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1. Introduction

Tensegrity is an abbreviation of “tension” + “integrity”. It designates a class of

truss structures, which consists of pin-jointed compressed struts and tensioned ca-

bles. There is only one compressed strut at every node of the assembly while the

number of tensioned cables is arbitrary.9,24,32 The first tensegrity structure was

invented by Kenneth Snelson in 1948.26 Buckminster Fuller named the Snelson

structure “tensegrity” and proposed a new class of tensegrity domes.19 The most

impressive application of tensegrity systems in construction is Geigers tensegrity

dome proposed in designing the Olympic arena in Seoul, Korea.10 Domes of this

type were used also in building the Redbird Arena at Illinois State University, and

the Sun Coast Dome in St. Petersburg, Florida in the United States. Instances

of natural occurrence of tensegrity structures vary from deployable grids8,11,20 to

cytoskeletons of living cells.7,12,37,38

The increasing interest in mechanics of tensegrity structures started from the

celebrated paper by Calladine2 where the singular character of tensegrities was

emphasized. It was realized since then that tensegrity structures are both statically

and kinematically indeterminate.28 The latter means that infinitesimal displace-

ment modes exist that do not produce strains.35 Kinematically indeterminate struc-

tures are also called underconstrained structures or infinitesimal (instantaneous)

mechanisms or singular structures.16,17 The consideration of kinematically indeter-

minate structures requires an extension of the traditional classification of structures.

1
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It is worth noting that the kinematically indeterminate structures are often misun-

derstood in the engineering literature: they are considered as mechanisms unable

bearing loads. This is inaccurate, of course. The exciting problem of the classifi-

cation of kinematically indeterminate structures attracted attention of many re-

searchers: Tarnai,28–30 Koiter,15 Calladine and Pellegrino,3,4 Salerno,25 Vassart

et al.31 and Kuznetsov.16 The kinematical indeterminacy generally leads to the

necessity to account for geometrical nonlinearity in static and dynamic analyses

of underconstarined structures including tensegreties. An extensive work has been

performed in this direction by Kebiche et al.13 Murakami,21,22 Oppenheim and

Williams,23 Wang,40 Yuan and Dong,41 Volokh33,34 and Volokh et al.39

The intriguing feature of tensegrity structures is their stability at the ini-

tial self-stress state (prestressability) in the known computational and practical

examples.18,27 The latter raises general theoretical question: are all tensegrity

assemblies with tensioned cables and compressed struts stable independently of their

topology, geometry and specific magnitudes of member forces? The positive answer

to this question is conjectured in this note. For this purpose, the general problem

of stability of tensegrity structures is formulated. It is assumed that all structural

members are straight and undergo large rigid body motions while the axial strains

are small and the displacement distribution along the members is linear. Hooke’s law

is adapted as the constitutive equation. The local buckling of struts and compression

of cables are excluded. Results on the stability of pre-tensioned cable nets are used

to motivate the conjecture. The relevant mathematical issues are emphasized. It

is believed that the possible proof of the conjecture could explain the observed

phenomena of the prestressability of tensegrity structures.

2. Formulation of the Stability Problem

The structure is stable if the equilibrium state corresponds to a minimum of the

potential energy, which is attained for kinematically admissible displacement (u)

variations:1,14

{ψ(u + δu) − ψ(u)}/‖δu‖2 ≥ c > 0 . (1)

The potential energy under “dead” tractions can be generally written in the form:

2 ψ =

∫

V0

(S : E/2 + S0 : E) dV0 −
∫

A0

(t + t0) · udA0 (2)

S = C : E (3)

E = (∇u + ∇uT )/2 + ∇u · ∇uT /2 . (4)

The Hooke’s law with the fourth-order tensor of elastic moduli C is used because

the Green–Lagrange strain tensor is assumed to be small ‖E‖ < ‖1‖, that is axial

and angle changes of the material wires are small while large rotations and transla-

tions are permitted. Tensors S and S0 designate the second Piola–Kirchhoff stress
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increments and initial stresses accordingly ant vectors t and t0 designate traction

increments and initial tractions, which are in equilibrium with initial stresses. The

initial tractions are zero at the state of self-stress. Displacements in Eq. (1) are

obtained from the equilibrium condition, accounting for (3) and (4):

δψ =

∫

V0

{(S + S0) : δE} dV0 −
∫

A0

(t + t0) · δudA0 = 0 . (5)

Equations (1)–(5) cover the stability problem for a wide range of elastic structures.

