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Abstract. Conventional continuum mechanics models considering living cells as viscous fluid balloons are unable to explain
some recent experimental observations. In contrast, new microstructural models provide the desirable explanations. These
models emphasize the role of the cell cytoskeleton built of struts-microtubules and cables-microfilaments. A specific architec-
tural model of the cytoskeletal framework called “tensegrity” deserved wide attention recently. Tensegrity models particularly
account for the phenomenon of linear stiffening of living cells. These models are discussed from the structural mechanics
perspective. Classification of structural assemblies is given and the meaning of “tensegrity” is pinpointed. Possible sources of
non-linearity leading to cell stiffening are emphasized. The role of local buckling of microtubules and overall stability of the cy-
toskeleton is stressed. Computational studies play a central role in the development of the microstructural theoretical framework
allowing for the prediction of the cell behavior from “first principles”. Algorithms of computer analysis of the cytoskeleton that
consider unilateral response of microfilaments and deep postbuckling of microtubules are addressed.

1. Introduction

Biochemical transformation of mechanically distorted living tissues and cells is a commonly observed
event [7]. The phenomenon underlying this transformation is catledhanotransductioriThough var-
ious scenarios have been proposed for explanation of mechano- electro- chemo- bio-transformations in
cells, no reliable experimental evidence of mechanotransduction mechanisms has been reached and the
whole picture still remains obscure. The final goal in the comprehension of the mechanotransduction
phenomenon is setting up a general model where all kinds of interaction are coupled. To achieve this
goal it may be crucial at the first stage to understand mechanical, electrical, chemical and biological cell
behaviors independently. To this end investigation of the mechanical structure or architecture of living
cells is among the meaningful problems. This knowledge will allow predicting mechanical response of
living cells as the initial step of the mechanotransduction process.

Traditionally, living cells were thought to be viscous fluid balloons from the point of view of mechan-
ics. This serene picture was smashed when the contractility of living cells was discovered. The latter was
allowed by new experimental techniques based on the use of thin silicone rubber substrata. When affixed
to such substrata cells contract and become more spherical [3]. Another piece of evidence that cells pos-
sess a complicated load bearing microstructure emerges from experiments with binding micropippets to
adhesion receptors on the surface of living cells. In this case, pulling on receptors produces immediate
structural re-organization deep inside the cell [5]. The aforementioned experimental results emphasize
the role of cytoskeletal micro-structural frameworks of living cells comprising microtubules and micro-
filaments. It seems that the role of such frameworks is important in the mechanical response of living
cells, what was ignored in the past. Ingber [1,4] assumed that cytoskeletal frameworkseasieyrity
architecture and particular cytoskeletal tensegrity model shown in Fig. 1 was the main subject of com-
putational studies of different research groups [2,6,14]. The experimentally observed linear stiffening
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Fig. 1. Tensegrity cell model.

of living cells [8,16,17] and possible softening were explained by means of formal structural analysis
within the frame of the considered tensegrity model.

The main feature of the mechanical response of living cells is non-linearity, which may be directly
observed on cells experiencing large deformations. Stiffening as well as possible softening of cells are
manifestations of this non-linearity. The goal of our note is revealing structural sources of cell non-
linearity based on cytoskeletal framework modeling. It is showndkatmetrical degeneracgndbuck-
ling of microtubulesare main candidates responsible for the non-linearity. The meaning of tensegrity
as the geometrically degenerate architecture is sharpened. The role and ways of computer modeling are
strengthened.

2. Non-linearity in cell mechanics

Non-linearity of deformable solid bodies is defined, for instance, as a non-linear relation between
the applied force and the corresponding displacement at the point of its application. The sources of
non-linearity may be different. However, they generally belong to one of the two classes: material non-
linearity and/or geometrical non-linearity. Since cytoskeletal structural frameworks are considered to be
the main load bearing parts of living cells it is natural to confine attention to geometrical non-linearity
only. The simplest kind of geometrical non-linearity is a large deformation of a ruler. Such deformation is
typical for lengthy slender bodies. In the case of space frameworks, however, other kinds of deformation
are representative. These are non-linear deformations cauggmbetrical degeneraay by buckling
Analysis of a simple two-member assembly shown in Fig. 2 shows principal features of the general
behavior of spatial frameworks.



K.Yu. Volokh / Cytoskeletal architecture and mechanical behavior of living cells 215

Fig. 2. Regular structure.

