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The virtual internal bond (VIB) method was developed for the
numerical simulation of fracture processes. In contrast to the tra-
ditional approach of fracture mechanics where stress analysis is
separated from a description of the actual process of material
failure, the VIB method naturally allows for crack nucleation,
branching, kinking, and arrest. The idea of the method is to use
atomic-like bond potentials in combination with the Cauchy-Born
rule for establishing continuum constitutive equations which al-
low for the material separation–strain localization. While the con-
ventional VIB formulation stimulated successful computational
studies with applications to structural and biological materials, it
suffers from the following theoretical inconsistency. When the con-
stitutive relations of the VIB model are linearized for an isotropic
homogeneous material, the Poisson ratio is found equal to 1/4 so
that there is only one independent elastic constant—Young’s
modulus. Such restriction is not suitable for many materials. In
this paper, we propose a modified VIB (MVIB) formulation, which
allows for two independent linear elastic constants. It is also ar-
gued that the discrepancy of the conventional formulation is a
result of using only two-body interaction potentials in the micro-
structural setting of the VIB method. When many-body interac-
tions in “bond bending” are accounted for, as in the MVIB ap-
proach, the resulting formulation becomes consistent with the
classical theory of isotropic linear elasticity.
�DOI: 10.1115/1.2047628�

1 Introduction
As a possible alternative to the Griffith-Orowan-Irwin approach

to fracture mechanics, multiscale material considerations may be
used to formulate continuum models allowing for material
separation–strain localization. Based on the so-called Cauchy-
Born rule, a virtual internal bond approach to modeling material
failure has been proposed by Gao and Klein �1�. This approach
differs from atomistic methods in that a phenomenological “cohe-
sive force law” is assumed to act between “material particles”
which are not necessarily atoms; it also differs from the “cohesive
surface” models in that, rather than imposing a cohesive law along
a prescribed set of discrete surfaces, a network of cohesive bonds
is statistically incorporated into a constitutive law via the Cauchy-
Born rule, i.e., by equating the strain energy density on the con-
tinuum level to the potential energy stored in the cohesive bonds
due to the imposed deformation.

Although the conventional formulation of the VIB model can
be successfully used in simulations of crack nucleation, growth,
kinking, and branching, it suffers from the following inconsis-
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tency. When the constitutive relations of the VIB model are lin-
earized for an isotropic homogeneous material, they allow for
only one independent material constant—Young’s modulus—
while the second constant—Poisson ratio—is not independent and
it is equal to 1/4. Since such restriction is not suitable for many
materials, it is desirable to modify the conventional VIB formula-
tion. This is done in the present work. The modified formulation
allows for two independent material constants in the case of the
linearized isotropic elasticity. The conventional formulation of
VIB is based on two-body interaction potentials in the microstruc-
tural setting. The modified VIB approach accounts for many-body
interactions associated with “bond bending” and the resulting for-
mulation appears to be more consistent with the classical theory of
isotropic linear elasticity.

2 Conventional VIB Formulation and its Deficiency
Consider a solid body comprising microparticles, for example,

atoms, placed at ri in the 3D space. Generally, the volumetric
density of the total potential energy of the body is a function of
the particle positions: ��r1 ,r2 , . . . ,rn�, where n is the number of
particles. More specifically, the potential energy can be written in
terms of two-particle interactions as

� =
1

2��
i,j

U�rij�, rij = �rij� = �ri − r j� , �2.1�

where � is the volume occupied by the system.
According to the Cauchy-Born rule, originally applied to the

crystal elasticity, the current rij and initial �reference� Rij =Ri
−R j relative positions of the same two particles can be related by
the deformation gradient F=Grad��X�:

rij = FRij , �2.2�

It is assumed above that particles are in the vicinity of point X at
the reference state. This point is placed at ��X� after the defor-
mation.

Substituting Eq. �2.2� in Eq. �2.1� yields

� =
1

2��
i,j

U�rij� = ��C�, C = FTF . �2.3�

Now the second Piola-Kirchhoff stress tensor and the tangent
stiffness, moduli can be derived in the usual way: SIJ=2�� /�CIJ;
KIJMN=2�SIJ /�CMN. Evidently, the microstructural approach is as
phenomenological as continuum mechanics. The phenomenology,
however, is moved to the microlevel in the former case to allow
for more flexible analysis.

