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Growth, Anisotropy, and Residual Stresses in Arteries

K. Y. Volokh 1 2 and Y. Lev 3

Abstract: A simple phenomenological theory of tissue
growth is used in order to demonstrate that volumetric
growth combined with material anisotropy can lead to
accumulation of residual stresses in arteries. The theory
is applied to growth of a cylindrical blood vessel with the
anisotropy moduli derived from experiments. It is shown
that bending resultants are developed in the ring cross-
section of the artery. These resultants may cause the ring
opening or closing after cutting the artery in vitro as it is
observed in experiments. It is emphasized that the mode
of the arterial ring opening is affected by the parameters
of anisotropy.

keyword: Growth; residual stress; artery; continuum
mechanics; nonlinear elasticity; anisotropy

1 1. Introduction

Rachev and Greenwald (2003) argue that the first no-
tion of the artery ring opening after a radial cut can be
traced to the PhD Thesis by Bergel of the University
of London in 1960. Journal publications count the ring
opening phenomenon since the reports by Chuong and
Fung (1986) and Vaishnav and Vossoughi (1987). In any
event, the opening (or closing) of the ring implies reliev-
ing the residual stresses, which exist in arteries. Chuong
and Fung (1986) assumed that the radial cut entirely re-
lieves the residual stresses. They introduced the con-
cept of the zero-stress state (ZSS) with reference to an
opened artery segment. This concept was lifted to gen-
erality by Rodriguez et al. (1994) who proposed a ge-
ometrical scheme of growth of living bodies shown in
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Fig.1. There are three states of the growing body in
the figure: the original ZSS B(t0); the grown ZSS B(t1);
and the observed grown state B′(t1) with residual stresses
◦
T. The growth/deformation gradient is decomposed into
pure growth Fg and elastic deformation Fe tensors ac-
cordingly. The elastic deformation is necessary in order
to provide the compatibility of the grown incompatible
body configuration: Feg = FeFg. During the last decade
a number of growth theories based on the above multi-
plicative decomposition of the growth/deformation gra-
dient was proposed: Taber and Eggers (1996); Taber and
Humphrey (2001); Van Dyke and Hoger (2002), to list a
few. These theories were used for explaining the artery
cutting experiments in vitro. In spite of the interesting
insights in mechanical behavior of arteries provided by
the mentioned theories and experiments, the described
approach is not entirely free of controversy. Particularly,
both the idea of ZSS and related experiments suffer from
the following two drawbacks.

(a) The multiplicative decomposition of the deforma-
tion gradient mentioned above is analogous to the mul-
tiplicative decomposition of the deformation gradient in
the large strain plasticity: Fep = FeFp, where Fp corre-
sponds to plastic deformation. This decomposition fol-
lows Lee’s idea of introducing an intermediate stress-free
configuration of the purely plastic deformation. Gener-
ally, the field of purely plastic deformation is not geo-
metrically compatible, i.e., material particles undergoing
purely plastic deformation separately can not be assem-
bled into a continuous body and the stress-free configu-
ration is possible only pointwisely. The same is true for
deformation of pure growth. It is not compatible and,
generally, configuration B(t1)in Fig.1 is not observable
in experiments because it requires an infinite number of
infinitesimal cuts. We mention a few experimental at-
tempts to find an observable ZSS. The first experiments
by Vaishnav and Vossoughi (1987) and Chuong and Fung
(1986) with the radial cut of an arterial ring were thought
to be entirely stress-relieving and the opened artery ring
was considered fully stress-free. However, Vossoughi et
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al. (1993) proceeded with the midline cut of a radially
cut arterial ring. They found further changes in the shape
of two circumferentially-cut halves of the segment. This
meant that not all residual stresses were relieved after the
single radial cut as was thought for some ten years. Since
this work the artery-cutting experiments have flourished
and the number of the pieces cut from the artery was
more than 30 in some experiments (Matsumoto et al.,
1995). This is not infinity yet. Recently, Greenwald et al.
(1997) reported that ”by stepwise removal of the inner or
outer layers of the . . . artery by machining frozen speci-
mens, we have shown that the true stress-free state can
only be reached by partial destruction of the vessel wall
and that different layers of the wall may each have dif-
ferent zero-stress state”. Despite the authors’ optimism,
the history teaches us that the ”true stress-free state” may
not be final. The fact that the ZSS is hardly attainable in
experiments potentially prevents from the theory calibra-
tion, which is based on the multiplicative decomposition
of the deformation gradient.