The general relations should be further specified for a particular class of structures

using additional geometrical and physical assumptions of “engineering theories”.

In the case of tensegrity systems or general pin-jointed structures every member

of an assembly is considered as a straight strut undergoing small axial strain and

large rigid body motion. The latter means that the strain tensor of the nth member

of the assembly contains only one entry:

Eξξ =
∂uξ

∂ξ
+

1

2

{

(

∂uξ

∂ξ

)2

+

(

∂uη

∂ξ

)2

+

(

∂uϑ

∂ξ

)2
}

. (6)

The axis ξ of the local Cartesian coordinate frame ξηϑ is chosen along the nth

member. Assuming the linear distribution of displacements along the member, the

derivatives take the form:

∂uξ

∂ξ
=

∆uξ

L
;

∂uη

∂ξ
=

∆uη

L
;

∂uϑ

∂ξ
=

∆uϑ

L
(7)

L designates the initial length of the member; and displacement increments are

equal to the difference between the nodal (edge) displacements of the element.

Accounting for (7), Eq. (6) takes the form:

Eξξ =
∆uξ

L
+

1

2L2
{(∆uξ)

2 + (∆uη)2 + (∆uϑ)2} . (8)

This equation can be rewritten in a global Cartesian frame xyz:

Eξξ =
1

L
(∆u cos(ξx) + ∆v cos(ξy) + ∆w cos(ξx))

+
1

2L2
{(∆u)2 + (∆v)2 + (∆w)2} . (9)

The term in the braces is invariant. The displacement increment and direction

cosines can be expressed in terms of coordinates and displacements of the ith and

jth nodes of the member:

∆u = uj − ui ; ∆v = vj − vi ; ∆w = wj − wi (10)

cos(ξx) =
∆x

L
=
xj − xi

L

cos(ξy) =
∆y

L
=
yj − yi

L

cos(ξz) =
∆z

L
=
zj − zi

L
.

(11)



March 20, 2003 9:32 WSPC/165-IJSSD 00074

4 K. Y. Volokh

Finally, the member strain takes the canonical form:

Eξξ =
1

L2
{∆u∆x+ ∆v∆y + ∆w∆z + (∆u)2/2 + (∆v)2/2 + (∆w)2/2} . (12)

The first and the second varitions of this strain take the form:

δEξξ =
1

L2
{(∆x+ ∆u)δ[∆u] + (∆y + ∆v)δ[∆v] + (∆z + ∆w)δ[∆w]} (13)

δ2Eξξ =
1

L2
{(δ[∆u])2 + (δ[∆v])2 + (δ[∆w])2} (14)

δ[∆u] = δuj − δui; δ[∆v] = δvj − δvi; δ[∆w] = δwj − δwi . (15)

Substituting (13) in (5) and designating the conjugate stress entries S and S0 it is

possible to obtain:

δψn =

∫

Vn

(S + S0)δEξξdVn

= {−(S + S0)A0(∆x+ ∆u)/L}δui + {(S + S0)A0(∆x+ ∆u)/L}δuj

+ {−(S + S0)A0(∆y + ∆v)/L}δvi + {(S + S0)A0(∆y + ∆v)/L}δvj

+ {−(S + S0)A0(∆z + ∆w)/L}δwi + {(S + S0)A0(∆z + ∆w)/L}δwj

= 0 . (16)

The coefficients in braces are contributions of axial member forces of the nth ele-

ment to the equilibrium of the ith and jth nodes. It is assumed that the stresses

are distributed uniformly within the cross-section area and the tractions are con-

centrated at the nodes and not included in (16). Equation (16) allows for simple

interpretation of components of the second Piola–Kirchhoff tensor. Let the coeffi-

cient of the first term be written in the form:

−
[

(S + S0)A0

l

L

] {

∆x+ ∆u

l

}

where l designates the member length after the deformation. The expression in

braces is the direction cosine for the deformed configuration. Thus the expression

in brackets is the axial force. Since the axial stretch is small (l/L ∼ 1) the increments

of the second Piola–Kirchhoff stress can be interpreted approximately as the axial

stresses at the current configuration. Assuming displacements and stress increments

to be zero, the initial stress S0 is exactly the axial stress at the initial configuration.

