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Abstract: Initial infinitesimal modes of rigid body motions are used to form a reduced basis for nonlinear dynamic analysis of cable
structures. This approach superimposed on the geometrically nonlinear truss formulation extracts slow motions from the general dynami
response of cable systems. In this way the problem is reduced considerably and solution of the equations becomes smoother. These t
features are computationally desirable. The advantage of the proposed procedure is studied using numerical examples of a plane cable
and a cut-down version of the Geiger dome. Problems of time-history computation and periodic motion analysis are addressed in th
examples.
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Introduction In the present work a general approach is developed for the
Alinear approach to dynamic analysis of cable structures is basednonlinear dynamic modeling of arbitrary cable structures. This
on linearized dynamic equations, where the initial tangent stiff- approach is based on the reduced basis technique. The idea be-
ness matrix, comprising the uncoupled linear elastic stiffness ma-Nind reduced basis techniques may be described briefly as fol-

trix and the geometric stiffness matrix, is usétrishna 1978; lows: let the physiqal phenomenon be represented by the nonlin-
Buchholdt 1985 This is in contrast to the well-known fact that &ar operator equation:
the static response of cable structures is generally nonlifhear R[u]=0 (1)

ine 1981; Szabo and Kollar 1984The necessity to treat general . . .
nonlinear analysis of dynamics of cable structures has been emWhereu is an unknown. Then the unknown is approximated by
phasized by Mesarovic and Gaspariib92a,b although some  the finite series:
interesting work was also carried out by Frigk982); Milinazzo n
et al. (1987; Perkins and Moté1987%); Triantafyllou and Howell u= 2 a;U; 2)
(1992; Kahla (1995; Koh et al.(1999; and Hu and Jir2001). i=1

Mesarovic and Gaspariil992a,b raised questions about the
validity of linear analysis that considers dynamic loads and the
nonlinear dynamic response of cable structures. Their first paper
(Mesarovic and Gasparini 1992& devoted to a search of an
adequate nonlinear model for an eight-element cable system.
Using geometric reasoning specific to this cable system they ex- < R

Ui,

where a;=coefficient to be found; and,=assumed mode. Sub-
stituting Eq.(2) into Eq.(1) and pre-multiplying the latter scalarly
by u;, it is possible to obtain a new set nfnonlinear algebraic

equations witm unknownsa; :
n
tracted the dominant displacement modgsneralized coordi- 2 aju
nates. These modes are further used to simplify dynamic equa- b
tions. In the second papgMesarovic and Gasparini 199Pb  This set of equations is solved by existing numerical methods. If
nonlinear dynamic response of the same system including a parau belongs to an appropriate function space then the technique
metric study and the nonlinear stability issue is analyzed. The described is a general discretization scheme and various well-
conclusion from these studies is that linear dynamic analysis is known methods(finite elements, differences and @tenay be
not adequate, “most of the nonlinear dynamic phenomena ob- interpreted in this way. This may also be considered the first stage
served cannot be predicted by adding the geometric stiffness ofin reducing the size of the problem. Further reduction can be
the elements and analyzing the resultant equations of motion.” achieved by using a reduced basis for the already discrete system
of algebraic equations, E¢l), whereu belongs tan-dimensional
1Senior Lecturer, Dept. of Civil Engineering, Technion, Haifa 32000, real Euclidean space in whieh<m. In this case Eq(3) presents

>:o, i=1,.n 3)

Israel. E-mail: cvolokh@aluf.technion.ac.il further reduction of the initial problem. This reduction is, in the
2Associate  Professor, Dept. of Civil Engineering, Technion, narrow sense, eeduced basis techniqua large amount of work

Haifa 32000, Israel. was carried out on various methods to establish appropriate re-
SGraduate Student, Dept. of Civil Engineering, Technion, duced bases. A state-of-the-art review was given by Nb994).

Haifa 32000, Israel. General methods of establishing a reduced basis are often unreli-

Note. Associate Editor: James L. Beck. Discussion open until July 1, g6 and the choice of reduced basis must proceed on a problem-
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extend the closing date by one month, a written request must be filed with y Ip thi ) f initial infinitesimal d f riid bod
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Physically, the use of the proposed reduced basis allows averag- 920 920
ing the dynamical response of cable systems and extracting the =~ K=-7=1  =A+D, Kjs=--=r
most important slow motions. Numerically, this means a signifi- u=0 s
cant reduction of the size of the problem and smoothing of the A=uncoupled linear elastic stiffness matrix; abd=geometric
solution of dynamic equations. These numerical features are com-stiffness matrix depending on the prestressing forces:

putationally desirable. Two numerical examples are considered.

