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Compressibility of Arterial Wall in Ring-cutting Experiments

K.Y. Volokh 1

Abstract: It is common practice in the arterial wall
modeling to assume material incompressibility. This as-
sumption is driven by the observation of the global vol-
ume preservation of the artery specimens in some me-
chanical loading experiments. The global volume preser-
vation, however, does not necessarily imply the local vol-
ume preservation – incompressibility. In this work, we
suggest to use the arterial ring- cutting experiments for
the assessment of the local incompressibility assumption.
The idea is to track the local stretches of the marked seg-
ments of the arterial ring after the stress-relieving cut.
In the particular case of the rabbit thoracic artery, con-
sidered in this work, the following criteria for radial
stretches come from preliminary analysis. If after the
radial cut the marked segments shorten at the inner sur-
face of the wall and lengthen at the outer surface while
remaining unchanged in the middle of the wall then ma-
terial is locally incompressible. If, however, the marked
segments remain unchanged at the surfaces while length-
ening in the middle of the wall then the material is locally
compressible. Any other scenario would be an indica-
tion of the improper modeling assumptions, i.e. residual
stresses are not relieved or material constants are inaccu-
rate etc. It is believed that the proposed approach can be
successfully implemented in experiments shedding new
light on the arterial incompressibility issue.

keyword: Artery; Incompressibility; Hyperelasticity

1 Introduction

Incompressibility means preservation of a small mate-
rial volume during deformation: dv = dV , where dV
is a small volume around point X before deformation
and dv is the same volume around point x after defor-
mation x = χ(X). Generally, the volume is not pre-
served: dv = JdV , where J = detF and F = Gradχ(X)
is the deformation gradient. Thus, the incompressibil-
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ity constraint can be formally written as J = detF = 1 =
detFT F = det(2E + 1), where E = (FT F− 1)/2 is the
Green strain tensor and 1 is the identity tensor. Two
points should not be missed. First, the definition of in-
compressibility is local, i.e. it should be obeyed at every
point. The local incompressibility implies the global one.
Indeed, we have in this case: v =

R
dv =

R
dV = V . The

reverse is wrong: the global incompressibility does not
imply the local incompressibility. Second, incompress-
ibility is a geometric or kinematic constraint imposed on
the deformation and it is not an intrinsic material prop-
erty (all materials can be compressed to various degrees).
Of course, some materials, e.g. water, show clear ten-
dency to isochoric deformation obeying the incompress-
ibility constraint. In this sense, they are called incom-
pressible.

Why the notion of incompressibility is important? It is
a matter of convenience. Analysis of mechanical behav-
ior of materials can be significantly simplified with ac-
count of incompressibility. R.S. Rivlin mastered this ap-
proach giving elegant analytical solutions to numerous
problems of nonlinear elasticity (Joseph and Barenblatt,
1997). The notion of incompressibility is also important
for improving numerical algorithms of nonlinear finite
element analysis (Bonet and Wood, 1997).

Are the arterial walls incompressible? This simple
question has no simple answer. Experiments reported
by Lawton (1954), Carew et al (1968), Dobrin and
Rovick (1969), and Chuong and Fung (1984) suggest that
”incompressibility holds at least globally” (Humphrey,
2002). This is natural that only global incompressibil-
ity can be observed in experiments. Any experiment
deals with a finite specimen of artery. The conclusion
about the local properties of the specimen is an extrapo-
lation of the global observation. The validity of such ex-
trapolation depends on the material under consideration.
Many liquids, for example, are homogeneous, isotropic,
and they do not resist shear stresses. Thus, the global
stress/strain state can be highly homogeneous allowing
for the conclusion that global incompressibility is a result



36 Copyright c© 2006 Tech Science Press MCB, vol.3, no.1, pp.35-42, 2006

of the local one. This is not the case of arteries. They are
anisotropic, inhomogeneous, compliant, and resist shear
stresses. In the case of arteries, it is difficult to ensure a
simple homogeneous stress/strain state, which could al-
low for drawing conclusions about the local incompress-
ibility. Nonetheless, such conclusion is often made in
desire to utilize the incompressibility constraint in cal-
culations. Influenced by the seminal papers of Chuong
and Fung (1983; 1984; 1986), the local incompressibility
condition is widely used for material identification and
assessment of residual stresses in arteries: Fung, 1984;
Fung, 1990; Fung, 1993; Holzapfel and Ogden, 2003;
Humphrey, 2002.