The second variation of the potential energy for the nth member takes the form:

δ2ψn =

∫

Vn

{δSδEξξ + (S + S0)δ
2Eξξ} dVn

=

∫

Vn

{E(δEξξ)
2 + (S + S0)δ

2Eξξ} dVn

= EA0L(δEξξ)
2 + (S + S0)A0Lδ

2Eξξ (17)
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E designates Young’s modulus. To find the quadratic form of the second variation

of the potential energy it remains to substitute (13) and (14) in (16). The displace-

ments and stress increments should be dropped from the final expression since the

stability of the initial state is considered. The latter does not affect generality, of

course, because any current state can be referred to as the “initial” one.

The stability criterion (1) takes the following form in the case of pin-jointed

assemblies:

δ2ψ = δ2
N

∑

n=1

ψn =

N
∑

n=1

δ2ψn = δuT Kδu > 0 . (18)

The dimension M of the vector of virtual displacement equals the number of degrees

of freedom after excluding supporting points. The tangent stiffness matrix can be

presented in the form:

K = BT CB + D . (19)

The first and the second terms on the right hand side of (19) are the result of

assembling terms EA0L(δEξξ)
2 and S0A0Lδ

2Eξξ over all members accordingly. An

N by M matrix B is a standard matrix of direction cosines: Bnm = (Xm−Xk)/Ln.

Letters X designate nodal coordinates, which may be x or y or z; n is the member

number; m and k are proper indexes of the member coordinates. Diagonal matrix

C is an N by N uncoupled stiffness matrix: Cnn = EnA0n/Ln. An M by M

symmetric matrix D is the geometric stiffness matrix, whose entries take the form:

Dmm =
∑s

n=1
Pn/Ln; Dmt = −Pn/Ln; Pn = (S0A0)n. The sum includes all (s)

members attached to the node with the mth degree of freedom. Index t is the

properly chosen degree of freedom at the second edge of the nth member. It is

important to emphasize that matrix K has no rows and columns corresponding to

the constraints imposed by supports.

To summarize: the considered initial state is stable if the tangent stiffness matrix

K is positive definite. It should not be missed that the theory above considers

structural members to be straight. If all cables are tensioned and all struts do not

buckle locally the straightness assumption seems to be valid. This is not always the

case, however. Cable members do not resist compression and struts may buckle.34

It is important to emphasize that the stability formulation given above is typical

of the Structural Mechanics approach. Another view of tensegrity and stability is

promulgated by Connelly and his co-workers in the mathematical literature (see

Connelly and Back,5 Connelly and Whiteley,6 and references therein). These au-

thors do not restrict the definition of tensegrities to one compression strut at a joint

and they use methods of graph, group, and representation theories. An interesting

result brought by these authors will be considered in the next section.

3. Stability Conjecture

To motivate the following stability conjecture we first consider totally tensioned

cable nets. The stability of tensioned cable nets was proved by Volokh and
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Vilnay.36 Three main steps of this proof include: (1) positive semi-definiteness

of BT CB; (2) positive semi-definiteness of D; (3) non-singularity of D. Positive

semi-definiteness of BT CB is a direct consequence of the diagonal structure of C

with positive entries. The latter allows for decomposition: C =
√

C
T√

C. Now the

corresponding quadratic form can be written as follows: δuT BT
√

C
T√

CBδu =

‖
√

CBδu‖2

2
≥ 0. It is important to emphasize that in the case of kinematically

indeterminate structures matrix B possesses a nontrivial nullspace formed by vec-

tors usually called infinitesimal mechanisms modes. Thus matrix BT CB is singular

for kinematically indeterminate (underconstrained) structures including tensegrity

systems. This matrix, however, is regular and strictly positive definite for traditional

kinematically determinate structures. Steps (2) and (3) of the proof are subtler and

worth illustrating by an example given in Fig. 1.

Consider a hexagonal cable net (Fig. 1). This net is initially pre-tensioned by

equal forces P directed along the “radiuses”. Equilibrium is provided when axial
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Fig. 1. Cable hexagon. Ui is the nodel degree of freedom. Cables 1–6 are pretensioned due to the
diagonal forces P .
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Table 1. Geometric stiffness matrix D for the cable hexagon.

