
Buckling of sandwich beams with compliant interfaces

K.Yu. Volokh a,*, A. Needleman b

a Faculty of Civil Engineering, Technion––Israel Institute of Technology, Haifa 32000, Israel
b Division of Engineering, Brown University, Providence, RI 02912, USA

Received 20 September 2001; accepted 20 February 2002

Abstract

Buckling of elastic sandwich beams is analyzed accounting for the compliance of the interfaces between the skin and

core. A relation between tractions and displacement jumps across the interfaces characterizes the interfacial compliance.

Timoshenko co-rotational beam elements are used to discretize each layer of the sandwich. The dependence of the

bifurcation load on the stiffness of the core and on the interfacial compliance are illustrated by considering examples of

a sandwich beam with two sets of boundary conditions. It is shown that the load at bifurcation buckling is sensitive to

the compliance of the interfaces and that a sufficiently large interfacial compliance can significantly decrease the bi-

furcation load.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Layered structures occur in a wide variety of appli-

cations. They are widely used in aircraft, shipbuilding

and construction industries because of their favorable

strength to weight ratio; they also appear as thin film–

substrate systems for electronic packaging applications.

Depending on the geometry and loading system, inter-

facial debonding and structural buckling are possible

failure modes. Each of these has been studied exten-

sively. In this paper, we investigate the interaction be-

tween these two failure modes.

There is an extensive literature on interfacial deb-

onding of layered solids. Hutchinson and Suo [9] have

reviewed results on fracturing of multilayers including

delamination of thin films. More recent studies of del-

amination include those of Gioia and Ortiz [8], Wei and

Hutchinson [20] and Choi et al. [4]. An early investiga-

tion of the effect of an existing crack on overall stability

was carried out by Markstrom and Storakers [15]. More

recently, Frostig and Sokolinsky [6] have analyzed the

effect of a pre-existing crack on the buckling of sandwich

beams while Sheinman et al. [18] included the growth

of delamination into their analysis of the buckling of

composite beams.

The focus here is on the interaction between bifur-

cation buckling and non-zero interfacial compliance,

i.e., a delamination has not formed but the interfaces

can no longer be regarded as perfectly bonded. The ex-

tent to which the non-zero compliance of the interfaces

affects the onset of bifurcation buckling is investigated.

There have been relatively few investigations of this in-

teraction. Comiez et al. [3] used a beam on the unilateral

elastic foundation for modeling the delamination buck-

ling of structures. The latter authors as well as other

investigators (e.g. [10]) have considered surface delam-

inations leading to skin debonding. Bigoni et al. [2] in-

vestigated the role of interfacial compliance on the

stability of a thin layer bonded to a substrate and Bigoni

and Gei [23] bifurcations of a coated elastic cylinder.

In this paper, the effect of interfacial compliance on

the buckling of sandwich beams is investigated. Nu-

merical examples are given for a range of values of

Young’s modulus of the core and of the interfacial

compliance to illustrate the role of a sufficiently large

Computers and Structures 80 (2002) 1329–1335

www.elsevier.com/locate/compstruc

*Corresponding author. Tel.: +972-4-8292413; fax: +972-4-

8323433.

E-mail address: cvolokh@aluf.technion.ac.il (K.Yu. Volokh).

0045-7949/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0045-7949 (02 )00076-7

mail to: cvolokh@aluf.technion.ac.il


interfacial compliance in decreasing bifurcation loads

even before delamination takes place.

2. Formulation

The potential energy of an elastic layered structure

consisting of r layers and subject to prescribed tractions

may be written in the following form:

w ¼
Xr
s¼1

Z
Vs

Ws dV �
Xr�1
j¼1

Z
Aj

/j dA� k
Z
A
T � udA ð1Þ

Ws is the strain energy of the sth layer; /j is the potential

of the cohesive surface; kT are the prescribed surface

tractions of magnitude k; and u is the displacement field.

The displacement field is obtained from the equilib-

rium equations:

dw ¼ w;uðu; kÞ½du� ¼ 0 ð2Þ

where brackets designate a linear form.

The structure is stable if the equilibrium state corre-

sponds to a minimum of the potential energy that is

attained if

fwðuþ duÞ � wðuÞg=kduk2 > c > 0 ð3Þ

where the displacement variations are kinematically

admissible.

The smallest value of k leading to violation of con-

dition (3) gives the buckling load. In structural appli-

cations, (3) is usually equivalent to vanishing of the

second variation of the potential energy [12]. After dis-

cretization, vanishing of the second variation of the

potential energy corresponds to loss of positive defi-

niteness of the Hessian matrix of the discretized poten-

tial energy.

