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Tensegrity architecture explains linear sti!ening and predicts
softening of living cells

K.Yu. Volokh*, O. Vilnay, M. Belsky
Faculty of Civil Engineering, Israel Institute of Technology, Technion, Haifa 32000, Israel

Accepted 3 July 2000

Abstract

The problem of theoretical explanation of the experimentally observed linear sti!ening of living cells is addressed. This explanation
is based on Ingber's assumption that the cell cytoskeleton, which enjoys tensegrity architecture with compressed microtubules that
provide tension to the micro"laments, a!ects the mechanical behavior of the living cell. Moreover, it is shown that the consideration
of the extreme #exibility of microtubules and the unilateral response of micro"laments is crucial for the understanding of the living cell
overall behavior. Formal nonlinear structural analysis of the cell cytoskeleton under external mechanical loads is performed. For this
purpose, a general computer model for tensegrity assemblies with unilateral micro"laments and buckled microtubules is developed
and applied to the theoretical analysis of the mechanical response of 2D and 3D examples of tensegrity cells mimicking the behavior of
real living cells. Results of the computer simulations explain the experimentally observed cell sti!ening. Moreover, the theoretical
results predict the possible existence of a transient softening behavior of cells, a phenomenon, which has not been observed in
experiments yet. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are some experimental observations of the
mechanical behavior of living cells, which are hardly
explainable within the framework of simple cell model of
a viscous #uid balloon. Harris et al. (1980) found that
when a$xed to #exible rubber substrata cells contract
and become more spherical. This contraction bunches up
the underlying rubber. Maniotis et al. (1997) observed
that pulling on receptors at the cell surface should pro-
duce immediate structural changes deep inside the cell.
They demonstrated this directly by binding micropippets
to adhesion receptors on the surface of living cells and
pulling outward, what caused cytoskeletal "laments and
nucleus structures to realign immediately in the direction
of the pull.

The experiments mentioned above, however, are read-
ily explained within the framework of Ingber's (1993)
assumption that the cytoskeleton, which is enjoying
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tensegrity architecture, plays crucial role in mechanical
behavior of living cells. Here tensegrity (tensile#integ-
rity) means that cytoskeletal "laments form cable net
pretensioned by compressed struts}microtubules. This
structure is the main load bearing part of the cell. Ingber
(1998) used a six-strut tensegrity cell shown in Fig. 1 of
our paper to model the living cell and demonstrated
how this model qualitatively explains the cited experi-
ments. Moreover, this model shows a good correspond-
ence with the linear sti!ening response of living cells
observed experimentally by Wang et al. (1993) and Wang
and Ingber (1994), Thoumine et al. (1995). The existence
of the sti!ening means that the cell response is nonlinear.
The latter is inherent in structures enjoying tensegrity
architecture (Volokh and Vilnay, 1997a, b; Volokh,
1999).

Recently Coughlin and Stamenovic (1997) underlined
that the theoretical tensegrity models of the cytoskeleton
should consider the unilateral behavior of cables-
"laments and the postbuckling behavior of struts-
microtubules because of the extreme #exibility of these
biological elements. This is in contrast to the initial
Ingber's physical model where struts-microtubules were
straight and sti!.
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Fig. 1. Space tensegrity cell comprising 6 microtubules and 24 micro-
"laments.

Fig. 2. Plane tensegrity cell comprising 4 microtubules and 8 micro"la-
ments.

In this work it is investigated if the assumption that the
cytoskeleton is a tensegrity structure, with unilateral be-
havior of the micro"laments and buckling and postbuck-
ling of the microtubules, can explain the experimentally
observed linear sti!ening of the living cells. Particularly,
two examples of 4-strut plane and 6-strut space tense-
grity models shown in Figs. 1 and 2 are analyzed consid-
ering pulling and twisting loads. The elastic properties of
the elements of the assemblies are taken from biological
data.

2. Methods

Equilibrium equations of tensegrity assemblies may be
written in the following form:

BTp"q, (1)

where p is an m]1 column matrix of axial member
forces; q is an n]1 matrix of external nodal loads. Matrix
B is obtained from kinematic relationships e"e[u] by
using the principle of virtual displacements
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where e is a column matrix of axial member strains; and
u is a column matrix of nodal displacements. In order to
complete this system of equations it is necessary to add
constitutive laws

p"p[e]. (3)