Figure 1 : Rodriguez-Hoger-McCulloch scheme of tis-
sue growth.

(b) Considerations above were devoted to the problems
of reaching (or defining) the desirable zero-stress states
of an arterial ring and calibrating growth theories based
on the multiplicative decomposition of the deformation
gradient. There is, however, another concern. Let us as-
sume, for example, that after a series of very successful
cuts we get a number of the arterial pieces, which are
hopefully stress-free. Can we gain any information about
the residual stresses in the artery from such an experi-
ment? The answer is no. The problem is that every cut
leads to a redistribution of residual stresses. This redistri-
bution of stresses starts from the very first cut when a ring
is taken from the artery. Indeed, such a ring is approxi-
mately under the plane strain state before the cut. How-
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Figure 2 : Toy-tissue model: regular (top), point mass
supply (bottom).

ever, after the cut the state of the ring is closer to the plane
stress. Thus, extracting the ring from the artery we cause
a new distribution of stresses in it. This same happens
after all subsequent cuts. Actually, every subsequent cut
relieves stresses in the previous configuration and not in
the initial one. In order to illustrate this point we sug-
gest the following experiment. Let two neighbor rings be
cut from an artery in such place along the artery that it
is reasonable to assume that the residual stresses are the
same in both rings. These rings are further cut radially
and circumferentially, i.e. along the midline. It is cru-
cial, however, that the order of cutting is different for the
different rings. One ring should be cut first radially and
then circumferentially, while the other ring should be cut
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first circumferentially and then the two obtained thinner
rings should be cut radially separately. Both initial rings
are finally split into two open segments. This is done,
however, in the different sequences of cuts. The final
shape of the segments should be different in both cases
because the order of cutting does matter for large defor-
mations where the superposition principle is not valid.
Indeed, the cutting is equivalent to applying tractions on
the cut surfaces to make these surfaces traction-free. In
the case of large deformations, the order of application
of the external forces is crucial. The difference in the ex-
perimentally cut segments should be visible if the resid-
ual radial stresses are comparable in the magnitude with
the residual circumferential stresses. The expected re-
sults of the described experiment could clearly illustrate
insufficiency of the artery-cutting experiments for esti-
mating the magnitudes of the residual stresses. It seems
that the artery-cutting experiments can only be useful for
the qualitative comparison purposes and not for the quan-
titative estimates of the residual stresses: the more artery
is cut the less information can be gained about its residual
stresses.

Guided by the difficulties of the traditional approach
based on the ZSS concept, multiplicative decomposition
of the deformation gradient, and the artery-cutting ex-
periments, we look for alternative ways of attacking the
problem of residual stresses. In the present work, we
suggest a qualitative explanation of the residual stresses
in arteries using a simple phenomenological framework
for modeling tissue growth where material anisotropy
is taken into account. This framework is not based on
such concepts as ZSS and multiplicative decomposition
of the deformation gradient and it is rooted in the work
by Cowin and Hegedus (1976) on adaptive elasticity. We
modify the Cowin-Hegedus theory by (a) including mass
flux in the field equations; (b) introducing constitutive
equations of ’thermoelastic’ type; and (c) extending the
theory to large strains. We apply this modified frame-
work to the problem of growth of anisotropic cylindrical
blood vessels. It is assumed that the material supply dur-
ing growth is uniform and volumetric. Elastic properties
of the anisotropic arterial wall are taken from the pub-
lished experimental data.