In two dimensions, the potential of the cohesive

surface is written in the form:

/ ¼ /n þ /n 1

�
þ Dn

dn

�
exp

 
� Dn

dn
� D2

t

d2
n

!
ð4Þ

where /n is the work of separation; dn is the character-

istic length; Dn ¼ n � D and Dt ¼ t � D with n and t as the

normal and tangent, respectively, to the surface at the

given point in the reference configuration. The form of /
in (4) is a special case of the type of potentials given in

[19].

Differentiating the cohesive surface potential, one

derives the normal and tangent tractions that are con-

jugate to the displacement jumps across the cohesive

surface

Tn ¼
o/
oDn
¼ �/nDn

d2
n

exp

 
� Dn

dn
� D2

t

d2
n

!
ð5Þ

Tt ¼
o/
oDt
¼ �2/nDt

d2
n

1

�
þ Dn

dn

�
exp

 
� Dn

dn
� D2

t

d2
n

!
ð6Þ

From (5) and (6) it can be seen that the magnitude of

the normal and tangential stiffnesses at Dn ¼ Dt ¼ 0 are

/n=d
2
n and 2/n=d

2
n respectively.

Each layer is considered as Timoshenko (Reissner–

Mindlin) beam, which is appropriate when the half-

length of the deformation wave is not less than the layer

thickness, and the strain energy takes the form:

W ¼ 0:5EA

Z
e2 dxþ 0:5EI

Z
v2 dxþ 0:5GA

Z
c2 dx

ð7Þ

where EI, EA, GA are the bending, axial, and shear

stiffness. For small strains and large rotations the strain

measures may written in the form:

e ¼ du
dx
þ 1

2

du
dx

� �2

þ 1

2

dw
dx

� �2

; v ¼ � dh
dx

;

c ¼ �hþ arcsin
dw
dx

ð8Þ

where u is an axial displacement; w is a transverse dis-

placement; and h is the rotation of the normal. The non-

linear terms in the strain–displacement relations allow

excluding large rotations and translations. Thus small

strains are superposed on rigid body motions. The latter

approach is known as ‘‘co-rotational’’ [1,5]. Accounting

for geometrical non-linearity is crucial for performing a

non-linear buckling analysis.

3. Finite element implementation

The aforementioned assumptions lead to the follow-

ing discrete total energy for the sandwich beam shown in

Fig. 1:

Fig. 1. A sandwich beam.
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w v; kð Þ ¼ L
2

X3
s¼1

Xm
i¼1

EIð Þsv2
si

�
þ GAð Þsc2si þ EAð Þse2si

�

� Lb/n

X2
j¼1

Xm
i¼1

1

	
þ Dnji þ Dnjiþ1

2dn




� exp

(
� Dnji þ Dnjiþ1

2dn
� Dtji þ Dtjiþ1

2dn

� �2
)

� kf Tð Þ u½ � ð9Þ

where

Dn1i ¼ w1i � w2i

Dn2i ¼ w2i � w3i

Dt1i ¼ ðu1i þ h1h1i=2Þ � ðu2i � h2h2i=2Þ
Dt2i ¼ ðu2i þ h2h2i=2Þ � ðu3i � h3h3i=2Þ

8>><
>>: ð10Þ

vsi ¼ ðhsi � hsiþ1Þ=L
csi ¼ asi � ðhsi þ hsiþ1Þ=2
esi ¼ gsi=L

8<
: ð11Þ

asi ¼ arcsinððwsiþ1 � wsiÞ=ðLþ gsiÞÞ
gsi ¼ ðusiþ1 � usiÞ þ ð1=2LÞðusiþ1 � usiÞ2

þð1=2LÞðwsiþ1 � wsiÞ2
L ¼ Lb=m

8>><
>>: ð12Þ

Here, all element lengths are of equal length (L) along

the beam for every layer; (EI)s, (EA)s, (GA)s are the

bending, axial, and shear stiffness of the sth layer, re-

spectively; usi, wsi are axial and lateral displacements of

the ith nodal point of the middle plane of the sth layer;

hsi is the ith cross-sectional rotation of the sth layer; asi is

a rigid body rotation of the ith element of the sth layer;

hs is the sth layer height; b is the beam width; u is a

vector of generalized nodal displacements including usi,
wsi, hsi; and f is the discrete load potential, which is a

linear form with respect to u.