=AjstDjs 9)

uj:0

The first one is a prestressed two-dimensiof#ZaD) cable net T K dA| 94

comprising 11 member@ig. 2). The second one is a prestressed A=B'SB|uo, AJSZ|=1 au; aug ! (10)
three-dimensional3-D) dome comprising 8 vertical struts and 28 uj=0
cables(Fig. 3). This dome is a cut-down version of the Geiger S[BTpo] K 22A

dome (Geiger 5 year the Gymnastic Arena and the Fencing D= Po . D=, —lpm (12)
Arena built in Korea, and the Redbird Arena at lllinois State Univ. C T BoEeuausT

and the Sun Coast Dome in St. Petersburg, Fla. !

The proper index notation is used above in order to clarify matrix
Governing Equations abbreviations.

It is worth emphasizing that the formulation of dynamic equa-
tions given above for cable structures is based on the direct use of
global nodal degrees of freedom and the strain energy expression.
Dynamic equations without damping take the form It is believed that this method is the clearest and shortest. How-

R[u]=Mi+ru]-q=0 (4) ever, the same equations may _be obtaint_ed using standard f_inite
element procedures for geometrically nonlinear truss formulation
whereM=mXm diagonal lumped mass matrix, or a consistent (szabo and Kollar 1984; Argyris and Mlejnek 1991; Crisfield
nondiagonal matrix when the finite element approximation is 1991). When these methods are used, tedious preparations, in-

used;u=[t] and g=q[t] are m dimensional vectors of nodal  cjyding local element formulation, transition to global formula-
displacements and external nodal forces; and vectufrthe in- tion and assembling of elements are required.

ternal nodal forces may be computed by the strain energy expres-
sion (Volokh 1999:

General Equations of Nonlinear Dynamics

Time History: Initial Value Problem

aQ[u Q)
rful= [u] , M= (5) In order to trace the time-history response of a specific structure it
au au; . I - ; S
! is necessary to add initial conditions to the dynamic equations:
Q[u]= zAT[u]SA[u]+psA[u] (6) Ui—o=a, Ul—o=b (12)
po=k dimensional vector of initial member forcggrestressing By introducing new unknowns ={u",u"}", which include nodal
A=vector of member elongations; aigFkXx k uncoupled stiff- velocities, it is possible to obtain the canonical form of the initial
ness matrix with diagonal nonzero entri€:=E;A, /l; including value problem:
the i-th member Young's modulus, cross-sectional area and el _
length, respectively. Glv]=v-1v]=0 (13)
Taking into account Hooke's law of member force increments v|i—o=C (14)
p=SA, Eq. (5) takes the form wherec={a",b"}.
aQ[u] dA[u]
rfu]=—,—=BTul(pe+plu]), Blul=——=

Periodic Motion: Two-Point Boundary Value
whereB=kx m kinematic matrix, and its transpose is the equi- Problem
librium matrix.

It is possible to search for periodic solutions of E4). or (13). In
The “small strain” approximation implies : g Eq.or (13

this case dynamic equations should be supplemented with peri-

Aizlisi , €= 6T w; odic conditions:
e-:Xj_XS Uj_us+ Xj+1_xs+l uj+l_uS+l U[t]:U[t+T], U[t]:U[t+T] (15)
I li Ii li Ii or

Xj+27 Xs42 Uj427 Usi2 v[t]=v[t+T] (16)

+ l; I In this case Eqs(4) and(13) with conditions(15) and(16) take
Tiu—ul?2 1 B 2 4 B 5 the form of the two-point boundary value problé8eydel 1994;

oo | T s) T 2 Wira T Usra) T 2 U2 Usi2 Nayfeh and Barachandran 1995
2l 2 I 2 I

where u; and x;=appropriate nodal displacements and coordi- Displacement Modes and Reduced Basis
nates of tha-th member.