2.1. Governing equations

Let both members of the assembly shown in Fig. 2 be identical and possess the same modulus of
elasticity E; cross-sectional ared; and lengthl. As a result of application of vertical forcE axial
member forcesV appear and the vertical displacement of the central nodelife member elongation,
equilibrium condition, and material law take the following forms accordingly:

A= \/(lc036)2+(lsin6+u)2—l, (1)
B . _ 2N(Isinf + u)

P = 2NS|n(6+ (X) = w, (2)

N = E—AA (3)

Substituting (1) and (3) into (2), one derives equilibrium equation in terms of displacements. This equa-
tion is nonlinear in displacements. However, the non-linear analysis is generally superfluous. To better
understand the role of non-linearity we expand Eqgs (1) and (2) with account of (1) and (3) in power series
aboutu:

A= u{sine + COZZH <%> - Ls?isine <%>2 + - } (4)
P= uETA{Zsir?6+SCo§Hsin6(%) + co§9(5c2052) —3) (%)ZJF} (5)

Since relative displacements are smalfi( < 1), only the first term should be held in brackets in
Egs (4) and (5) while other terms are ignored. This simplification leads to the standard linear formulation
of structural analysis:

A = usind, (6)
P = uETAz sirf @ = 2N sing. (7)

Thus displacements and elongations are of the same order of magnitydé and zero elongations
correspond to zero displacements. The linear equilibrium Eg. (7) may be interpreted as equilibrium for
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undeformedconfiguration; that is no displacements are taken into account when equilibrium is con-
sidered. Finally, the equilibrium is stable because tdregent stiffnesss positive: K = 9P/0u =
2EAsir?6/1 > 0.

2.2. Geometrical degeneracy

A subtle situation occurs wheh= 0. This specific initial configuration is shown in Fig. 3. In this case
linear Egs (6) and (7) take the following forms correspondingly:

0-u=A4, (8)
0-N=P ()]

These equations asingular because of the zero coefficients. No definite solution is available.

Considering kinematic Eq. (8) it is possible to conclude that no displacement of the order of magnitude
of the elongation is accessible to solve the equation. Another definition of singularity, more suitable for
general formulation of the next section, states availability of a nontrivial solution for the homogeneous
equation. The latter means that a displacement exists, which does not produce an elongation of the same
order of magnitude. Stability is also lost for the degenerate configuration.

The physical meaning of the mathematical singularity of linear equations is impossibility to equili-
brate the load in undeformed configuration. Deformed configuration and nonlinear equations should be
considered. Particularly, kinematic and equilibrium Eqgs (4) and (5) take the following form:

u
A— oL (10)
EAu3

We arrive at non-linearity in both equations. The equilibrium is stable for nonzero displaceifiests:
OP/0u = 3EAu? /13 > 0.

Availability of a nontrivial solution of the homogeneous equilibrium Eg. (9) means physical possibility
of pre-stressing. Indeed, let both members possess initial axial fcdsvidently, these forces are self-
equilibrated: 0 Vg = 0. In this case, the equilibrium equation takes the following form:

2Nou N (EA — No)u®

P =2(Ng+ N)sina = B

(12)

p

%‘“~7~QNN~~‘%_#,€—-§‘{
& u

Fig. 3. Singular structure: Geometric degeneracy.
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In principle, pre-stressing leads to appearance of the linear term in the equilibrium equation and affects
its solution. Can we ignore the non-linear term in (12)? The general answer is no. The reason is that
Ny < E A for the known materials. This means that both terms on the right hand side of (12) may be of
the same order of magnitude.

Stability of the initial pre-stressed configuration is examined by using tangent stiffiéss:
OP/0u = 2Ny /1, whereu = 0. Thus pre-tensioning\ > 0) stabilizes the initial configuration while
initial compression §p < 0) is unstable and can not be realized physically.

2.3. Buckling

Consider the two-member assembly with< 0 as shown in Fig. 4. This assembly behaves linearly
till a member buckles. When it occurs the force-displacement relation becomes non-linear. The latter is a
result of strongly non-linear relations between the axial member force and the axial member shortening in
the post-buckling stage. This post-buckling relation emerges from the solution of “elastica” problem. The
implicit solution of this problem expressed in terms of elliptic integrals may be found in [9]. Particular
numerical force-displacement relations may be found in [11]. These relations are highly non-linear.
3. Cytoskeletal architecture and computer modeling

3.1. Structural classification

In order to classify various pin-jointed frameworks the linearized multimember counterparts of kine-
matic and equilibrium Eqgs (6), (7) are necessary:

Bu=A, (13)
BTN =P. (14)