2 Methods

2.1 Governing equations

A reasonable insight in the tissue growth mechanism can
be gained by considering a very simple toy-tissue model
(Fig.2). The regular initial tissue can be seen on the top
of the figure. This is a collection of the regularly packed
balls. The balls are interpreted as the tissue elementary
components – cells, molecules of the extracellular ma-
trix, and etc. The balls are arranged in a regular network
for the sake of simplicity and clarity. They can be or-
ganized more chaotically – this will not affect the sub-
sequent qualitative analysis. Let us assume that a new
material, i.e. a number of new balls, is supplied as it is
shown on the bottom of Fig.2. This supply is consid-
ered as a result of injection: the tube with the new ma-
terial is a syringe. Usually, the new material is created
in real tissues in a more complicated manner following a
chain of the biochemical transformations. However, the
finally produced new material still appears from the ex-
isting cells pointwisely. Thus, the injection of the balls is
a quite reasonable model of tissue growth. Such model
can be constructed physically, of course. It seems that
the latter is not necessary and the toy-tissue model can
be easily imagined. The result of such thought- experi-
ment is shadowed in the figure and it can be described as
follows:

(a) The number of the balls in the toy-tissue increases
with the supply of the new ones.

(b) The new balls are concentrated at the edge of the
tube and they do not spread uniformly over the tis-
sue.

(c) The new balls cannot be accommodated at the point
of their supply – the edge of the tube: they tend to
spread over the area in the vicinity of the edge and
the packing of the balls gets denser around the edge
of the tube.

(d) The more balls are injected the less room remains
for the new ones.

(e) The new balls press the old ones.

(f) The new balls tend to expand the area occupied
by the tissue when the overall ball rearrangement
reaches the tissue surface.

These six qualitative features of the toy-tissue micro-
scopic behavior under the material supply can be trans-
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lated into the language of the macroscopic theory accord-
ingly:

(A) Mass of the tissue grows.

(B) Mass growth is not uniform – the mass density
changes from one point to another.

(C) There is diffusion of mass.

(D) The diffusion is restricted by the existing tissue
structure and its mass density: the denser is the tis-
sue the less material it can accommodate.

(E) Growth is accompanied by stressing.

(F) The expansion of the tissue is volumetric – it is anal-
ogous to the thermal expansion of structural materi-
als as steel, for example.

Three first features (A, B, and C) prompt the form of the
mass balance equation. Indeed, the mass change means
the failure of the mass conservation law, which covers
most theories of Mechanics. The mass supply in the liv-
ing tissues is possible through the biochemical interac-
tion of the tissue with its environment. This means that
the living tissue is an open system. The fact that non-
uniform mass growth is related with the diffusion of mass
is very important. It means that the mass balance law
should include both the volumetric mass source and the
surface mass flux. The latter is missed in most existing
theories of growth. The absence of mass diffusion in the
theory leads to a nonphysical conclusion that the density
of the tissue will change only at the point of the mate-
rial supply, i.e. pointwisely. In order to accommodate
the non-uniform mass supply the mass diffusion should
take place. Exceptions to this rule can occur, for exam-
ple, when material supply is uniform and the tissue is not
constrained geometrically.

The rest features (D, E, and F) motivate the constitutive
law. They suggest that the stress-strain relations should
be analogous to thermoelasticty where the role of the
temperature is played by the mass density: the increase
of the mass density results in the volume expansion of the
tissue. On the other hand, the tissue should prevent the
additional mass supply: the denser tissue the less is the
new mass accommodation. Both these tendencies will be
presented in the following equations of the growth the-
ory. It is worth noting, however, that not all features
of growth can be identified within the toy-tissue model.
For example, the cells respond the applied mechanical
stimuli biochemically – cellular mechanotransduction –

by changing the program of the creation of new mate-
rial. Thus, there is a competition between the stresses
and supply of new material. This process is called adap-
tive growth. Under some circumstances, adaptive growth
can be essential. We will not consider this issue in the
present work restricting consideration by the purely ge-
netic (programmed) growth.

Guided by the above reasoning the mass and momen-
tum balance laws and initial/boundary conditions can be
presented as follows accordingly (Volokh, 2003; 2004a;
2004b):

∂ρR

∂t
= DivψψψR +ξR, (1)

DivP+ρRb = 0, (2)

ρR|t=0 = ρ∗
0 in Ω, (3){

ρR = ρ∗ on ∂Ωρ
φR = φ∗ on ∂Ωφ

, (4)

{
χχχ = χχχ∗ on ∂Ωχχχ

t = t∗ on ∂Ωt
, (5)

where subscript “R” designates the referential (La-
grangean) description of the body Ω; ρR is mass density;
ψψψR is a vector of mass flux; ξR is volumetric mass sup-
ply; P is the 1st Piola-Kirchhoff stress tensor; b is the
body force per unit mass; χχχ(XXX) is a current placement of
the particle X; φR = ψψψR ·NNN is mass supply through the
surface with the outward unit normal N in the reference
configuration; t is a surface traction; and the quantities
with the asterisk are given.