By substituting Eqs. (2) and (3) into Eq. (1) the displace-
ment form of equilibrium equations is obtained.
Newton}Raphson (NR) method solves this system by
iterations
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Matrix K is the tangent sti!ness matrix; matrix C is the
tangent constitutive modular matrix; and matrix D, com-
puted at p"const, is the geometric sti!ness matrix. In
the case where the strain potential t exists all calcu-
lations are simpli"ed
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Constitutive equations (3) of the members of tensegrity
assemblies di!er for struts and cables. In order to treat
the unilateral behavior of cables and the deep postbuck-
ling behavior of struts the concept of the `equivalent bara
is introduced. According to this concept all members
remain straight at every stage of deformation. Constitut-
ive equations of such an equivalent system may be ob-
tained by observing behavior of real cables and struts in
terms of p and e. Column matrix e includes the chord
length elongations, the elongations of straight lines con-
necting corresponding nodes. Generally, these elonga-
tions are not equal to the di!erence between "nal and
initial length of the members. Column matrix p includes
the appropriate member forces acting at the nodes and
directed along straight lines connecting corresponding
nodes. Entries of p are not necessarily tangent to the
longitudinal axes of corresponding members. These cau-
tions regarding the physical and geometrical meaning of
p and e are important when the postbuckling of struts
and compression of cables are considered.
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Fig. 3. Constitutive relations for unilateral micro"laments: chord elon-
gation versus axial force. The horizontal shift is used to de"ne initial
pre-stressing.

Fig. 4. Constitutive relations for buckling microtubules: chord elonga-
tion versus axial force. The horizontal shift is used to de"ne initial
pre-stressing.

The constitutive law for a cable member, or its equiva-
lent bar, is shown graphically in Fig. 3. The cable does
not resist compression and resists tension linearly, ac-
cording to Hooke's law. The bold line indicates initially
unstressed state of an ideal cable. In practical cases the
cable is initially tensioned by p

0
and by using the shifting

of coordinates shown by dotted lines it is possible to
obtain the corresponding constitutive relations. The
shifting is horizontal with e

0
corresponding to p

0
. Verti-

cal shifting is not necessary when the pretensioned con-
"guration is considered as the initial one. Constitutive
equations take the form
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where S"EA/¸ is the cable sti!ness coe$cient (E,
Young modulus; A, cross-sectional area; L, member
length). Since cable elements do not undergo large cha-
nges of the chord length in tension (and they are switched
o! in compression) it is possible to de"ne kinematic
relations of an individual member as follows:
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where L and l are the initial and "nal chord lengths of the
member, respectively; u and X are nodal displacements
and coordinates, respectively.

The constitutive law for a strut member, or its equivalent
bar, is shown graphically in Fig. 4. The bold line indicates
initially unstressed state of an ideal strut. The strut resists
tension and compression linearly in accordance with
Hooke's law up to the critical force p

#3
. When the critical

point is passed, the post-buckling behavior begins as
shown schematically in the "gure. Again, considering the
initial stress and shifting coordinates it is possible to
write constitutive equations as follows:
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where S"EA/¸ is the strut sti!ness coe$cient (E, Young
modulus; A, cross-sectional area; L, member length). Eqs.
(13) and (14) contain function f [e] which can not be
written explicitly. This function is obtained from the
solution of the &elastica' problem (Timoshenko and Gere,
1961)
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where l is the strut chord length after the deformation;
K[z] and E[z] are complete elliptic integrals of the "rst
and second kind correspondingly; p

#3
"n2EI/¸2 is the

usual critical load; and a is the edge slope. To "nd
a polynomial spline expressing p&e relations analyti-
cally one should tabulate relation p&a from Eq. (15),
then substitute corresponding values of p and a into Eq.
(16) and tabulate the desirable p&e relations. It is phys-
ically clear that this relation should be smooth and
monotone and, thus, even low-order polynomials are
expected to provide a good accuracy. Finally, Eqs. (13)
and (14) take the form
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The polynomial coe$cients b
i
are obtained by using the

least-squares approximation as described previously.
The chord elongation of an arbitrary strut takes the
following form:
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These kinematic relations cannot be simpli"ed as it was
done for cables because the change in the chord length
may be signi"cant at the postbuckling stage.

Numerical simulation is carried by using Mathematica
software (Wolfram, 1991) allowing both symbolic and
numeric computations. In this case the tangent sti!ness
matrix K and the internal nodal force r are obtained
symbolically according to Eq. (7). In order to avoid
multiple calculations of K and r corresponding to pre-
and post-buckling for struts and compression and ten-
sion for cables the following strategy was used. Both
contributions (14

1
) and (14

2
) are included into the gen-

eral strain energy expression for cables as well as contri-
butions (18

1
) and (18

2
) for struts. These terms are

multiplied by `switching functionsa, which take only two
values 0 or 1 according to the magnitude of the forces of
the corresponding members. For example, if the strut
member force is greater than p

#3
then the `switching

functionsa of (18
1
) takes zero value while `switching

functionsa of (18
2
) takes unity value. The cable elements

are `switcheda in the same manner. Computations are
performed by using incremental loading and New-
ton}Raphson technique is applied at every increment.
The `switching functionsa are compared at the beginning

and at the end of every increment. If they remain un-
changed, then the subsequent load increment is applied,
if not, the analysis is performed again by switching the
corresponding function beforehand. This repetition of
the analysis is necessary for the compressed struts since
their behavior changes drastically. This is not the case of
cables and thus the switch was done on subsequent
increment when necessary.

