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A softening hyperelastic continuum model is proposed for analysis
of brittle fracture. Isotropic material is characterized by two stan-
dard parameters—shear and bulk modulus—and an additional
parameter of the volumetric separation work. The model can be
considered as a volumetric generalization of the concept of the
cohesive surface. The meaning of the proposed constitutive
equations is clarified by the examples of simple shear and hydro-
static pressure. It is emphasized that the proposed constitutive
model includes only smooth functions and the necessary
computational techniques are those of nonlinear elasticity.
�DOI: 10.1115/1.1636795�

1 Introduction
The idea to describe fracture as a material separation across a

surface was pioneered by Barenblatt �1�. It appears by name of the
cohesive zone model �CZM� in the modern literature. The cohe-
sive zone is a surface in a bulk material where displacement dis-
continuities occur. Thus, continuum is enhanced with discontinui-
ties. The latter requires an additional constitutive description.
Equations relating normal and tangential displacement jumps
across the cohesive surfaces with the proper tractions define a
specific CZM. There is a plenty of proposals of the ‘‘cohesive’’
constitutive equations �for example, Barenbaltt �1�, Rice and
Wang �2�, Tvergaard and Hutchinson �3�, and Xu and Needleman
�4��. All these models are constructed qualitatively as follows:
tractions increase, reach a maximum, and then approach zero with
increasing separation. This scenario is in harmony with our intui-
tive understanding of the rupture process. It is qualitatively analo-
gous to atomic interactions.

Needleman �5� lifted the cohesive zone models to computa-
tional practice. Since then CZMs are used increasingly in finite
element simulations of crack-tip plasticity and creep; crazing in
polymers; adhesively bonded joints; interface cracks in bimateri-
als; delamination in composites and multilayers; fast crack propa-
gation in polymers, etc. Cohesive zones can be inside finite ele-
ments or along their boundaries �de Borst �6�, Xu and Needleman
�4�, and Belytschko et al. �7��. Crack nucleation, propagation,
branching, kinking, and arrest are a natural outcome of the com-
putations where the discontinuity surfaces are spread over the
bulk material. This is in contrast to the traditional approach of
fracture mechanics where stress analysis is separated from a de-
scription of the actual process of material failure.

The CZM approach is natural for simulation of fracture at the
material interface in composites and multilayers. It is less natural
for modeling fracture of the bulk material because it leads to the
simultaneous use of two material models for the same real mate-
rial. One model describes the bulk material, while the other model
describes the cohesive zones imbedded in the bulk material. Such
two-model approach is rather artificial physically. It seems pref-
erable to incorporate a material failure law directly in the consti-
tutive description of the bulk material. Such volumetric models of
the material failure via strain localization are usually based on
inelastic constitutive equations, including damage theories, where

the strain softening takes place �see the survey article by de Borst
�6��. An interesting hyperelastic softening model based on the
microstructural concept of the virtual internal bond has been pro-
posed recently by Gao and Klein �8�.

The computational efficiency of both volumetric and surface
fracture models can suffer from two general problems. The first
problem is mesh sensitivity. It takes place when the deformed
finite element model reaches a critical point, which is a limit and
multiple bifurcation point. This happens when a number of finite
elements in various areas of the structure reach the cohesive
strength simultaneously. The multiplicity of the bifurcation point
and, consequently, the sensitivity of computations increase with
the refinement of the mesh. The mesh refinement can be limited
by introducing the characteristic length like in Bazant and Planas
�9� or Gao and Ji �10�. This will provide the upper bound for the
bifurcation multiplicity. It does not resolve the problem of the
bifurcation multiplicity as a whole, however. A more radical way
in circumventing the mesh sensitivity issue is the introduction of
the second displacement gradients and conjugate higher order
stresses �de Borst and van der Giessen �11� and Hutchinson �12��.
This augmented initial boundary value problem can avoid the
troubling critical point of the finite element model at all. The price
for that is high because the enhanced model requires the addi-
tional boundary conditions which are not readily interpreted in
simple physical terms.