Linear dynamic equations are obtained by linearizingith The main feature of cable structures is the existence of infinitesi-
respect tau at the initial configuratioru=0: mal modes of rigid body motion. Mathematically, this means that
the linearized kinematic equations possess nontrivial solutions:
rfu]=Ku (8)
whereK=initial tangent stiffness matrix or, simply, the stiffness Box=0, Bo=Blu—o (A7)
matrix: X=UqZ1+UyZp+ -+ +U,z,=Uz (18)
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Fig. 1. One degree of freedom assembly with resonance loading

where vectoray; form an orthonormal basis of the nullspace of
matrix By. By completing this subspace with its orthogonal
complement

U={Ups1]Jupn}, UTU=0 (19)

it is possible to represent the vector of nodal displacements in the
following form:

u=Uz+U02 (20)

wherez and Z=new unknown vectors.

The first term on the right-hand side of EH@O) presents the
infinitesimal rigid body motion. These modes affect the whole
structural respons@/lokh and Vilnay 1997. To show this let the
following linearized equilibrium equation be considered:

Ku=q (21)

Using Eq.(20) and premultiplying by matrixU|U}T from the
left, Eq. (21) takes the form

Ki L[z Uq
{LT KZHZHUq] (22)
or
kYT (T k4T
(Ki— LK 1LT2z=(0T- LK, *UT)q 23)
(K,—LTK; 'L)z=(UT—L"K; 0" q
where

K,=UTKU=U0TB}SB,U+U"DU
K,=UTKU=UTDU

L=U"ku=U0TDU

Fig. 2. Plane cable net
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Fig. 3. Perspectivda), top (b), and front(c) views of a cable dome.
Subscripts designate nodal degrees of freedom in three perpendicular
directions. All vertical members are struts. Other members are cables.
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Taking into account that the initial member stresses are signifi-
cantly smaller than the elasticity modulllB||<||S| and conse-
quently||K,[|>| K|~ L[, it is possible to conclude from E(R3)
that||Z|>|Z]. Thus the nodal displacements are dominated by the
modes of infinitesimal rigid motion. This allows one to propose
the use of these modes as the reduced basis for analysis of under-
constrained structures.

To summarize the method proposed, E@. and (7), with
small strain approximations and appropriate initial and boundary
conditions, are solved using a reduced basis consisting of infini-
tesimal rigid body modes. The efficiency of the proposed reduced
basis is further investigated next in “Numerical Simulation.” It is
worth mentioning that different proposals of reduced bases can be
found in the literaturéKirsch 1991; Noor 1994

Numerical Simulation

Description of Examples

Three examples, shown in Figs. 1-3, are considered. All struc-
tures comprise members of circular cross section with radii of 0.2
cm and elasticity module of 2410° kg/cn?.

The first structure is a two-member cable (f&g. 1) with only
one nodal degree of freedonu)( Both members are initially

prestressed to 100 kg. . . o (b) of the two-member ndfFig. 1). Fine and bold curves show results
The second structure is a plane cable (. 2) consisting of of linear and nonlinear analyses, respectively.

11 members and possessing 12 degrees of freedom. Its degree of
kinematic indeterminacythe difference between the number of
degrees of freedom and the rank of the linearized kinematic ma- 5,4
trix Bg) is 2. This number is also the number of reduced basis

Fig. 4. Displacement versus time for linear resonat@end beating

modes in accordance with the proposed approach. Prestressing uf0]=u[1]
forces in kg take the following form taking symmetry into ac- u'[0]=u'[1] (25)
count: pp;= 33, Pgo=29.1682,pge= 9.90404, angy;,= 14.1586.

The third structure is a space dortfég. 3) comprising 8 ver- T[O]=T[1]

tical struts and 28 cables. It possesses 48 degrees of freedom. It
degree of kinematic indeterminacy is 13. Prestressing forces in kg
take the following values taking symmetry into accoupt;
= Po2=69.282, pga= Pos=34.641, —Pos= Po3o= Poz2= 20, and

The prime in Eqgs.(24) and (25 refers to normalized time
€[0,1]. By introducing new unknowns,

Po31= — Posa= 40. 02
It is assumed that all structures possess lumped masses at the 305

nodes and the mass matrices are diagonal unit matrices. 300

' . . 295
Simulation Techniques 26.0
The Mathematica NDSolve procedui&olfram 1991 is used for 285
numerical solution of the initial value problem described above.
This procedure uses the Adams predictor—corrector method for s TR R VY
nonstiff differential equations and backward difference formulas ’ ’ ’ ) )
(Gear methodfor stiff differential equations. It switches between p3
the two methods using heuristics based on the adaptation of a 305
selected step size. It starts with the nonstiff method under essen- 30,0
tially all conditions, and checks the advisability of switching 295
methods every 10 or 20 steps. The algorithms and the heuristics 290
for switching between algorithms were described by Hindmarsh S
(1983 and by Petzold1983. ’