Two examples of tensegrity cells shown in Figs. 2 and
1 are considered. The "rst one is a plane structure com-
posed of four struts connected by eight cables; the second
one is a space structure composed of six struts connected

by 24 cables. Both structures are supported as shown in
the "gures in order to exclude rigid body motions. Simple
geometry considerations give the following relations be-
tween the reference chord lengths of the struts and the

cables for the plane and the space structures, respectively

¸
C
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S
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C
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Nodal equilibrium at the reference state gives the follow-
ing relations between the strut compression forces and
the cable tension forces for the plane and the space
structures, respectively
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In order to de"ne and control the reference state the
following procedure is used. The experimentally obtained
length of microtubules 3lm (Amos and Amos, 1991) is
used for all strut members at rest (not at the reference
state!). Bending sti!ness (EI)

S
"2.15]10~23 Nm2

(Couphlin and Stamenovich, 1997; Felgner et al., 1996) is
used. Elasticity modulus and cross-sectional area are
de"ned as follows (Gittes et al., 1993): E

S
"1.2 GPa,

A
S
"190 nm2. The constitutive diagram shown in Fig. 4

is obtained by using the above data. The postbuckling
behavior is approximated by polynomial with p

#3
"
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Fig. 5. Postbuckling of the microtubule of 3 lm length at rest: elastica
(exact solution), second-order polynomial, third-order polynomial,
asymptotic curve by Coughlin and Stamenovic (1997).

Fig. 6. Schematic loading history of the plane cell. Initially all members
are straight (top left). The 5th and 9th micro"laments are switched o! in
the beginning of loading (top right). Then the 2nd and 4th microtubules
buckle (bottom left). These stages de"ne the overall cell softening.
Finally the behavior of individual members is stabilized (bottom right)
and the overall linear sti!ening begins.

23.578 pN. Fig. 5 shows that both the second- and third-
order polynomials give excellent accuracy. Also the re-
sults of Coughlin and Stamenovich (1997) are shown. It is
evident that the latter results are acceptable at the critical
point only and they diverge signi"cantly from the correct
curve in the whole postbuckling area. For arbitrary pre-
stressing forces p

S
of the struts, the corresponding refer-

ence chord lengths ¸
S

are obtained from the constitutive
diagram. By using Eqs. (22) and (24) for the plane struc-
ture or Eqs. (23) and (25) for the space structure it is
possible to obtain the cable chord lengths ¸

C
and forces

p
C

at the reference state. The approach described above is
consistent since the cable length at rest is not de"ned
beforehand. Filaments modeled by cables are assumed to
be of appropriate length at rest and they possess the
following elasticity modulus and cross sectional area
(Gittes et al., 1993): E

C
"2.6 GPa, A

S
"18 nm2; it is

assumed that they have no bending sti!ness and no
ability to resist compression.

3. Results

The structural analysis of 2D and 3D models of living
cells of tensegrity structure yields explanation to the linear
sti!ening behavior of the living cells observed in experi-
ments. This behavior is crucially a!ected by the tensegrity
architecture of the cytoskeleton considering the buckling
of microtubules and switching o! of micro"laments.
Moreover, gradual buckling of individual microtubules is
re#ected in the transient softening response of the cell.

The 4-strut plane cell is self-equilibrated in its reference
state where the cable-micro"lament tension is 3 pN and

corresponding strut-microtubule compression is ob-
tained by using Eq. (24) (Fig. 6, top left). The cell is loaded
by the torsion pair applied at the edges of strut number 2,
and by the stretching force applied at the right edge of
strut number 1. At the load level of T"3 pN cables are
switched o! (Fig. 6, top right). At the load level of
T"21 pN two struts buckle (Fig. 6, bottom left). At the
load level of T"50pN the cell shape is changed drasti-
cally (Fig. 6, bottom right). The relatioship between the
applied force T and sti!ness, de"ned as the ratio of the
applied force to the displacement in its direction at the
node number 4, is approximately linear when two micro-
"laments are switched o! and two microtubules buckled
(Fig. 7). The latter happens when T'21 pN. Before this
stage, however, the sti!ness decreases, and softening is
observed. This transient stage corresponds to the switch-
ing o! of micro"laments and buckling of microtubules.
After these abrupt changes the cell behavior becomes
more stable and the linear sti!ening is observed. Quali-
tatively similar results are obtained in numerical simula-
tions of the 3D cell model. Vertical `shearinga forces
applied at nodes 1,2,10,12 of the space cell (Fig. 8). The
cell reference state corresponds to the microtubules'
compression of 2.5 pN. The force/sti!ness dependence at
the node number 1, shown in Fig. 9, exhibits again
transient softening behavior when cables are switched o!
and struts buckle, which is followed by stable linear sti!ening.
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Fig. 7. Force versus sti!ness at the 4th node of the plane cell. Softening
takes place at loads below 24pN. Linear sti!ening takes place at loads
larger than 24pN in accordance with qualitative history shown in Fig. 6.

