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Abstract: Initial infinitesimal modes of rigid body motions are used to form a reduced basis for nonlinear dynamic analysis of
structures. This approach superimposed on the geometrically nonlinear truss formulation extracts slow motions from the general
response of cable systems. In this way the problem is reduced considerably and solution of the equations becomes smoother. T
features are computationally desirable. The advantage of the proposed procedure is studied using numerical examples of a plane
and a cut-down version of the Geiger dome. Problems of time-history computation and periodic motion analysis are addresse
examples.
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Introduction
A linear approach to dynamic analysis of cable structures is b
on linearized dynamic equations, where the initial tangent s
ness matrix, comprising the uncoupled linear elastic stiffness
trix and the geometric stiffness matrix, is used~Krishna 1978;
Buchholdt 1985!. This is in contrast to the well-known fact th
the static response of cable structures is generally nonlinear~Irv-
ine 1981; Szabo and Kollar 1984!. The necessity to treat gener
nonlinear analysis of dynamics of cable structures has been
phasized by Mesarovic and Gasparini~1992a,b! although some
interesting work was also carried out by Fried~1982!; Milinazzo
et al. ~1987!; Perkins and Mote~1987!; Triantafyllou and Howell
~1992!; Kahla ~1995!; Koh et al.~1999!; and Hu and Jin~2001!.

Mesarovic and Gasparini~1992a,b! raised questions about th
validity of linear analysis that considers dynamic loads and
nonlinear dynamic response of cable structures. Their first p
~Mesarovic and Gasparini 1992a! is devoted to a search of a
adequate nonlinear model for an eight-element cable sys
Using geometric reasoning specific to this cable system they
tracted the dominant displacement modes~generalized coordi
nates!. These modes are further used to simplify dynamic eq
tions. In the second paper~Mesarovic and Gasparini 1992!
nonlinear dynamic response of the same system including a
metric study and the nonlinear stability issue is analyzed.
conclusion from these studies is that linear dynamic analys
not adequate, ‘‘most of the nonlinear dynamic phenomena
served cannot be predicted by adding the geometric stiffne
the elements and analyzing the resultant equations of motio

1Senior Lecturer, Dept. of Civil Engineering, Technion, Haifa 320
Israel. E-mail: cvolokh@aluf.technion.ac.il

2Associate Professor, Dept. of Civil Engineering, Techni
Haifa 32000, Israel.

3Graduate Student, Dept. of Civil Engineering, Techni
Haifa 32000, Israel.

Note. Associate Editor: James L. Beck. Discussion open until Ju
2003. Separate discussions must be submitted for individual pape
extend the closing date by one month, a written request must be filed
the ASCE Managing Editor. The manuscript for this paper was subm
for review and possible publication on March 17, 2000; approved on
11, 2002. This paper is part of theJournal of Engineering Mechanics,
Vol. 129, No. 2, February 1, 2003. ©ASCE, ISSN 0733-9399/200
175–180/$18.00.
d
-
-

-

e
er

.
x-

-

a-
e
is
-

of

In the present work a general approach is developed for
nonlinear dynamic modeling of arbitrary cable structures. Th
approach is based on the reduced basis technique. The idea
hind reduced basis techniques may be described briefly as
lows: let the physical phenomenon be represented by the non
ear operator equation:

R@u#50 (1)

whereu is an unknown. Then the unknown is approximated b
the finite series:

u5(
i 51

n

aiui (2)

whereai5coefficient to be found; andui5assumed mode. Sub-
stituting Eq.~2! into Eq.~1! and pre-multiplying the latter scalarly
by ui , it is possible to obtain a new set ofn nonlinear algebraic
equations withn unknownsai :

K ui ,RF(
j 51

n

ajuj G L 50, i 51,...,n (3)

This set of equations is solved by existing numerical methods
u belongs to an appropriate function space then the techniq
described is a general discretization scheme and various w
known methods~finite elements, differences and etc.! may be
interpreted in this way. This may also be considered the first sta
in reducing the size of the problem. Further reduction can
achieved by using a reduced basis for the already discrete sys
of algebraic equations, Eq.~1!, whereu belongs tom-dimensional
real Euclidean space in whichn,m. In this case Eq.~3! presents
further reduction of the initial problem. This reduction is, in th
narrow sense, areduced basis technique. A large amount of work
was carried out on various methods to establish appropriate
duced bases. A state-of-the-art review was given by Noor~1994!.
General methods of establishing a reduced basis are often un
able and the choice of reduced basis must proceed on a probl
by-problem basis.