P1

L1

+
P1

L2

−P2

L2

P6

L6

+
P5

L5

−P5

L5

−P2

L2

P2

L2

+
P3

L3

−P3

L3

−P5

L5

P4

L4

+
P5

L5

−P4

L4

−P3

L3

−P4

L4

P3

L3

+
P4

L4

P1

L1

+
P2

L2

−P2

L2

P6

L6

+
P5

L5

−P5

L5

−P2

L2

P2

L2

+
P3

L3

−P5

L5

P4

L4

+
P5
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tension forces in all members equal P . Thus a nonzero initial equilibrium state

exists. Imposing three constraints at supporting points, the number of degrees of

freedom is M = 9 (only a plane problem is considered). The number of the as-

sembly members is N = 6. The 6 by 9 matrix B posses a nontrivial nullspace

and the structure is kinematically indeterminate. Matrix BT CB is singular and

positive semi-definite. Geometrical stiffness matrix D is given in Table 1. Empty

cells designate zeros. The values of the initial forces are not specified in order to

demonstrate the structure of the matrix, however, all member forces are positive

Pi > 0, i.e. all members are tensioned. Since member lengths are also positive, the

sum of the absolute values of non-diagonal members in any row is not greater than

the diagonal entry of the same row. The latter means that matrix D is at least

positive semi-definite. To make the last step and to prove the non-singularity of

matrix D, and consequently of K, it is necessary to consider the connectivity and

diagonal dominance of matrix D.

The invertability of an N by N matrix D is achieved because: (a) it is pos-

sible to find g, 1 ≤ g ≤ N nonintersecting sets of distinct integers (covering all

integers from 1 to N) among integers from 1 to N , so that for every pair of inte-

gers pt, qt of the tth set there is a sequence of distinct integers belonging to the

same set, k1 = pt, k2, . . . , km−1, km = q, such that all of the matrix entries Dk1k2
;

Dk2k3
, . . . , Dkm−1km

are nonzero; (b) for every set defined above it is possible to

find at least one integer st such that the value of Dst,st
is strictly greater than

the sum of the absolute values of the non-diagonal row entries. In the considered

example, the appropriate sets of numbers are 1, 2, 3, 4, 5 and 6, 8 and 7, 9. The

large number of the rows with the diagonal dominance is occasional in the con-

sidered example. However, at least one row always exists if one supporting point

exists. The connectivity is provided within every set because the graph of the set

exhibiting its connectivity is the structure itself (!), i.e. one can “move” from any

number (node) to any other number (node) within the set throw the structural

members. Consider, for example, a pair of numbers 1 and 5 for the first set. The

necessary sequence of nonzero entries is D13; D35. If the pairs 1 and 2 is taken then

the necessary sequence of nonzero entries is D13; D35; D54; D42 and so on.

Replace now the initial external “radial” forces P providing tension in cables

by the compression forces in nonintersecting struts as shown in Fig. 2. In this case

the geometric stiffness matrix D given in Table 2 includes compression forces. The

new terms destroy the diagonal dominance. Substituting Pi = P , i = 1, . . . , 9;

Li = L, i, . . . , 6; Li = L/2, i = 7, 8, 9 and normalizing with respect to P/L it

is possible to obtain matrix D in numerical form as given in Table 3. Numerical

analysis shows that this matrix is positive semi-definite. It is singular with rank

6. On the other hand, matrix BT CB is also singular and positive semi-definite

(matrix B is given in Table 4). Its rank is 8 and its nullspace vector may be written

in the form:

a = {−
√

3/2;−2/
√

3;−
√

3/2;−2/
√

3; 1/
√

3; 1/2;−2/3;−5/6; 1}T .



March 20, 2003 9:32 WSPC/165-IJSSD 00074

Stability Conjecture in the Theory of Tensegrity Structures 9
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Fig. 2. Tensegrity hexagon. Ui is the nodel degree of freedom. Cables 1–6 are pretensioned due
to the compression forces P in struts 7, 8 and 9.

Though both matrix terms forming the tangent stiffness are positively semi-definite

and singular, the tangent stiffness itself is strictly positive definite. This may

be checked by multiplication: Da 6= 0. Its result is a nonzer vector. The latter

means that the nullspaces of BT CB and D are different, and, consequently K is

strictly positive definite. It is remarkable that the material properties of members

were not involved in the previous reasoning and the stability property is purely

statical/kinematical as in the case of cable nets.