HereA andN aren by 1 column matrices assembled of axial elongations and forces of structural mem-
bers;u andP arem by 1 column matrices assembled of nodal displacements and external loads; and
is the linearized kinematic matrix while its transp@keis the equilibrium matrix.

p

Fig. 4. Buckling of the compressed member.
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We face the geometrical degeneracy when homogeneous kinematic Eq. (13) possesses a nontrivial
solution. The mathematical indication of existence of such nontrivial solution is a positive difference
between the number of nodal degrees of freedom (displacemetatsyl the rank: of kinematic matrixg;
this difference is calledlegree of kinematic indeterminady may be observed after some computation
that the tensegrity model given in Fig. 1 is geometrically degenerate. Indeed the number of elements is
n = 30 and the number of nodal degrees of freedom excluding rigid body motians=i86 — 6 = 30.

Rank of matrixB is r = 29 and the degree of kinematic indeterminacy- » = 1 is positive.

Structures with positive degree of kinematic indeterminacy are célleeimatically indeterminate
or underconstrainedlack of constraints). Another name of these degenerate structuirgmitesimal
mechanismsStructures with zero degree of kinematic indeterminacy are ckifexinatically determi-
nate Tensegrity structures are a sub-class of underconstrained structures where one compressed member
meets an arbitrary number of tensioned members at every node. Specific features of underconstrained
structures as well as appropriate references may be found in [12,13].

In case wheralegree of static indeterminady. — r) is positive, that is a nontrivial solution of the
homogeneous equilibrium Eq. (14) exists, the structure is caligiically indeterminatend it allows
pre-stressing. lflegree of static indetermina€y —r) is zero the structure is callestiatically determinate

Kinematically determinate structures are generally stable while kinematically indeterminate structures
are generally unstable. It may happen, however, that a structural assembly is both kinematically and
statically indeterminate. Pre-stressing may stabilize such structure. This is the case in Fig. 4.

It is important to emphasize that nothing prevents cytoskeletal frameworks from enjoying any kind of
architecture in accordance with the classification given above. The non-linear mechanical behavior may
result from geometrical degeneracy of kinematically indeterminate structures as in the case of tenseg-
rity models. The non-linearity can appear in case of kinematically determinate regular structures where
local buckling of microtubules occurs [15] or it may be a combination of geometrical degeneracy and
buckling [14].

3.2. Computer modeling

Static or quasi-static mechanical responses of cytoskeletal frameworks, where inertia effects are neg-
ligible, can only be modeled numerically. No other approach is available to analyze equilibrium of cells
because of their non-linear behavior. General equilibrium path following procedures should incorporate
possible buckling of microtubules and “switching off” of microfilaments, which do not resist compres-
sion and behave like cables. Constitutive relations for microtubules and microfilaments may be written
in the following forms accordingly:

A+A A+ A\
14 o.470935<%) - 0.530524(%)

EA w2EI
NzﬁTA‘F(l—ﬁ)l—z At A3 A A ,
4.477617(%) _ 0.65546(%> (15)
1, |f A > —Acr, 7T2EI
== i Acr == —2
0, ifA< —Ag, EAl

EA 1, ifA>0,
N=p—A (= 16
! {o, if A <O. (16)
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Here, “switch functions’3 control the stage of deformatiofg, corresponds to the buckling load; and the
polynomial in parentheses of Eq. (15) describes the post-buckling of microtubules. This approximation
allows for the post-buckling bending of a microtubule into a ring. Constitutive Eqgs (15), (16) have to be
slightly modified in presence of pre-stressing forces and further included into Newton—Raphson and arc-
length continuation algorithms allowing for turning and bifurcation points as well as tracing non-stable
equilibrium paths [11].

4. Closure

Recent experimental results emphasize the role of the cytoskeletal framework, comprising struts-
microtubules and cables-microfilaments, as the main load bearing part of the cell. Non-linear cell re-
sponse to mechanical loads may be explained by the geometrically non-linear behavior of the cytoskele-
tal framework. Two possible sources of this non-linearity are geometrical degeneracy (tensegrity models)
and/or buckling of microtubules. Though models of microstructural cytoskeletal frameworks may com-
prise a modest number of structural elements, the full-scale non-linear numerical analysis seems to be
unavoidable. Computer modeling of cytoskeletal frameworks should account for flexibility and post-
buckling of microtubules and unilateral (with no compression) behavior of microfilaments. It is believed
that development of mechanical models of living cells further hopefully coupled with biochemistry will
better approach our understanding of the mechanotransduction phenomenon.
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