In this paper use of initial infinitesimal modes of rigid bod
motion as the reduced basis for modeling nonlinear dynamics
cable structures is proposed. This reduced basis approach is
perimposed on the nonlinear truss formulation~Szabo and Kollar
1984; Argyris and Mlejnek 1991; Crisfield 1991; Volokh 2001!.
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Physically, the use of the proposed reduced basis allows av
ing the dynamical response of cable systems and extractin
most important slow motions. Numerically, this means a sign
cant reduction of the size of the problem and smoothing of
solution of dynamic equations. These numerical features are
putationally desirable. Two numerical examples are conside
The first one is a prestressed two-dimensional~2-D! cable net
comprising 11 members~Fig. 2!. The second one is a prestress
three-dimensional~3-D! dome comprising 8 vertical struts and
cables~Fig. 3!. This dome is a cut-down version of the Geig
dome ~Geiger 5 year!: the Gymnastic Arena and the Fenci
Arena built in Korea, and the Redbird Arena at Illinois State U
and the Sun Coast Dome in St. Petersburg, Fla.

Governing Equations

General Equations of Nonlinear Dynamics

Dynamic equations without damping take the form

R@u#5Mü1r@u#2q50 (4)

whereM5m3m diagonal lumped mass matrix, or a consist
nondiagonal matrix when the finite element approximation
used; u5@ t# and q5q@ t# are m dimensional vectors of noda
displacements and external nodal forces; and vectorr of the in-
ternal nodal forces may be computed by the strain energy ex
sion ~Volokh 1999!:

r@u#5
]V@u#

]u
, r j5

]V

]uj
(5)

V@u#5 1
2 DT@u#SD@u#1p0

TD@u# (6)

p05k dimensional vector of initial member forces~prestressing!;
D5vector of member elongations; andS5k3k uncoupled stiff-
ness matrix with diagonal nonzero entries:Sii 5EiAi / l i including
the i -th member Young’s modulus, cross-sectional area
length, respectively.

Taking into account Hooke’s law of member force increme
p5SD, Eq. ~5! takes the form

r@u#5
]V@u#

]u
5BT@u#~p01p@u# !, B@u#5

]D@u#

]u
(7)

whereB5k3m kinematic matrix, and its transpose is the eq
librium matrix.

The ‘‘small strain’’ approximation implies

D i5 l i« i , « i5ei1v i

ei5
xj2xs

l i

uj2us

l i
1

xj 112xs11

l i

uj 112us11

l i

1
xj 122xs12

l i

uj 122us12

l i

v i5
1

2 S uj2us

l i
D 2

1
1

2 S uj 112us11

l i
D 2

1
1

2 S uj 122us12

l i
D 2

where uj and xj5appropriate nodal displacements and coo
nates of thei -th member.

Linear dynamic equations are obtained by linearizingr with
respect tou at the initial configurationu50:

r@u#5Ku (8)

whereK5initial tangent stiffness matrix or, simply, the stiffne
matrix:
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K5
]2V

]u]u U
u50

5A1D, K js5
]2V

]us]uj
U
uj50

5Ajs1D js (9)

A5uncoupled linear elastic stiffness matrix; andD5geometric
stiffness matrix depending on the prestressing forces:

A5BTSBuu50 , Ajs5(
l 51

k
]D l

]uj

]D l

]us
SllU

uj50

(10)

D5
]@BTp0#

]u U
u50

, D js5(
l 51

k
]2D l

]uj]us
p0lU

uj50

(11)

The proper index notation is used above in order to clarify ma
abbreviations.