The bifurcation multiplicity and the related mesh sensitivity are
inherent in any softening material model for a specificloading of
the considered structure. Another computational problem of the
separation constitutive models is more universal. It is related to
the use of inequalities, like in damage or plasticity theories, and
vertex—hidden bifurcation—points, like in some compound elas-
tic models of debonding. These undesirable features significantly
sophisticate numerical procedures and require informal experience
from their user.

We aim at formulating a volumetric material failure model,
which is both analytically and computationally simpler than the
existing fracture models. For this purpose a nonlinear softening
hyperelastic continuum model is considered. Isotropic material is
characterized by two standard parameters—shear and bulk
modulus—and an additional parameter of the volumetric separa-
tion work. This model can be considered as a volumetric gener-
alization of the concept of the cohesive surface. The meaning of
the proposed constitutive equations is clarified by the examples of
simple shear and hydrostatic pressure. It is emphasized that the
proposed constitutive model includes only smooth functions and
the necessary computational techniques are those of nonlinear
elasticity.

2 Constitutive Equations
We set the strain energy per unit volume in the form

W����� 1�3�K

�
� � exp� �3�K

�
��

G

�
ei j ei j � ,

(2.1)

where the standard volumetric/deviatoric decomposition of the
strain tensor is used,

��� i i /3, (2.2)

ei j �� i j ��� i j . (2.3)

Coefficients K and G are the usual bulk and shear modulus re-
spectively, while � is a new constant of the isotropic brittle solid.
This is the volumetric separation work. Its dimension is work per
unit volume, i.e., it is the same as the dimension of K and G and
the dimension of stress. It is worth emphasizing that the intro-
duced volumetric separation work is different from the separation
work traditionally used in the cohesive surface approach to frac-
ture. The dimension of the latter is work per unit area.

For a hyperelastic material stresses are defined as follows:
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All entries on the right-hand side of this equation are readily com-
puted accounting for the strain energy expression:
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By using the volumetric/deviatoric decomposition of the stress
tensor,
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we have

si j �
	W

	ei j
�2Gei j � 1�3�K

�
� � exp� �3�K

�
��

G

�
emnemn� ,

(2.10)

��
	W

3	�
�3K� exp� �3�K

�
��

G

�
emnemn� . (2.11)

Linearized Eqs. �2.10� and �2.11� present the classical Hooke’s
law.

In order to justify and clarify the specific choice of the strain
energy we consider two limit cases in the following two sections.

3 Simple Shear
Assume that only the following strain and stress components

are nonzero:


�s12�s21 , ��e12�e21 . (3.1)

In this case the constitutive law �2.10� takes the form


�2G� exp� �
2G

�
�2� . (3.2)

The shape of this curve appears in Fig. 1. Qualitatively, this means
that the magnitude of the shear traction increases linearly with the
shear strain, reaches a maximum, and then approaches zero with
increasing separation. It does not matter what the sign of the trac-
tion is.

The local maximum of the curve is at point

���� �

4G
. (3.3)

The corresponding absolute magnitude of the maximum traction is


max��G�exp��1/2. (3.4)

Assume that for the given material the maximum traction is
known:


max�G/100. (3.5)

Then we have

��
G
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Substituting Eq. �3.6� in Eq. �3.2� and normalizing the latter with
respect to 
max we obtain





max
�200� exp��2•104 exp��1 ��2. (3.7)

The graph of this function is shown in Fig. 1.

4 Hydrostatic Pressure
Assume that the deformation under a uniform hydrostatic pres-

sure is purely volumetric

� i j ��� i j , � i j ��� i j . (4.1)

In this case the constitutive law �2.11� takes the form

��3K� exp� �3�K

�
�� . (4.2)

The shape of this curve appears in Fig. 2. Qualitatively, it can be
interpreted as the linear increase of the magnitude of the tension
pressure with the increase of the material volume at the point, it
reaches a maximum, and then approaches zero with increasing
separation. The latter is nothing but the void nucleation. For the
compression pressure the situation is different, however. There is
no separation!