In this work, we suggest to use the arterial ring cut-
ting experiments for the assessment of the local incom-
pressibility assumption. The idea is to track the local
stretches of the marked segments of the arterial ring after
the stress-relieving cut. In the particular case of the rabbit
thoracic artery, considered in this work, the following cri-
teria for radial stretches come from preliminary analysis.
If the marked segments shorten at the inner surface of the
wall and lengthen at the outer surface while remaining
unchanged in the middle of the wall then material is lo-
cally incompressible. If, however, the marked segments
remain unchanged at the surfaces while lengthening in
the middle of the wall then the material is locally com-
pressible. Any other scenario would be an indication of
the improper modeling assumptions, i.e. residual stresses
are not relieved or material constants are inaccurate etc.
It is believed that the proposed approach can be success-
fully implemented in experiments shedding new light on
the arterial incompressibility issue.

2 Residual stresses and stretches in the arterial ring

In this section, we analyze the artery-cutting experiment
with and without the incompressibility assumption. The
results of this analysis are the theoretical basis for the
proposal of the experiment, which will be considered in
Discussion.

2.1 General background

Mechanical behavior of the arterial wall is prescribed
analytically by a strain energy density per unit volume
W(E). In this case, the Cauchy stress is defined as fol-
lows

σσσ = J−1F
∂W
∂E

FT , (1)

This stress obeys the following momentum balance law

divσσσ = 0, (2)

where body forces and inertia effects are ignored. Substi-
tuting Eq. (1) in Eq. (2) and adding boundary conditions{

χ = χ on ∂Ωχ
t = t on ∂Ωt

, (3)

it is possible to formulate a boundary value problem
(BVP) of nonlinear elasticity. Here t = σn is the sur-
face traction; n is a unit outward normal to body Ω in the
current configuration; ∂Ωχ and ∂Ω t denote boundaries
where placements and tractions are prescribed; barred
quantities are given.

The formulation of BVP is slightly different when the
geometric constraint of incompressibility is imposed. In
this case, the strain energy function W should be ex-
tended enforcing the incompressibility condition with
Lagrange multiplier2 p

W∗ = W(E)+ p(1−det(2E+1))/2. (4)

Now, the stress is obtained by substituting W∗ instead of
W in Eq. (1)

σσσ = −p1+F
∂W
∂E

FT , (5)

where the following result for invertible matrix A has
been used: ∂(detA)/∂A = A−T detA(Holzapfel, 2000).
The new BVP described by Eqs. (2), (3), and (5) is in-
complete because of the indeterminate Lagrange multi-
plier p. One scalar equation must be added, which is
obtained from the condition:

∂W∗
∂p

= det(2E+1)−1 = 0. (6)

2.2 Arterial ring deformation

A typical problem, where the local incompressibility
condition matters, is the assessment of residual stresses
and stretches in arteries. To estimate the residual
stress/strain state a ring excised from an artery is usually
cut radially – Fig. 1. It is assumed that the opened seg-
ment is stress-free. The latter suggests considering the

2 The Lagrange multiplier means hydrostatic pressure when the sec-
ond term on the right hand side of Eq. (5) is deviatoric.
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Figure 1 : Stress-relieving cut of the arterial ring.

opened ring as a reference configuration and the intact
ring as the current one. The deformation can be described
as follows

r = r(R), θ =
π

Θ0
Θ, z = ΛZ, (7)

where (r,θ, z) are current cylindrical coordinates of the
point with referential coordinates (R,Θ,Z). It is assumed
that deformation is axisymmetric and Θ0 = const and
Λ = const. In this case, the nonzero physical components
of the deformation gradient tensor, i.e. stretches, and the
Green strain tensor take the form

FrR =
∂r
∂R

, FθΘ =
πr

Θ0R
, FzZ = Λ. (8)

ERR =
1
2

((
∂r
∂R

)2

−1

)
, EΘΘ =

1
2

((
πr

Θ0R

)2

−1

)
,

EZZ =
1
2
(Λ2 −1). (9)

The deformation assumption given by Eq. (7) is quite
reasonable in the case where the ring opens into a circular
segment and most stresses are relieved by the cut.

2.3 Residual stresses and stretches with the incom-
pressibility assumption

In this subsection, we reproduce3 analysis of Chuong and
Fung (1986) starting with the incompressibility equation

J =
∂r
∂R

πr
Θ0R

Λ = 1, (10)

which can be integrated analytically under condition
r(R1) = r1

r2 =
Θ0

πΛ
(R2−R2

1)+ r2
1. (11)

Substituting from Eqs. (10) and (11) in Eq. (9) it is pos-
sible to determine the strains completely.

Defining the strain energy density as follows

W =
c
2

eQ,

Q = c1E2
RR +c2E2

ΘΘ +c3E2
ZZ +2c4ERREΘΘ

+2c5EZZEΘΘ +2c6ERREZZ, (12)

we can compute nonzero components of Cauchy stress
from Eq. (5)

⎧⎪⎪⎨
⎪⎪⎩

σrr = −p+
(

Θ0R
πrΛ

)2
c(c1ERR +c4EΘΘ +c6EZZ)eQ

σθθ = −p+
(

πr
Θ0R

)2
c(c4ERR +c2EΘΘ +c5EZZ)eQ

σzz = −p+Λ2c(c6ERR +c5EΘΘ +c3EZZ)eQ

.