It is worth emphasizing that the formulation of dynamic eq
tions given above for cable structures is based on the direct u
global nodal degrees of freedom and the strain energy expres
It is believed that this method is the clearest and shortest. H
ever, the same equations may be obtained using standard
element procedures for geometrically nonlinear truss formula
~Szabo and Kollar 1984; Argyris and Mlejnek 1991; Crisfi
1991!. When these methods are used, tedious preparation
cluding local element formulation, transition to global formu
tion and assembling of elements are required.

Time History: Initial Value Problem

In order to trace the time-history response of a specific structu
is necessary to add initial conditions to the dynamic equation

uu t505a, u̇u t505b (12)

By introducing new unknownsv5$uT,u̇T%T, which include noda
velocities, it is possible to obtain the canonical form of the ini
value problem:

G@v#5 v̇2f@v#50 (13)

vu t505c (14)

wherec5$aT,bT%T.

Periodic Motion: Two-Point Boundary Value
Problem

It is possible to search for periodic solutions of Eq.~4! or ~13!. In
this case dynamic equations should be supplemented with
odic conditions:

u@ t#5u@ t1T#, u̇@ t#5u̇@ t1T# (15)

or

v@ t#5v@ t1T# (16)

In this case Eqs.~4! and ~13! with conditions~15! and ~16! take
the form of the two-point boundary value problem~Seydel 1994
Nayfeh and Barachandran 1995!.

Displacement Modes and Reduced Basis

The main feature of cable structures is the existence of infini
mal modes of rigid body motion. Mathematically, this means
the linearized kinematic equations possess nontrivial solution

B0x50, B0[Buu50 (17)

x5u1z11u2z21•••1unzn5Uz (18)
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Fig. 1. One degree of freedom assembly with resonance loadi
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Fig. 3. Perspective~a!, top ~b!, and front~c! views of a cable dome.
Subscripts designate nodal degrees of freedom in three perpendi
directions. All vertical members are struts. Other members are cab
where vectorsui form an orthonormal basis of the nullspace o
matrix B0 . By completing this subspace with its orthogona
complement

Û5$un11u¯uum%, UTÛ50 (19)

it is possible to represent the vector of nodal displacements in
following form:

u5Uz1Ûẑ (20)

wherez and ẑ5new unknown vectors.
The first term on the right-hand side of Eq.~20! presents the

infinitesimal rigid body motion. These modes affect the who
structural response~Volokh and Vilnay 1997!. To show this let the
following linearized equilibrium equation be considered:

Ku5q (21)

Using Eq. ~20! and premultiplying by matrix$ÛuU%T from the
left, Eq. ~21! takes the form

H K1 L

LT K2
J H ẑ

zJ 5H Ûq
UqJ (22)

or

~K12LK2
21LT!ẑ5~ÛT2LK2

21UT!q
(23)

~K22LTK1
21L!z5~UT2LTK1

21ÛT!q

where

K15ÛTKÛ5ÛTB0
TSB0Û1ÛTDÛ

K25UTKU5UTDU

L5ÛTKU5ÛTDU

Fig. 2. Plane cable net
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Taking into account that the initial member stresses are sign
cantly smaller than the elasticity modulusiDi!iSi and conse-
quentlyiK1i@iK2i;iLi , it is possible to conclude from Eq.~23!
that izi@i ẑi . Thus the nodal displacements are dominated by
modes of infinitesimal rigid motion. This allows one to propos
the use of these modes as the reduced basis for analysis of un
constrained structures.

To summarize the method proposed, Eqs.~4! and ~7!, with
small strain approximations and appropriate initial and bound
conditions, are solved using a reduced basis consisting of infi
tesimal rigid body modes. The efficiency of the proposed reduc
basis is further investigated next in ‘‘Numerical Simulation.’’ It i
worth mentioning that different proposals of reduced bases can
found in the literature~Kirsch 1991; Noor 1994!.

Numerical Simulation

Description of Examples

Three examples, shown in Figs. 1–3, are considered. All str
tures comprise members of circular cross section with radii of
cm and elasticity module of 2.13106 kg/cm2.