By imposing kinematic and traction boundary con-

ditions, the problem is specified as described subse-

quently. Arc-length type procedures are used to trace the

equilibrium path of the structure for the prescribed load.

In order to follow the equilibrium path of the structure

in its state space it is useful to introduce the column

matrix of the unbalanced nodal forces and the tangent

stiffness matrix

g ¼ ow
ou
¼ BTp� kq ¼ 0 ð13Þ

K ¼ og

ou
; q ¼ � og

ok
ð14Þ

It is assumed that the external load gives rise to fixed q

but its magnitude is proportional to the parameter k. A
variety of approaches exist for solving Eq. (13): [5,7,

11,13,14,16,17,21].

The basic procedure for tracing a monotonically

changing equilibrium path is the Newton–Raphson al-

gorithm:

Box 1

1. Input: a point on the equilibrium path (u; k; g;K).
2. Load increment: k kþ dk and updating g.

3. Computation: du ¼ �K�1g.
4. Updating: u uþ du and g, K.

5. Go to step 2 if the convergence criterion is satis-

fied or return to step 3 otherwise.

This algorithm is unable to treat points where the

equilibrium path does not exist for increasing

parameter k or branching occurs. Arc-length con-

tinuation is better suited to these situations:

Box 2

1. Input: a point on the equilibrium path (u; k; g;K).
2. Arc-length increment: ds.
3. Predictor (initial guess): y ¼ K�1q; dk ¼ ds=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yTyþ 1
p

; du ¼ dky.
4. Updating: u uþ du; k kþ dk; g, K.
5. Corrector: dv¼K�1q; dw¼K�1g; dk¼� duTdw

� �
=

duTdv
� �

; du ¼ dwþ dkdv.
6. Updating: du duþ du; u uþ du; dk dkþ

dk; k kþ dk; g, K.
7. Go to step 2 if the convergence criterion is satis-

fied or return to step 5 otherwise.

It may be seen from Box 2, that the arc-length parameter

ds controls the advance along the equilibrium path and

that any turning point is readily treated. In contrast to

the Newton–Raphson procedure (Box 1) the first and

subsequent iterations are distinguished and called pre-

dictor and corrector steps accordingly. A wide variety of

predictors and correctors have been proposed in the

literature: [5,17]. It is possible, for example, to find the

corrector by applying the Newton–Raphson procedure

to some augmented system of non-linear equations,

which include Eq. (13) together with some arc-length

constraint. Such an approach is called ‘consistent’ by

some authors [21]. In this sense, the algorithm given in

Box 2 is ‘inconsistent’. However, it was found to be ef-

ficient in the present computations.

The arc-length continuation algorithm needs to be

slightly modified to allow for branch switching. Partic-

ularly, the predictor guess y should be close to the

branch emanating from the bifurcation point while dk
can be set zero. There are two main strategies to define y.

The first one is to pinpoint the equilibrium point and

then to find y as the singular vector of K at this point.
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The main drawback of this strategy is the necessity of

dealing with an ill conditioned matrix K as the bifurca-

tion point is approached. The second strategy is to de-

fine y as the eigenvector corresponding to the smallest

eigenvalue of K without pinpointing the bifurcation

point. In any case, the scaling parameter for y needs to

be fit by a trial and error procedure.

Points where two equilibrium branches intersect are

identified by the one-dimensional null space of the tan-

gent stiffness matrix and may be classified as follows:

Box 3

The analysis of the bifurcation point given in Box 3

requires gradients of the tangent stiffness matrix which

can be obtained numerically by using approximate

techniques or by direct numeric/symbolic computations

as available in modern packages such as Maple, Mathe-

matica, Matlab, etc. Knowledge of the type of the

bifurcation point is useful for branch switching and

further stability analysis, with the stability of the equi-

librium path defined by positive definiteness of the tan-

gent stiffness matrix K.

