imposing boundary conditions it is
possible to obtain the global tangent sti!ness matrix for non-linear analysis

C"BTSB#D. (A.6)

The usual sti!ness matrix K for linear analysis is obtained from C by zeroing all initial displace-
ments, axial forces and bending moments (Eq. (2) of the paper)

K"BTSBDv/0. (A.7)

The classical linear buckling analysis is performed by adding matrix D to matrix K where axial
forces and bending moments are obtained from the linear analysis for some initial "xed load r6
(Eq. (32) of the paper).
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