The first structure is a two-member cable net~Fig. 1! with only
one nodal degree of freedom (u). Both members are initially
prestressed to 100 kg.

The second structure is a plane cable net~Fig. 2! consisting of
11 members and possessing 12 degrees of freedom. Its degr
kinematic indeterminacy~the difference between the number o
degrees of freedom and the rank of the linearized kinematic m
trix B0) is 2. This number is also the number of reduced ba
modes in accordance with the proposed approach. Prestres
forces in kg take the following form taking symmetry into ac
count:p01533, p02529.1682,p0959.90404, andp010514.1586.

The third structure is a space dome~Fig. 3! comprising 8 ver-
tical struts and 28 cables. It possesses 48 degrees of freedom
degree of kinematic indeterminacy is 13. Prestressing forces in
take the following values taking symmetry into account:p01

5p02569.282, p035p04534.641, 2p055p0305p032520, and
p03152p034540.

It is assumed that all structures possess lumped masses a
nodes and the mass matrices are diagonal unit matrices.

Simulation Techniques

The Mathematica NDSolve procedure~Wolfram 1991! is used for
numerical solution of the initial value problem described abov
This procedure uses the Adams predictor–corrector method
nonstiff differential equations and backward difference formul
~Gear method! for stiff differential equations. It switches betwee
the two methods using heuristics based on the adaptation o
selected step size. It starts with the nonstiff method under ess
tially all conditions, and checks the advisability of switchin
methods every 10 or 20 steps. The algorithms and the heuris
for switching between algorithms were described by Hindmar
~1983! and by Petzold~1983!.

The shooting method is adopted in combination with the IV
solver for solution of the two-point boundary value problem fo
periodic motions. Assuming that the problem is autonomous, t
is, q50, it is possible to reformulate it as follows:

u95T2M21r@u#

T850 (24)
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u@0#5u@1#

u8@0#5u8@1# (25)

T@0#5T@1#

The prime in Eqs.~24! and ~25! refers to normalized timet
P@0,1#. By introducing new unknowns,

Fig. 4. Displacement versus time for linear resonance~a! and beating
~b! of the two-member net~Fig. 1!. Fine and bold curves show result
of linear and nonlinear analyses, respectively.

Fig. 5. Axial forces in members 2 and 3 of the plane cable net ver
time for free nonlinear vibrations under initial conditionsui50; u̇i

50.5. Bold curves show results obtained using reduced basis. B
curves are solutions of 2 nonlinear equations; fine curves are s
tions of 12 nonlinear equations.
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Fig. 6. Axial forces in members 1 and 3~the worst case! of the space
cable dome versus time for free nonlinear vibrations under in
conditionsui50; u̇i50.5. Bold curves show results obtained usi
reduced basis. Bold curves are solutions of 13 nonlinear equat
fine curves are solutions of 48 nonlinear equations.
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s( i 11)5s( i )2E3~E1s( i )1E2y@s( i ),1#2e! (29)

wheres(0)5y@0# is the initial guess andE35(E11E2)21. Since,
in our case,E152E2 is a unity matrix~ande is a zero vector!,
matrix E3 should be modified. Specifically, the following diago
nal matrixE35diag$1/2, 1/2,...,1/2, 1% is used.

The convergence criterion of the procedure~29! was defined
as

~s( i 11)2s( i )!T~s( i 11)2s( i )!

~s( i )!T~s( i )!
<tol (30)

Results

A comparison of time histories of forced vibrations of the tw
member cable net~Fig. 1! are shown in Fig. 4. Fig. 4~a! presents
the linear resonance when the structure is loaded by unit s
soidal force with critical frequencyvc , which is equal to the
natural frequency of the structure. As expected, a divergent c
appears. However, taking into account geometric nonlinearity
resonance behavior disappears~bold line!. Even in Fig. 4~b! with
near resonance loading, wherev50.9vc , the linear approach
exhibits beatings~Timoshenko et al. 1974! while the nonlinear
behavior~bold line! is still different both qualitatively and quan
titatively.