By introducing the deformation gradient FFF = Gradχχχ(XXX)
it is possible to write the following useful relationships:

t = PN
dAR

dA
, (6)

σσσ = J−1PFT . (7)

Here A designates the surface area; σσσ is the “true”
Cauchy stress tensor; J = detF.

Based on the thermoelastic analogy discussed above we
introduce the constitutive equations in the following form

P = F
∂W
∂E

−Fηηη(ρR−ρ∗
0) (8)

ψψψR = βGrad(ρR−ρ∗
0 ), (9)
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ξR = ω+ f [F,P]− γ(ρR−ρ∗
0), (10)

where E = (FT F−1)/2 is the Green strain tensor; and 1
is the identity tensor.

Material growth parameters are introduced in the consti-
tutive equations as follows: β > 0 is a coefficient of mass
conductivity of a tissue, which is analogous to the coef-
ficient of thermal conductivity of a solid, and it counts
for how much the mass supply changes for the spatially
varying increment of mass density; ω > 0 is the genetic
mass supply, which is determined by the genetically con-
trolled production of new cells and the extracellular ma-
trix proteins by the existing cells; f is the epigenetic mass
supply, which should depend on stress and/or strain mea-
sures (its correct expression is a key problem when tissue
remodeling is considered); γ > 0 is a coefficient of tissue
resistance, which defines the resistance of the tissue to
accommodate new mass for the increasing mass density;
ηηη is a tensor of material growth parameters which is de-
fined as follows in the case of material orthotropy⎧⎨
⎩

η11 = c(c1α1 +c4α2 +c6α3)
η22 = c(c4α1 +c2α2 +c5α3)
η33 = c(c6α1 +c5α2 +c3α3)

ηIJ = 0, I �= J (11)

where the coefficients of growth expansion αi > 0 de-
fine how much the relative volume changes for the given
increment of mass density. These coefficients are analo-
gous to the coefficients of thermal expansion in the clas-
sical thermoelasticity. In order to provide the analogy
with thermoelasticity at small strains the elastic param-
eters were chosen in accordance with the Fung pseudo-
strain energy expression

W =
1
2

ceQ,

Q = c1E2
11 +c2E2

22 +c3E2
33 +2c4E11E22

+2c5E33E22 +2c6E11E33 +c7(E2
12 +E2

21)

+c8(E2
23 +E2

32)+c9(E2
13 +E2

31)

(12)

where c is the only dimensional elastic parameter while
ci are dimensionless.

It is worth emphasizing that the volumetric mass sup-
ply should include the epigenetic term, f , on the right-
hand side of Eq.(10) when the tissue adaptation is consid-
ered. Traditionally, growth is related to a merely adaptive
process: ”stress-modulated growth”, ”stress-dependent
growth”. The latter means that tissue growth is a result

of the applied mechanical stimuli. Particularly, the in-
creasing blood pressure (or/and the blood flow rate) is
considered to stimulate artery growth. There is no doubt
that tissue adaptation takes place. Such adaptation can
be the main factor when tissue defects and healing are
considered. Whether this adaptation is the main scenario
of artery growth from embryo to maturity? There is no
evidence of that. The argument that the blood flow is
the main mechanical stimulus for tissue growth is ques-
tionable. Indeed, blood flow itself is a result of the heart
and arteries’ action. The increase of the rate and pres-
sure of blood flow are themselves a result of the matur-
ing heart and arteries. It is difficult to imagine that em-
bryonic heart and arteries can produce the same blood
flow as the mature ones. The influence of blood flow
on the development of cardiovascular tissues is not one-
directional: both blood and tissues affect each other. The
latter means that the stimulus for tissue growth is not
purely mechanical. Without some kind of genetic reg-
ulation, the organs were growing infinitely. We believe
that genes significantly affect tissue growth from embryo
to maturity: growth is not a purely adaptive process. In
the subsequent consideration we ignore the tissue adapta-
tion as subsidiary ( f =0) and we consider free volumetric
growth caused by the genetic factors primarily. This al-
lows for uncoupling mass and momentum balance equa-
tions. Indeed, substituting Eqs.(9) and (10) in Eq.(1) and
assuming β =constant we have