Direct application of Eq. �2.3� to analysis of material behavior
seems to be difficult because of the large amount of micropar-
ticles. Gao and Klein �1� and Klein and Gao �2,3� proposed the
following averaging procedure:

� =
1

�0
�

�0
*

U�l�D�d� . �2.4�

Here �0 is the reference representative volume; U�l� is the bond
potential; l=rij =L��ICIJ�J is the current virtual bond length; �
= �Ri−R j� /L; L=Rij = �Ri−R j�; D� is the volumetric bond density
function; and �0

* is the integration volume defined by the range of
influence of U.

Considerations being limited to centrosymmetric bond density
functions, where spherical coordinates are used: �1=sin � cos �;
�2=sin � sin �; �3=cos �, it is possible to express an average as

	•
 =
1

�0
�

−�

� �
0

��
0

L*

�•�D�L,�,��L2 sin �dLd�d� , �2.5�

where L* presents the maximum distance over which particles

interact. Then the elastic moduli take the form
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KIJMN = 4��/�CIJ�CMN = 	�U��l�/l2 − U��l�/l3�L4�I�J�M�N
 .

�2.6�

The precise definition of D�L ,� ,�� is that
D�L ,� ,��L2 sin �dLd�d� presents the number of bonds in the
undeformed solid with bond length between L and L+dL and
orientation between �� ,�� and ��+d� ,�+d��.

So far, most reported analyses based on the VIB model use the
simple two-parameter phenomenological cohesive force law:
U��l�=A�l−L�exp�−B�l−L��, where A is the slope of U��l� for the
unstretched bond and 1/B is the critical stretch at which the maxi-
mum bond strength is reached.

The deficiency of the conventional formulation appears under
the assumption of homogeneity and isotropy of material, i.e.,
D�L ,� ,��=DL�L�. In this case, the linearized elastic moduli take
the form

KIJMN = 	U��L�L2
L�
−�

� �
0

�

�I�J�M�N sin �d�d�

= ���IJ�MN + �IM�JN + �IN�JM� . �2.7�

Here �=4�	L2U��L�
L /15 is the only elastic �Lame� constant.
The latter is in contradiction with the continuum mechanics result
for isotropic linear materials, which should have two independent
material constants. We can compare this tensor of elastic moduli
to the classical isotropic linear elasticity. In the latter case, the
elastic moduli tensor takes the following form,

HIJMN = 	�IJ�MN + ���IM�JN + �IN�JM� , �2.8�

where 	=2�
 / �1−2
� is the second Lame constant and 
 is the
Poisson ratio. By setting 
=1/4 we obtain 	=� and HIJMN
=KIJMN. Thus the VIB formulation allows for the linear isotropic
elasticity as a special case where the Poisson ratio equals 1 /4.
Since this restriction is not suitable for the description of many
materials, we propose a modification of the VIB method to be
fully consistent with the classical linear elasticity.

3 Modified VIB Formulation
The simple pair �two-body� potential used within the Cauchy-

Born approach is a good candidate to be responsible for the in-
consistencies of the conventional VIB model1 pointed out above.
It seems that the role of the averaging procedure is fairly subsid-
iary in the inconsistencies of the whole approach. Modification of
the cohesive law and the use of a different analytical expression
instead of the exponential law, say the Lennard-Jones potential,
will not help if the cohesive law does not change qualitatively. We
discuss one way to revise and modify the conventional VIB ap-
proach below.

From the microstructural point of view, the simple pair poten-
tial does not allow for considering simultaneous multiple �multi-
body� particle interactions.2 It may be said, instead, following
Phillips and Ortiz �4�, that the pair potential excludes “bending”
of the bonds between the particles. A way to circumvent this prob-
lem and to include bending of the bonds in analysis is to extend
Eq. �2.1� to the three-body terms, for example,

� =
1

2��
i,j

U�rij� +
1

3!��
i,j,k

V�rij,rjk,�ijk� , �3.1�

where �ijk is an angle between rk−r j and ri−r j, and V is, say, the
Stillinger-Weber �5� potential. The number of simultaneously in-
teracting particles can be further increased, of course. In the latter

1Klein and Gao �2� extended the VIB method to directionally bonded lattices such
as Si by introducing an internal degree of freedom. This approach is not applicable to
the isotropic case.

2Here we mean a simultaneous interaction of many particles, which cannot be
described by a sum of the pair potentials of every two particles involved in the

interaction as it is often done in the literature.
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case, it is not entirely clear where this process should be truncated
and what the multi-body potentials should look like. We proceed
with a different plan �see �6��, which should be preceded by the
following methodological remark.