(13)

It is still necessary to determine the Lagrange multiplier
p. It can be done by integrating the only nontrivial equi-
librium equation

∂σrr

∂r
+

σrr −σθθ

r
= 0. (14)

Substituting from (13) to (14) and integrating over r we
find

p(r) =
(

Θ0R
πrΛ

)2

c(c1ERR +c4EΘΘ +c6EZZ)eQ

+
rZ

r1

(
Θ0R
πrΛ

)2

c(c1ERR +c4EΘΘ +c6EZZ)eQ dr
r

−
rZ

r1

(
πr

Θ0R

)2

c(c4ERR +c2EΘΘ +c5EZZ)eQ dr
r

(15)
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Figure 2 : Stretches (a) and Cauchy (b) stresses with the
incompressibility assumption (with respect to the current
radial coordinate r). The point-dashed line for the radial
quantities; the dashed line for the axial quantities; and
the solid line for the circumferential quantities.

The integrals can be evaluated numerically after substi-
tuting for R from Eq. (11).

Following Chuong and Fung, we use the experimental
data on a rabbit thoracic artery

R1 = 3.92mm, R2 = 4.52mm,

r1 = 1.39mm, r2 = 1.99mm,

Θ0 = 71.4deg, c = 22.4kPa, (16)

3 Humphrey (2002) notes that the original results of Chuong and
Fung are slightly inaccurate numerically.
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Figure 3 : Stretches (a) and Cauchy stresses (b) with the
incompressibility assumption (with respect to the refer-
ential radial coordinate R). The point-dashed line for the
radial quantities; the dashed line for the axial quantities;
and the solid line for the circumferential quantities.

Λ = 1, c1 = 0.0499, c2 = 1.0672, c3 = 0.4775,

c4 = 0.0042, c5 = 0.0903, c6 = 0.0585. (17)

Numerical integration has been performed with the
help of Mathematica (Wolfram, 2003) and the resulting
stresses and stretches are presented in Fig. 2 with respect
to the current radial coordinate r. The results practically
coincide with those obtained by Humphrey (2002) and
are slightly different from the original results of Chuong
and Fung (1986). Fig. 3 presents the same results with
respect to the referential coordinate R, which will be used
for the comparison purposes later in this work.
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2.4 Residual stresses and stretches without the incom-
pressibility assumption

In this subsection, we relax the incompressibility as-
sumption and we use the referential formulation of mo-
mentum balance

DivP = 0, (18)

or, in cylindrical coordinates (Volokh and Lev, 2005),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂PrR
∂R −PθR

∂θ
∂R + PrR

R + ∂PrΘ
R∂Θ − PθΘ

R
∂θ
∂Θ + ∂PrZ

∂Z −PθZ
∂θ
∂Z = 0

PrR
∂θ
∂R + ∂PθR

∂R + PrΘ
R

∂θ
∂Θ + PθR

R + ∂PθΘ
R∂Θ + ∂PθZ

∂Z +PrZ
∂θ
∂Z = 0

∂PzR
∂R + PzR

R + ∂PzΘ
R∂Θ + ∂PzZ

∂Z = 0

.

(19)

Here

P = JσFσFσF−T = F
∂W
∂E

(20)

is the 1st Piola-Kirchhoff stress tensor with the following
nonzero components4

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

PrR = FrR
∂W

∂ERR
= ∂r

∂R c(c1ERR +c4EΘΘ +c6EZZ)eQ

PθΘ = FθΘ
∂W

∂EΘΘ
= πr

Θ0R c(c4ERR +c2EΘΘ +c5EZZ)eQ

PzZ = FzZ
∂W

∂EZZ
= Λc(c6ERR +c5EΘΘ +c3EZZ)eQ

.

(21)

Eq. (19) reduces to the following form with account of
axial symmetry and Eq. (8)

∂PrR

∂R
+

PrR

R
− πPθΘ

Θ0R
= 0. (22)

After substituting from Eqs. (9) and (21) in Eq. (22) and
imposing stress-free boundary conditions⎧⎨
⎩

σrr(R1) = PrR(R1) = 0

σrr(R2) = PrR(R2) = 0
(23)

we have a two-point boundary value problem in terms
of r(R). Its solution is obtained by using the shooting

4 See Appendix

method when the initial value problem (IVP) is solved
iteratively until fitting the BVP solution. We used Math-
ematica (Wolfram, 2003) routine ’NDSolve’ as the IVP
solver. Cauchy stresses are obtained from Eq. (20) as
follows⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σrr = J−1FrRPrR

σθθ = J−1FθΘPθΘ

σzz = J−1FzZPzZ

. (24)

Stretches, stresses, and the volume ratio J computed from
Eq. (22) with the input data given by Eqs. (16) and
(17), are presented in Fig. 4. The radiuses of the in-
tact ring were not included in the input but computed:
r1 = r(R1) = 1.41mmand r2 = r(R2) = 1.93mm.