∂ρR

∂t
= βDivGrad(ρR−ρ∗

0) − γ(ρR−ρ∗
0) +ω. (13)

This equation is completed with the initial and boundary
conditions (3), (4). Substituting solution of Eq.(13) in
Eqs.(8) and (2) and adding boundary conditions (5) it is
possible to find the deformation and corresponding stress
fields. The time-dependence of the mass density evolu-
tion is important when a transient process is considered.
However, we will consider the steady (quasi-equilibrium)
state when the time derivative can be ignored on the left-
hand side of Eq.(13).

2.2 Uniform free radial growth of an artery

We consider artery growth as a radial growth of an infi-
nite cylinder under the plane strain conditions where all
variables depend on the radial coordinate only. In this
case, the deformation gradient and the Green strain ten-
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sors take the following forms accordingly4

F =
∂r
∂R

kr ⊗KR +
r
R

kθ ⊗KΘ +kz ⊗KZ , (14)

E =
1
2

(
FT F−1

)
=

1
2

(
∂r
∂R

∂r
∂R

−1

)
KR ⊗KR

+
1
2

(
r2

R2 −1

)
KΘ ⊗KΘ

(15)

Here {KR, KΘ, KZ} and {kr, kθ, kz} form the orthonor-
mal bases in cylindrical coordinates at the reference and
current configurations accordingly; r is the current place-
ment of the particle, which occupied position R at the
reference configuration.

In this case, we have

∂W
∂E

−ηηηρ =
(
ceQ (c1ERR +c4EΘΘ)−η11ρ

)
KR ⊗KR

+
(
ceQ (c2EΘΘ +c4ERR)−η22ρ

)
KΘ ⊗KΘ

+
(
ceQ (c5EΘΘ +c6ERR)−η33ρ

)
KZ ⊗KZ

(16)

and

F
∂W
∂E

−FFFηηηρ

=
∂r
∂R

(
ceQ (c1ERR +c4EΘΘ)−η11ρ

)
kr ⊗KR

+
r
R

(
ceQ (c2EΘΘ +c4ERR)−η22ρ

)
kθ ⊗KΘ

+
(
ceQ (c5EΘΘ +c6ERR)−η33ρ

)
kz ⊗KZ

(17)

where ρ ≡ ρR −ρ∗
0.

Assume also that new material is supplied uniformly. In
this case,

ρ = ω/γ = constant (18)

is a solution of Eq.(13), where ∂ρR/∂t = 0, and φR =
βN ·Gradρ = 0 on the boundary.

Eqs. (11), (17), and (18) define the right-hand side of
Eq.(8). The equilibrium equation (2) without the body
forces takes the form (see Appendix)

DivP =
(

∂PrR

∂R
+

PrR −PθΘ

R

)
kr = 0, (19)

4 KR = (cosΘ,sinΘ,0)T ; KΘ = (−sinΘ,cosΘ,0)T ; KZ =
(0,0,1)T and KM ⊗KN = KMKT

N ; kr = (cosθ,sin θ,0)T ; kθ =
(−sinθ,cosθ,0)T ; kz = (0,0,1)T and km ⊗kn = kmkT

n

where all components have been defined already.