Fig. 8. (a) `Shearinga loading of the space cell model; (b) A schematic state of the cell when the linear sti!ening begins.

Fig. 9. Force versus sti!ness at the 1st node of the space cell. Also in
this case the stable linear sti!ening at loads larger than 22pN can be
observed.

4. Discussion

A theoretical explanation to the linear sti!ening of
living cells was addressed by modeling the cytoskeleton

as a tensegrity structure. For this purpose a novel com-
putational framework allowing consideration of unilat-
eral mechanical response of the cables-micro"laments
and deep postbuckling behavior of the struts-micro-
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tubules was developed. This framework allowes tracing the
mechanical response of a cell considering deep postbuckling
of extremely #exible microtubules. The latter is in con-
trast to the previous work of Coughlin and Stamenovich
(1997) where the analysis of buckled microtubules was
based on asymptotic techniques, that are appropriate for
the qualitative prediction of the initial postbuckling stage
only. However, these asymptotic techniques fail when the
full-scale nonlinear analysis is necessary (Fig. 5).

The linear stiwening of the cytoskeleton models was
obtained in computer simulations which is in a very good
qualitative agreement with experimental observations of
Wang et al. (1993) and Wang and Ingber (1994),
Thoumine et al. (1995). The linear sti!ening may be
explained as a result of the dominance of the buckled
struts on the overall cell behavior. In this case, linear
sti!ening of individual buckled struts is directly corre-
lated to the high accuracy of the second-order poly-
nomial approximation of their post-buckling behavior
(Fig. 5). These numerical results reinforce Ingber's tense-
grity assumption.

A transient softening of the tensegrity models was dis-
covered. This behavior is related to the abrupt changes in
the response of the individual members of tensegrity
assemblies: switching o! of unilateral "laments and
buckling of slender microtubules. After the microtubules
buckled and appropriate "laments are switched o!
a stable sti!ening phase is achieved. The transient soften-
ing has not been directly observed in experiments yet.
However, the indirect con"rmation of the softening may
be extracted from recent experiments of Heidemann et al.
(1999). These authors discovered the local response of the
cytoskeleton to the local loads. They concluded that `this
local accommodation and dissipation of force is incon-
sistent with the proposal that cellular tensegrity deter-
mines cell shapea. This conclusion may be correct in the
case where the possible local buckling of microtubules is
ignored, and thus the tensegrity cell responds globally
even to the local load. Previous models of tensegrity were
indeed of this type, but more accurate tensegrity models
allowing for buckling of #exible microtubules admit the
local response to the local loads. In this view, the cited
experiments may be interpreted in favor of the tensegrity
assumption and explained by the local buckling of the
microtubules and switching o! of the "laments.

Presented analysis and its conclusions are restricted by
two 2D and 3D relatively simple examples of tensegrity
cells comprising 12 and 30 elements, respectively. Evi-
dently, in real cells the number of elements is signi"cantly
larger. However, there is a clear similarity in the behavior
of two di!erent examined models: both of them exhibit
transient softening and linear sti!ening. This fact sup-
ports belief that increasing number of the model elements
cannot crucially change qualitative results. The load level
where sti!ening or softening occurs surely depends on
the behavior of individual microtubules and micro"la-

ments, the overall response, however comprise only two
qualitative stages mentioned above.

Numerical simulations of mechanical loading of space
and plane tensegrity models of the cell cytoskeleton ex-
plain theoretically (`from "rst principlesa) the linear sti!-
ening behavior of living cells observed in experiments.
Such a coincidence supports Ingber's assumption of the
crucial role of the cytoskeleton tensegrity architecture in
mechanical behavior of cells. These numerical simula-
tions also predict a new kind of the overall cell behavior:
softening. The softening was not observed in experiments
directly. However, some recent experimental results
(Heidemann et al., 1999) may be readily explained within
the frame of the softening behavior. The latter is again in
favor of the tensegrity architecture of the cytoskeleton.
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