The shooting method is adopted in combination with the IVP
solver for solution of the two-point boundary value problem for 01 02 03 o4 05
periodic motions. Assuming that the problem is autonomous, that
is, g=0, it is possible to reformulate it as follows: Fig. 5. Axial forces in members 2 and 3 of the plane cable net versus

time for free nonlinear vibrations under initial conditions=0; U,
S =0.5. Bold curves show results obtained using reduced basis. Bold
u"=T*M""r[u] curves are solutions of 2 nonlinear equations; fine curves are solu-
T'=0 (24) tions of 12 nonlinear equations.
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pl S D=0 —E5(E s+ Epy s, 1] —€) (29)

wheres®=y{ 0] is the initial guess ané;=(E;+E,) *. Since,

110.0 in our caseE;=—E, is a unity matrix(ande is a zero vector
107.5 matrix E; should be modified. Specifically, the following diago-
105.0 nal matrixE;=diag{1/2, 1/2,...,1/2, ¥ is used.
1025 The convergence criterion of the proced(®®) was defined
100.0 as
975 01 02 03 04 05
(i+1)— i) T(gli+1)— &)
o p3 ST <tol (30)
60
Results
55
A comparison of time histories of forced vibrations of the two-
0 member cable neFig. 1) are shown in Fig. 4. Fig.(4) presents
the linear resonance when the structure is loaded by unit sinu-
01 02 03 04 05 soidal force with critical frequencyw,., which is equal to the

natural frequency of the structure. As expected, a divergent curve

cable dome versus time for free nonlinear vibrations under initial 2PPears. However, taking into account geometric nonlinearity the
conditionsu;=0; (;=0.5. Bold curves show results obtained using "€Sonance behavior disappegsid line). Even in Fig. 4b) with

reduced basis. Bold curves are solutions of 13 nonlinear equations;"€a" resonance loading, wheig=0.9, the linear approach

Fig. 6. Axial forces in members 1 and(&e worst caseof the space

fine curves are solutions of 48 nonlinear equations. exhibits beatinggTimoshenko et al. 1974while the nonlinear
behavior(bold line) is still different both qualitatively and quan-
titatively.
u Typical time histories of nonlinear free vibrations that consider
y=1{u’ (26) axial forces in members 2 and 3 of the plane cable net and axial
T forces in members 1 and 3 of the space cable dome are shown in
Figs. 5 and 6, respectively. Bold lines represent the solution ob-
the problem can be represented in canonical form tained by reduced bases. Fine lines represent the exact solution
obtained without reduction of the basis. The reduction in the num-
y' =f[y] (27) ber of equations is from 12 to 2 in the case of the net and from 48

to 13 in the case of the dome.

_ Convergence of the shooting procedure considering the peri-
Enf0l+E1]=e (28) odic solution of free nonlinear vibrations of the plane net is

Keller (1992 suggested the following iterative shooting scheme shown in Fig. 7. The final period i$=0.39s. The bold lines

for the solution of Eqs(27) and (28): represent the solution obtained using reduced bases. Fine lines

UB-8tep4 UB-38tep?
04 0.4
02 02
] 2 0.8 { 2 o} fos
0.2 -0.2
-0.4 ~04
UB-Steph Ue-8tepd
04 04
02 0.2
) 0 0
-02
-0.4
U8~Steps
04
0.2
] 0. 0.8
-0.2
-04

Fig. 7. Convergence to the periodic solution of the plane cable net under conditiers U;=1; T=0.5; tol=10" 2. Bold curves show results
obtained using reduced basis; fine curves represent the exact solution obtained without reduction of the basis.

JOURNAL OF ENGINEERING MECHANICS / FEBRUARY 2003/ 179



represent the exact solution obtained without reduction of the to avoid stiff numerics. The results of numerical simulations pre-

basis. sented in this paper favor the use of the computational framework
The results show that an average of the reduced basis approxiproposed.

mations gives exact results. The accuracy of calculations of mem-

ber forces is unexpected and deserves special attention. It will be

discussed further later. References
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