Summarizing the equations in the scalar form, we have
the following system

∂PrR

∂R
+

PrR −PθΘ

R
= 0, (20)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

PrR = c
∂r
∂R

(
eQ(c1ERR +c4EΘΘ)

− (c1 +c4 +c6)αω/γ
)

PθΘ = c
r
R

(
eQ(c2EΘΘ +c4ERR)

− (c2 +c4 +c5)αω/γ
)

, (21)

α = α1 = α2 = α3

Q = c1E2
RR +c2E2

ΘΘ +2c4ERREΘΘ, (22)

⎧⎪⎪⎨
⎪⎪⎩

ERR =
1
2

(
∂r
∂R

∂r
∂R

−1

)

EΘΘ =
1
2

(
r2

R2 −1

) , (23)

⎧⎪⎨
⎪⎩

σrr = J−1 ∂r
∂R

PrR

σθθ = J−1 r
R

PθΘ

, (24)

J =
r
R

∂r
∂R

, (25)

{
σrr(R = 1) = 0

σrr(R = 1.3) = 0
. (26)

After substituting Eqs. (21)-(25) in the equilibrium equa-
tion (20) and boundary conditions (26), we have a two-
point boundary value problem in terms of r(R).

3 Results

The two-point BVP derived in the previous section was
solved for a number of varying elastic and growth pa-
rameters. Solution was obtained by using the shooting
method when the initial value problem (IVP) was solved
iteratively until fitting the BVP solution. We used Math-
ematica IVP solver ‘NDSolve’.

Radial displacements, radial and circumferential Cauchy
stresses (Figs.3, 4) were computed for two sets of mate-
rial parameters:
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(1) Chuong and Fung (1986)

c1 = 0.0499; c2 = 1.0672;

c3 = 0.4775; c4 = 0.0042;

c5 = 0.0903; c6 = 0.0585;

c7 = c8 = c9 = 0,

(27)

(2) Chuong and Fung (1984)

c1 = 1.744; c2 = 0.619;

c3 = 0.0405; c4 = 0.004;

c5 = 0.0667; c6 = 0.0019;

c7 = c8 = c9 = 0.

(28)

Every set of material parameters was considered with
four growth parameters varying by 4 orders of magni-
tude: αω/γ = 0.001;0.01;0.1;1.

Resulting displacements vary almost linearly along the
radius (Figs.3a, 4a). Absolute values of the radial stresses
increase towards the mid-surface of the wall (Figs.3b,
4b), while the absolute values of the circumferential
stresses approach zero at the mid-surface and they vary
almost linearly along the radius (Fig.3c, 4c). It should
be noted that circumferential stresses are larger than the
radial stresses by an order of magnitude in both cases of
material parameters. It is interesting that the directions
of the stresses are different for the two sets of material
parameters. This is, particularly, critical for the circum-
ferential stresses because it means that different bending
resultants appear in the ring. If the ring is cut radially,
then it opens as shown in Fig.5a (right) for the first set
of elastic parameters. A ring with the second set of ma-
terial parameters behaves differently: it closes (Fig.5b)
after the cut, i.e. its edges overlap.

It is remarkable that the results of the computation are
qualitatively similar for the essentially varying growth
parameter even though the deformation is large – up to
50%.

4 Discussion

A simple phenomenological theory of tissue growth has
been used for explaining the phenomenon of the residual
stresses in arteries qualitatively. Material anisotropy was
included in the theoretical setting in accordance with the
experimental data. The theory was applied to the prob-
lem of free and uniform radial growth of a cylindrical

blood vessel. Displacement and stress fields were com-
puted for the experimentally obtained values of the elas-
ticity parameters. Computations give evidence of the ap-
pearance of the circumferential stresses resulting in the
bending moments, which provide the compatibility of the
grown arterial cross-section. The radial cut of the arterial
ring will lead to the disappearance of the bending mo-
ments and opening or closing of the ring as it is observed
in experiments.

It is important that the circumferential stresses, which are
accumulated into the residual stresses during the long-
term growth, appear due to anisotropy. These stresses
would not appear in the ’isotropic artery’ (Volokh,
2004b). The latter suggests the interpretation of the arte-
rial anisotropy as a constraint imposed on the volumetric
growth. It is interesting that this conclusion is novel as
compared to the traditional point of view that the mate-
rial inhomogeneity and differential growth are the main
sources of the residual stresses (Fung, 1991; 1993). It is
very likely that the material anisotropy is a complemen-
tary factor to the material inhomogeneity and differential
growth in causing the residual stresses. In principle, the
considered theory allows for including the material inho-
mogeneity and differential growth in analysis. Unfortu-
nately, there is no clear enough experimental data to do
so yet.