Assume that the material is defined by Eq. �3.5� and K/G�2,
then Eq. �4.2� normalized with respect to 
max takes the following
form:

�


max
�600� exp��300�2 exp��1 ��. (4.3)

The graph of this function is shown in Fig. 2.

Fig. 1 Simple shear. Normalized traction „vertical axis… versus
shear deformation „horizontal axis… as defined by Eq. „3.7…. Fig. 2 Hydrostatic pressure. Normalized pressure „vertical

axis… versus volumetric deformation „horizontal axis… as de-
fined by Eq. „4.3….
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5 Conclusions
A novel constitutive model of an isotropic brittle solid has been

proposed. The exponential hyperelastic constitutive law describes
this model. The material bulk modulus and the shear modulus are
completed with a new constant—the volumetric separation work.
The proposed constitutive equations are cohesive, that is they
naturally allow for the material separation–strain localization.
These equations may be interpreted on the basis of the simple
shear and hydrostatic pressure examples. The distortional �devia-
toric� deformation at the given point exhibits behavior analogous
to the simple shear, which graph is shown in Fig. 1. The dilata-
tional �volumetric� deformation at the given point exhibits behav-
ior analogous to the hydrostatic pressure, which graph is shown in
Fig. 2.

Adding the momentum conservation laws and the proper
boundary and initial conditions to the constitutive equations de-
scribed in Section 2 of our work, it is possible to set the initial
boundary value problem of nonlinear elasticity. The latter means
that the standard and well established numerical procedures are
available. When a brittle solid is loaded quasi-statically then the
crack nucleation means passing a limit point in the state space of
the discretized IBVP. Well-developed techniques of the arc-length
continuation can be used �Crisfield �13� and Riks �14��. The loss
of the positive definiteness of the tangent stiffness matrix �the
Jacobian of the total discrete energy� means static instability. If
the equilibrium path does not become stable again, then the dy-
namic crack propagation takes place and dynamic integration pro-
cedures should be used �Belytschko et al. �15� and Xu and
Needleman �4��. It is worth emphasizing that only smooth func-
tions are used in the constitutive equations. The latter allows for
circumventing the problems of inequalities and vertex points,
which are typical of most separation models.
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It is shown that, in certain regions of parameter space, travelling
wave solutions in rotating shells containing co-rotating inviscid
fluid become indeterminate. This may render the determination of
the flutter speed impossible, or the solution nonphysical.
�DOI: 10.1115/1.1636794�

Introduction
The dynamics and stability of a shell containing fluid in

matched �solid body� rotation and also flowing axially was exam-
ined by Lai and Chow �1�, inspired by fluid-structure interactions
in ‘‘the thrust chamber and the pipelines in the liquid propellant
feed system of a spinning rocket.’’ In contrast to Srinivasan �2�,
Dowell et al. �3� and related studies which are connected to a real
system and need to face the complications attendant thereto, the
problem studied by Lai and Chow is very idealized. A closely
similar study was made by Chen and Bert �4� in which the shell is
stationary but the fluid is rotating as in the foregoing; thus, the
physical system is closer to engineering applications, but the use
of inviscid flow theory is less justifiable—see Paı̈doussis �5� for a
review.

This note presents new results which show that some of those
by Lai and Chow and Bert and Chen are questionable.

Equations of Motion and Analysis
Consider both the shell and the fluid to be rotating with angular

velocity �, and the fluid to have an axial velocity U , relative to
the shell. The shell is assumed to be very thin and its motions to
be governed by the Donnell equations, �1�, which in operator form
in terms of coordinates rotating with the shell are

LD� u
v
w
� ��� 	2u/	t2

	2v/	t2��2v�2��	w/	t �
�	2w/	t2��2w�2��	v/	t ��p/�sh

� , (1)

where u, v , and w are the axial, circumferential, and radial dis-
placements of the shell, and the other symbols are as in standard
thin-shell theory. The fluid velocities, vx , v r , and v� , are related
to the pressure p by

Dvx

Dt
��

1

�

	p

	x
,
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r
�2�v���2r ��
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