The Cauchy-Born approach is a mixture of atomistic, or par-
ticulate, and continuum concepts. The weight of the atomistic con-
cepts in setting the approximate material model is dominant when
one plays with the number of interacting particles and the charac-
ter of their interaction. The concept of continuum deformation
appears only at the last stage of the model formulation when Eq.
�2.2� is used. Below, we propose a different strategy where the
character of continuum deformation—dilatation/distortion—is es-
sentially involved in the model formulation while the potential
energy includes only two-body interactions, in which the pair-
bonds enjoy both stretching and bending.

From the point of view of continuum mechanics, we begin with
replacing the interatomic distance rij in the total potential energy
by a more convenient quadratic measure of the interatomic dis-
tance change

� = l2 − L2 = L2�CIJ − �IJ��I�J = 2L2EIJ�I�J, �3.2�

where E= �C−1� /2 is the Green strain tensor. Let this tensor be
decomposed into spherical and deviatoric parts accordingly:

EIJ = EKK�IJ/3 + ÊIJ. �3.3�

Substituting Eq. �3.3� in Eq. �3.2� we have

� = 
 + �̂, 
 = 2L2EKK/3, �̂ = 2L2ÊIJ�I�J. �3.4�

Here 
 is the bond length change due to spherical dilatational

deformation and �̂ is the bond length change due to the devitoric
deformation.

Now the stored energy can be written in the following form:

U��� = U�
,�̂� = A − A�1 + 
�B/A�exp�− 
�B/A − �̂2C/�2A�� .

�3.5�

The physical meaning of the introduced potential can be clarified
with the help of the “stretching” and “shearing” forces which are

derived by differentiating the potential with respect to 
 and �̂
accordingly:

U
 =
�U�
,�̂�

�

= B
 exp�− 
�B/A − �̂2C/�2A�� , �3.6�

U�̂ =
�U�
,�̂�

��̂
= C�1 + 
�B/A��̂ exp�− 
�B/A − �̂2C/�2A�� .

�3.7�

These forces are presented in Fig. 1. The maximum of U
 occurs

at 
=�A /B, where �̂=0. B is the slope of U
 at 
=0. The maxi-

mum of U�̂ occurs at �̂= ±�A /C, where 
=0. C is the slope of

U�̂ at �̂=0.
In order to examine consistency of the modified VIB formula-

tion with the linear elasticity, we compute the linearized tensor of
elastic moduli for isotropic materials. Omitting tedious intermedi-
ate transformations we get finally

KIJMN = 	L4
L�� 16
9 B − 32

45C��IJ�MN + 	L4
L�
16
15C��IM�JN + �IN�JM� ,

�3.8�
Comparing Eq. �3.8� with the elastic moduli of the classical

linear theory �Eq. �2.8�� we obtain for the Lame parameters

	 = �	L4
L� 16
9 B − 32

45C�, � = �	L4
L
16
15C . �3.9�

These two formulas present the relations between the macroscopic
Lame parameters and the microscopic parameters of the bond po-

tential.
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4 Concluding Remarks
A modified formulation of the virtual internal bond method has

been proposed in the present work. At the level of material par-
ticles or atoms, this formulation still considers two-body �pair�
bonds. However, these bonds possess both stretching and bending
stiffness. The stretching stiffness corresponds to the classical in-
teraction of two particles along the line connecting them. The
bending stiffness of the bond is a more subtle subject. It is sup-
posed to account for the simultaneous interactions between the
given two particles and other particles �multi-body interaction�
without explicitly introducing the latter ones. The modified VIB
�MVIB� formulation resolves the discrepancy between the con-
ventional VIB formulation and the classical linear elasticity be-
cause the MVIB formulation leads to two independent material
parameters. The latter is in contrast to the conventional VIB for-
mulation which leads to only one independent material parameter
when it is linearized. Thus the conventional VIB formulation is
not in peace with the well-established classical theory of isotropic
elasticity which requires two independent material parameters.

The modified VIB formulation is a marriage of the conventional
VIB formulation and the purely phenomenological approach of
Volokh �6�. While the differences between the conventional and
modified VIB formulations are clear from the present work, the

Fig. 1 “Stretching” „left… and “shearing” „
Journal of Applied Mechanics
qualitative comparison between MVIB and the phenomenological
approach is worth performing. The advantages of the MVIB
method come from its intrinsic consideration of the material mi-
crostructure. Particularly, the MVIB approach naturally allows for
considering material anisotropy and introducing the characteristic
length scale. These features make the MVIB method physically
desirable and more flexible than the phenomenological framework
of Volokh �6�. On the other hand, the MVIB formulation is more
involved computationally and this is the expected price for its
generality.
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