It is equally important that depending on the mutual ra-
tio of the anisotropic elastic parameters various scenar-
ios of the ring opening in the artery-cutting experiments
are available. The ring can open up after cutting – re-
sulting in positive opening angle; or the ring can close
after the radial cut – resulting in negative opening an-
gle. Both these scenarios are in excellent qualitative
agreement with the experimental data (Fung, 1984; 1993;
Rachev and Greenwald, 2003; Saini et al., 1995; Vaish-
nav and Vossoughi, 1987).

It should not be missed that also radial stresses appear in
the considered arterial growth. The magnitude of these
stresses is of lower order as compared to circumferential
stresses. Nonetheless, the radial stresses can play a role
in forming the global residual stresses. Particularly, the
radial stresses are a good candidate for the explanation
of Vossoughi et al. (1993) experiments. These authors
cut the opened artery ring along the midline and found
that the inside segment opened more while the outside
segment closed more. Probably, this happened because
the radial residual stresses had been relieved partially.
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Figure 3 : (a) Normalized radial displacements (r−R)/1 (vertical axis) for the dimensionless growth parameter
αω/γ equal to 0.001; 0.01; 0.1; 1.0 (from the top to the bottom accordingly) for free volumetric growth of the
cylinder: the first set of material parameters Eq.(27). (b) Normalized radial stress σrr/c (vertical axis) for the
dimensionless growth parameter αω/γ equal to 0.001; 0.01; 0.1; 1.0 (from the top to the bottom accordingly) for
free volumetric growth of the cylinder: the first set of material parameters Eq.(27).(c) Normalized circumferential
stress σθθ/c (vertical axis) for the dimensionless growth parameter αω/γ equal to 0.001; 0.01; 0.1; 1.0 (from the top
to the bottom accordingly) for free volumetric growth of the cylinder: the first set of material parameters Eq.(27).

Comparing the theory considered in the present work to
other theories of tissue growth we should emphasize that
our purpose was to develop a tractable theory, i.e. a the-
ory, which can guide an experiment and can be calibrated
(or falsified!) by it. Indeed, all variables of our theory –
placements and mass densities – are tractable and mea-
surable. This is not the case of the theories based on
the multiplicative decomposition of the deformation gra-
dient. Both cofactors of this multiplicative decomposi-
tion as well as the concept of zero-stress state are hid-
den, i.e. unobservable and immeasurable, variables. Al-
though we are far from stating that the theories includ-
ing hidden variables are useless, some balance between
this sort of theories and the theories without hidden vari-
ables is desirable. Another important feature of the the-
ory presented in this work as compared to others is the
use of a simple microscopic toy-tissue model. The fact
that growth is accompanied by stressing immediately fol-
lows from this model. In our opinion, residual stresses

exist in both hard and soft living tissues. However, the
magnitude of the residual stresses in hard tissues is small
as compared to their elastic parameters, while the mag-
nitudes of the residual stresses and elastic parameters of
soft tissues are comparable. The latter is the reason for
the remarkable observations of the artery ring opening in
experiments.

Finally, it is worth noting that the process of tissue
growth is exceptionally complex and one can hardly ex-
pect creating a universal theory of growth covering the
whole lifetime of a tissue. It seems that such ambitious
project of ’great unification’ is not a realistic one because
not only the growth regime but also elastic properties of
the tissue are exposed to essential alterations with time.
Nonetheless, the attempts to find some rigid core of the-
oretical description of tissue growth may not be hope-
less. Such theory could play a role analogous to the role
of the linear elasticity theory for structural steels. The
latter exhibit the whole range of rheological behavior in-



36 Copyright c© 2005 Tech Science Press MCB, vol.2, no.1, pp.27-40, 2005

1 1.05 1.1 1.15 1.2 1.25 1.3

0.00115

0.0012

0.00125

0.0013

0.00135

0.0014

1 1.05 1.1 1.15 1.2 1.25 1.3

0.0115

0.012

0.0125

0.013

0.0135

0.014

1 1.05 1.1 1.15 1.2 1.25 1.3

0.105

0.11

0.115

0.12

0.125

0.13

1 1.05 1.1 1.15 1.2 1.25 1.3

0.48

0.5

0.52

0.54

0.56

0.58

(a)