4. Results

Two sets of boundary conditions for the compressed

sandwich beam are considered (Fig. 2a and b). In both

cases, the beam is of length Lb (06 x6 Lb) and consists

of three layers. The first case is a clamped-free beam

(Fig. 2a) with the following constraints imposed on the

clamped edge x ¼ 0:

us1 ¼ ws1 ¼ hs1 ¼ 0; s ¼ 1; 2; 3 ð15Þ

The load

kf ðTÞ½u� ¼ �ku2mþ1 ð16Þ

is applied through the stiff vertical plate attached to the

face of the beam at x ¼ Lb. The vertical plate is modeled

by the conditions:

Dn1mþ1 ¼ Dn2mþ1 ¼ 0
Dt1mþ1 ¼ Dt2mþ1 ¼ 0
h1mþ1 ¼ h2mþ1 ¼ h3mþ1

ð17Þ

The second case is a clamped–clamped beam as shown

in Fig. 2b. The boundary conditions at x ¼ 0; Lb are:

us1 ¼ ws1 ¼ hs1 ¼ wsmþ1 ¼ hsmþ1 ¼ 0; s ¼ 1; 2; 3
u1mþ1 ¼ u1mþ2 ¼ u1mþ3

ð18Þ

The geometrical parameters of the beam are: Lb ¼ 0:4m,
b ¼ 0:02m, h1 ¼ h3 ¼ 0:001m, h2 ¼ 0:006m. All layers

are isotropic with Poisson’s ratio m ¼ 0:3; Young’s

modulus has the fixed value E1 ¼ E3 ¼ 200 GPa for the

skin layers and various values are used for the core

modulus E2. The two cohesive surfaces are identical and

dn ¼ 4� 10�7m. The work of separation /n is assigned

various values. Note that from (5) and (6) that the in-

terfacial stiffness scales with /n.

Results for the computation of the critical bifurca-

tion load for the two sets of boundary conditions con-

sidered are presented in Figs. 3 and 4 respectively. In the

prebifurcation solution for both loading cases Dn1i ¼
Dn2i ¼ Dt1i ¼ Dt2i ¼ 0. The parameters varied are Young’s

modulus of the core E2 and the interfacial stiffness

through the work of separation /n. The results presented

were obtained for a 60-element mesh (m ¼ 20). A finer

mesh of 120 elements (m ¼ 40) was used as well, which

gave bifurcation loads slightly lower in absolute value.

The difference, however, did not exceed 2%.

The results show that compliant interfaces can lead

to a drastic reduction of the bifurcation load. Consid-

ering the examples in Figs. 3 and 4, values of the work of

separation larger than /n ¼ 10�1 J=m2 give nearly the

same response as perfect bonding up to the onset of

bifurcation for both sets of boundary conditions. If the

interface is more compliant, that is if /n < 10�1 J=m2,

then the reduction in the bifurcation load depends on

the boundary conditions. The clamped-free boundary

conditions provide a longer wavelength of deformation

Limit (turning) point: B1 6¼ 0;B4 6¼ 0.

Asymmetric (trans-critical) bifurcation:

B1 6¼ 0;B4 ¼ 0;B2
2 � B1B3 > 0.

Symmetric (pitchfork) bifurcation:

B1 ¼ 0;B2 6¼ 0;B4 ¼ 0.

B1 ¼ d
de

��
e!0

zT1K1z1
� �

; B2 ¼ d
de

��
e!0

zT1K1z2
� �

;

B3 ¼ d
de

��
e!0

zT1K2z2
� �

; B4 ¼ �qTz1, K1 ¼ Kðu� þ ez1Þ;
K2 ¼ Kðu� þ ez2Þ; u� is a vector of generalized nodal

displacements at the bifurcation point;

z1 ¼ Nullspace K�, z1k k ¼ 1; K� ¼ Kðu�Þ;
z2 ¼ K

�1
q; z2k k ¼ 1; �KK ¼ K� þ az1zT1 ; a is an arbitrary

number.

Fig. 2. (a) The clamped-free boundary conditions. (b) The

clamped–clamped boundary conditions.
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while the clamped–clamped boundary conditions pro-

vide a shorter one. A slight reduction of the bifurcation

load begins at /n ¼ 10�2 J=m2 in Fig. 3 for the clamped-

free boundary conditions and at /n ¼ 10�1 J=m2 in Fig.

4 for the clamped–clamped boundary conditions. A

significant reduction of the bifurcation load begins when

/n ¼ 10�3 J=m2 in Fig. 3 for the clamped-free boundary

conditions and when /n ¼ 10�2 J=m2 in Fig. 4 for the

clamped–clamped boundary conditions. Thus, the more

constrained boundary conditions which have a shorter

wavelength bifurcation mode are more sensitive to the

increase in interfacial compliance.

It is emphasized that, although the non-linear cohe-

sive surface potential was used in the calculations, the

equilibrium path is essentially linear up to the bifurca-

tion load.

Results of the analysis of the bifurcation point in-

cluding the character of the initial postbifurcation be-

havior are presented in Table 1. Increasing interface

compliance reduces the bifurcation load and the post-

bifurcation modes are bending modes which involve no

debonding in the initial postbifurcation regime.