Typical time histories of nonlinear free vibrations that consid
axial forces in members 2 and 3 of the plane cable net and a
forces in members 1 and 3 of the space cable dome are show
Figs. 5 and 6, respectively. Bold lines represent the solution
tained by reduced bases. Fine lines represent the exact sol
obtained without reduction of the basis. The reduction in the nu
ber of equations is from 12 to 2 in the case of the net and from
to 13 in the case of the dome.

Convergence of the shooting procedure considering the p
odic solution of free nonlinear vibrations of the plane net
shown in Fig. 7. The final period isT50.39 s. The bold lines
represent the solution obtained using reduced bases. Fine

;

s
Fig. 7. Convergence to the periodic solution of the plane cable net under conditionsui50; u̇i51; T50.5; tol51023. Bold curves show result
obtained using reduced basis; fine curves represent the exact solution obtained without reduction of the basis.
y5H u
u8
T
J (26)

the problem can be represented in canonical form

y85f@y# (27)

E1y@0#1E2y@1#5e (28)

Keller ~1992! suggested the following iterative shooting schem
for the solution of Eqs.~27! and ~28!:
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by
represent the exact solution obtained without reduction of th
basis.

The results show that an average of the reduced basis appro
mations gives exact results. The accuracy of calculations of me
ber forces is unexpected and deserves special attention. It will
discussed further later.

Discussion

Two issues concerning the dynamic response of cable structu
where addressed in the numerical simulations. First, the ina
equacy of the linear analysis of the dynamic response of cab
structures was underscored. The time histories of forced vibr
tions of the simplest cable net exhibit qualitative and quantitativ
differences in the results of linear and nonlinear analyses~Fig. 4!.
Moreover, neither resonance nor beating predicted by the line
analysis was observed in the nonlinear computations. Seco
simplified nonlinear models of cable structures were introduce
by means of the reduced basis technique. The initial modes
infinitesimal rigid body motion were proposed to be the dominan
modes. This simplification, which allows significant reduction o
the size of the problem, has been extensively examined in e
amples of the initial value and two-point boundary value prob
lems. The results of the numerical simulations verify the applic
bility of the proposed approach. It should be mentioned that th
effect of reduced basis is an averaging effect. It extracts the slo
component from the dynamic response. This component is us
ally of major practical interest. Full-scale analysis should be pe
formed if one needs the fast component of motion, which is s
perimposed on the slow component. It is worth stressing that t
reduced basis provides good averaging of the internal forc
shown in Figs. 5 and 6. At first glance this is contrary to intuition
because the initial infinitesimal modes of rigid body motion d
not produce internal force. The following explanation to thi
‘‘contradiction’’ is provided. The modes of rigid body motion
obtained from the linearized equations do not produce memb
forces when they areinfinitesimal. Since they are dominant in the
overall motion, where displacements are not infinitesimal, th
forces produced by them also dominate over the forces produc
by ‘‘elastic’’ displacements.

Conclusions

It was shown that dynamic analysis of cable structures based
the linear approach is inaccurate both qualitatively and quantit
tively. It is necessary to perform geometrically nonlinear dynam
analysis in order to adequately design cable structures. The g
eral dynamic formulation presented in this work provides a com
putational framework for the analysis of time history~the initial
value problem! and periodic motion~the two-point boundary
value problem!. The most important feature of this method is the
reduction of the general set of possible displacement modes t
smaller set of modes called thereduced basis. This basis consists
of infinitesimal rigid body motion of the unstressed cable struc
ture and it is the right null space of the linearized kinemati
matrix. In this way slow motions are extracted from the overa
dynamic response of cable structures, which is an averaging p
cess. The numerical advantages of using the proposed basis
the reduction of the size of the problem, which is important i
nonlinear computations, and smoothing of the numerical solutio
180 / JOURNAL OF ENGINEERING MECHANICS / FEBRUARY 2003
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to avoid stiff numerics. The results of numerical simulations p
sented in this paper favor the use of the computational framew
proposed.
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