 
1 1.05 1.1 1.15 1.2 1.25 1.3

0 
1 × 10 -7 
2 × 10 -7 
3 × 10 -7 
4 × 10 -7 
5 × 10 -7 

 

 

 
1 1.05 1.1 1.15 1.2 1.25 1.3 

0

1×10-6

2×10-6

3×10
-6

4 10-6

5× 10-6

× 

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.00001

0.00002

0.00003

0.00004

0.00005

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

(b)



Growth, Anisotropy, and Residual Stresses in Arteries 37

1 1.05 1.1 1.15 1.2 1.25 1.3

-7.5×10-6

-5×10-6

-2.5×10-6

0

2.5×10
-6

5×10-6

7.5×10-6

1 1.05 1.1 1.15 1.2 1.25 1.3

-0.000075

-0.00005

-0.000025

0

0.000025

0.00005

0.000075

0.0001

1 1.05 1.1 1.15 1.2 1.25 1.3
-0.001

-0.0005

0

0.0005

0.001

1 1.05 1.1 1.15 1.2 1.25 1.3

-0.02

-0.01

0

0.01

0.02

(c)

Figure 4 : (a) Normalized radial displacements (r−R)/1 (vertical axis) for the dimensionless growth param-
eter αω/γ equal to 0.001; 0.01; 0.1; 1.0 (from the top to the bottom accordingly) for free volumetric growth
of the cylinder: the first set of material parameters Eq.(28).(b) Normalized radial stress σrr/c (vertical axis)
for the dimensionless growth parameter αω/γ equal to 0.001; 0.01; 0.1; 1.0 (from the top to the bottom
accordingly) for free volumetric growth of the cylinder: the first set of material parameters Eq.(28).(c) Nor-
malized circumferential stress σθθ/c (vertical axis) for the dimensionless growth parameter αω/γ equal to
0.001; 0.01; 0.1; 1.0 (from the top to the bottom accordingly) for free volumetric growth of the cylinder: the
first set of material parameters Eq.(28).

Figure 5 : (a) Bending moment (left) provides
compatibility of the ring, which opens when cut
(right). (b) Bending moment (left) provides com-
patibility of the ring, which closes when cut
(right).
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cluding plastic flow, hardening, viscosity, fatigue and etc.
However, the linear elasticity is the core of the success-
ful approach to describing mechanics of structural steels.
Probably, something analogous can be also developed for
describing mechanics of tissue growth.
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Appendix

Lagrangean scalar equilibrium equations in cylindrical
coordinates are rarely discussed in the literature. The rea-
son is that many soft materials are assumed incompress-
ible what allows for using a simpler Eulerian description
for obtaining some analytical solutions. This is not our
case and we need the Lagrangean equilibrium equations
in cylindrical coordinates. These equations can be de-
rived from the total covariant derivative of the 1st Piola-
Kirchhoff stress tensor. Though this way may be elegant
and short we prefer a more straightforward and lengthy
way, which, however, does not require any knowledge of
the general tensor calculus from the reader.

First, we write the divergence operator in the form

DivP =
∂P
∂R

KR +
∂P

R∂Θ
KΘ +

∂P
∂Z

KZ . (A29)

Now our plan is to compute the right-hand side of this
equation term by term.
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We start with
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∂R

KR
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∂PrR

∂R
kr ⊗KR +PrR

∂kr

∂R
⊗KR +PrRkr ⊗ ∂KR
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∂kr
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)
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(A30)

With account of orthonormality of the base vectors we
have

∂P
∂R

KR =
∂PrR

∂R
kr +PrR

∂kr
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+

∂PθR

∂R
kθ

+PθR
∂kθ
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+

∂PzR
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∂kz
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. (A31)

Differentiating the Eulerian basis, we get

∂kr
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(A32)

Now, substituting Eq.(A4) in Eq.(A3) we have

∂P
∂R

KR =
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∂θ
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)
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+
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PrR
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(A33)

Analogously to (A2)-(A5) we calculate the last two terms
on the right-hand side of Eq.(A1)
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Finally, substituting Eqs.( A5), (A9), and (A13) in

Eq.(A1) we have
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