5. Concluding remarks

Numerical simulations of the mechanical response of

elastic compressed sandwich beams have been carried

out where the beams are three-layer assemblies of geo-

metrically non-linear Timoshenko beam elements. At-

tention was focused on circumstances where small

strains are superposed on possibly large rigid body

translations and rotations and the interfaces between

layers are taken to be compliant cohesive surfaces. The

numerical procedures used for analyzing the response of

the compressed sandwich beams include equilibrium

path tracing, branch switching, and the analysis of

simple critical points. Two sets of boundary conditions,

clamped-free and clamped–clamped, were considered for

a range of material parameters characterizing the central

layer and the interfaces.

The results of numerical calculations show that the

first bifurcation load is sensitive to the interface com-

pliance and may significantly decrease for more com-

pliant interfaces. This decrease is especially significant

for the clamped–clamped boundary conditions. At least

in the circumstances analyzed here, more constrained

beams that give rise to a shorter wavelength bifurcation

mode and that potentially possess higher load carrying

capacity are more susceptible to the adverse effects of

having a compliant interface. It is worth emphasizing

that the value of the compliance is a property of the

interface and not necessarily a property of the physical

glue. For example, the glue may be very stiff, but the

interface between the glue and the bulk material may be

weak and this is what would then set the interfacial

compliance.

Fig. 3. Bifurcation loads for the clamped-free boundary con-

ditions shown in Fig. 2(a) as a function of /n which provides

a measure of the interfacial compliance for various ratios of

the elastic moduli of the skins and the core. The bifurcation

load is normalized by a reference load of 10 KN and the value

of /n is normalized by the reference value 1 J/m2: (1) E2=E1 ¼
10�1; (2) E2=E1 ¼ 10�2; (3) E2=E1 ¼ 10�3; (4) E2=E1 ¼ 10�4; (5)

E2=E1 ¼ 10�5.

Fig. 4. Bifurcation loads for the clamped–clamped boundary

conditions shown in Fig. 2(b) as a function of /n which pro-

vides a measure of the interfacial compliance for various ratios

of the elastic moduli of the skins and the core. The bifurcation

load is normalized by a reference load of 10 KN and the value

of /n is normalized by the reference value 1 J/m2: (1) E2=E1 ¼
10�1; (2) E2=E1 ¼ 10�2; (3) E2=E1 ¼ 10�3; (4) E2=E1 ¼ 10�4;

(5) E2=E1 ¼ 10�5.
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The interface must be sufficiently compliant; stiff in-

terfaces do not significantly affect the bifurcation load

(see Figs. 3 and 4). Since in the bifurcation analyzes

here, cohesive surface non-linearity has little effect, Eqs.

(5) and (6) can be approximated as

Tn ¼ �
/n

d2
n

Dn; Tt ¼ �2
/n

d2
n

Dt

The quantity S ¼ /n=d
2
n characterizes the stiffness of the

interface. Although the calculations in Figs. 3 and 4

were carried out for one value of dn other calculations

not reported here show that over a wide range the bi-

furcation load depends only on the ratio /n=d
2
n and not

on /n and dn separately. Hence, for example, if dn ¼
4� 10�6m the values of /n in Figs. 3 and 4 at which a

significant reduction of the bifurcation load occurs

would be increased by two orders of magnitude. The

value of the work of separation /n is directly related to

the fracture toughness [24] but as yet there is no stan-

dard procedure for obtaining a value of dn for specific

interfaces. However, experimental means of identifying

cohesive parameters are being developed [25]. In any

case, the present results indicate that there are values of

interfacial stiffness (which depend on the structure) be-

low which bifurcation buckling loads are much reduced.

The first critical point was found to be a simple un-

stable pitchfork bifurcation with the bifurcation mode

being one of pure bending as noted in Table 1. Bifur-

cation occurs for perfect structures. When the initial

postbifurcation behavior is unstable and when inevitable

small imperfections are accounted for, limit points are

reached with the maximum load set by the magnitude of

the imperfection and the character of the bifurcation

point, as shown by Koiter’s general theory of elastic

stability [22].

In the circumstances analyzed here, the effect of in-

creasing interfacial compliance is to reduce the overall

structural stiffness and thus precipitate buckling. Hence,

interfacial properties can play a significant role in setting

the load carrying capacity of a structure even when

debonding and the subsequent propagation of a del-

amination crack have not taken place.
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