The formal difference between the considered examples is that in the case of the

cable hexagon the external nodal loads are “dead”, while in case of the tensegrity

hexagon the “internal nodal loads” — compressed struts are not “dead”, they are

“following loads”. The latter means the necessity to modify the tangent stiffness

matrix. It seems, however, that being formally different both cases are physically

equivalent as the Figs. 1 and 2 prompt. Considering any tensegrity system, one can

“instantaneously replace” compressed struts by “equivalent” external nodal loads
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P1

L1

+
P2

L2

− P7

L7

−P2

L2

P7

L7

P6

L6

+
P5

L5

− P8

L8

P8

L8

−P5

L5

−P2

L2

P8

L8

P2

L2

+
P3

L3

− P8

L8

−P3

L3

P7

L7

−P5

L5

P4

L4

+
P5

L5

− P7

L7

−P4

L4

−P3

L3

−P4

L4

P3

L3

+
P4

L4

− P9

L9

P1

L1

+
P2

L2

− P7

L7

−P2

L2

P7

L7

P6

L6

+
P5

L5

− P8

L8

P8

L8

−P5

L5

−P2

L2

P8

L8

P2

L2

+
P3

L3

− P8

L8

P7

L7

−P5

L5

P4

L4

+
P5

L5

− P7

L7
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Table 3. Geometric stiffness matrix D for the tensegrity
hexagon normalized by P/L.

3/2 −1 1/2

3/2 1/2 −1

−1 1/2 3/2 −1

1/2 −1 3/2 −1

−1 −1 3/2

3/2 −1 1/2

3/2 1/2 −1

−1 1/2 3/2

1/2 −1 3/2

Table 4. Matrix of direction consines B for the tensegrity hexagon.

−1/2 −
√

3/2

1 −1

1/2 −1/2 −
√

3/2

1/2 −1/2
√

3/2

1 −1

−1/2
√

3/2

−1/2
√

3/2 −
√

3/2

−1/2 1/2 −
√

3/2
√

3/2

1/2 1

and to analyze the remaining cable system. Such cable system is always stable, so

the whole tensegrity system can be conjectured to be stable.

Conjecture: Any tensegrity system with totally tensioned cables is stable in-

dependently of its topology, geometry and specific magnitudes of the member

forces.

The considered above example presents the plane tensegrity structure. We also

analyzed a space tensegrity structure (Fig. 3). It is a cut-down version of the famous

Geigers dome comprising 8 vertical struts and 28 cables. It possesses 48 degrees of

freedom. Its degree of kinematic indeterminacy is 13. Pre-stressing forces take the

following dimensionless values accounting for symmetry: P1 = P2 = 3.464P , P3 =

P4 = 1.732P , −P5 = P30 = P32 = P , P31 = −P34 = 2P . Omitting the intermediate

results it was obtained that this structure is also stable for arbitrary P > 0. The

two considered examples may be completed with other stable tensegrities reported

by Coughlin and Stamenovich,7 Murakami,22 Oppenheim and Williams,23 Sultan

et al.,27 Vassart et al.,31 Vilnay,32 Volokh,34 Wang,40 Yuan and Dong,41 and the

references therein.
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(a)

U11,27,43 

U15,31,47�

U12,28,44 
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31
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2829 

33 

(b)

Fig. 3. (a) Geiger’s tensegrity dome. 3D view. Vertical bold lines designate compressed struts.
Fine lines are tensioned cables. (b) Geiger’s tensegrity dome. Top view. Subscripts designate
nodal degrees of freedom in three perpendicular directions. (c) Geiger’s tensegrity dome. Front
view. Subscripts designate nodal degrees of freedom in three perpendicular directions.
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Fig. 3. (Continued)

Returning to works by Connelly and Back5 and Connelly and Whiteley6 it is

interesting to note that these authors found that cables-struts assemblies are not

necessarily stable if more than one strut is attached at a node. This finding is in

agreement with our conjecture since only structures with one strut per node are

defined as tensegrities here. On the other hand this finding sharpens our conjecture

and excludes its generalization.
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4. Conclusions

Stability of tensegrity structures, which are tensioned cable nets prestressed by iso-

lated compressed struts, has been considered. General formulation of the stability

problem for tensegrity structures is based on the direct use of global nodal degrees

of freedom and the strain energy expression. This setting is more straightforward

than the use of the standard finite element procedures for the geometrically non-

linear truss formulation where tedious preparations, including local element formu-

lation, transition to global formulation and assembling of elements, are required.

Based on this formulation and the established result on the stability of pretensioned

cable nets, the stability of tensegrity structures is conjectured. It is particularly con-

jectured that a tensegrity structure with all tensioned cables and compressed struts

is always stable independently of its topology, geometry and specific magnitudes

of member forces. This conjecture is illustrated by examples of space and plane

tensegreties. It is also justified my numerous examples of the stability of tensegrity

structures considered by other authors. It is hoped that a possible proof of the

stability conjecture will allow for deeper insights in the general problem of stability

of trusses. Such proof will also abandon analysis of the stability of any tensegriy in

both initial and loaded states if all cables are tensioned.
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