3 Discussion

The purpose of this work is to propose a possible ex-
periment for examining the incompressibility property of
arterial walls. The incompressibility assumption is of-
ten made for arteries based on some observations of the
volume preservation of artery specimens. Such volume
preservation, however, is usually a global property of
the specimen under consideration. The volume preser-
vation does not necessarily imply the local incompress-
ibility, which is of interest only. Moreover, the global
volume preservation may be a result of the specific ex-
perimental condition, i.e. it can be characteristic of the
specific deformation under examination. To reveal the
incompressibility property the experiments are necessary
where the local incompressibility can be tracked at least
qualitatively. The stress-relieving cut of the arterial ring
is a good candidate for such an experiment. Analysis of
the cut-ring opening has been performed with the incom-
pressibility assumption, reproducing results of Chuong
and Fung (1984) and Humphrey (2002), and without
the incompressibility assumption. The distribution of
stretches and stresses for both cases is given in Figs. 3a,b
and 4a,b accordingly. It can be readily seen in figures
3b and 4b that stress distributions are quantitatively sim-
ilar in both cases – with and without the incompressibil-
ity assumption, except for the hoop stresses at the outer
surface of the ring where the enforcement of incompress-
ibility leads to somewhat higher absolute magnitudes of
the stresses. As follows from figures 3a and 4a the cir-
cumferential stretches are also similar whether the in-
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Figure 4 : Stretches (a); Cauchy stresses (b); and volume
ratios J = detF without the incompressibility assumption
(with respect to the referential radial coordinate R). The
point-dashed line for the radial quantities; the dashed line
for the axial quantities; and the solid line for the circum-
ferential quantities.

compressibility assumption is accounted for or not. The
axial stretches coincide as a direct consequence of the
used deformation assumption given by Eq. (7). The only
essential difference between two considered cases is the
distribution of radial stretches. In the case of the incom-
pressibility assumption, the radial stretches are computed
from Eq. (6) and their graph is a mirror reflection of the
distribution of circumferential stretches. In the case of
compressibility, the radial stretches appear only after the
solution of the corresponding boundary value problem
and their distribution is not affected by the geometric re-
strictions. Evidently, the calculated distribution of the
radial stretches does not meet the incompressibility re-
quirement. The latter is emphasized in Fig. 4c where
the volume ratio distribution is presented. The deviation
from incompressibility is sensible in this case. Moreover,
the global volume is not presereved.

It is very important for the experiment planning that the
distinction between the radial stretches is not only quan-
titative, like in the case of hoop stresses, but also quali-
tative, what is crucial for a reliable experimental obser-
vation. This qualitative distinction suggests the radial
stretches at the inner surface, in the middle, and at the
outer surface of the ring to be observed in experiments.
Let us assume that material fibers are marked in the men-
tioned areas of the intact ring. After the cut, the fibers
will experience stretches opposite to those shown in fig-
ures (3) and (4). Particularly, the fibers will shorten at
the inner surface and lengthen at the outer surface of the
opened ring while remaining unchanged in the middle of
the ring in the case where the deformation is incompress-
ible. On the other hand, the fibers at the inner and outer
surfaces of the opened ring will remain unchanged while
the fibers in the middle of the ring will lengthen in the
case where the deformation is compressible. If neither
of these two scenarios takes place, the modeling assump-
tions are inapplicable and no definite conclusion about
material behavior can be made.
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Appendix A: On material constants

Computing material response with – Eq. (13) – and with-
out – Eq. (21) – the incompressibility assumption, we
use the same material constants c, c1, c2, c3, c4, c5, c6. It
seems reasonable that material constants do not depend
on the imposition or non-imposition of the geometric in-
compressibility constraint. To make this point clearer a
reader may wish to consider the analogy between the in-

compressibility constraint and the geometric constraint
imposed on thin elastic bodies – plates and shells. In the
latter case, it is often assumed that the material fiber nor-
mal to the mid surface of the shell does not change its
length and remains orthogonal to the mid surface during
the deformation. These are the so-called Kirchhoff-Love
geometric assumptions prompted by numerous physi-
cal observations. These assumptions-constraints are the
driving forces for the development of the shell theories as
an alternative to 3D elasticity. Although the Kirchhoff-
Love assumptions are reasonable in many problems of
shell deformation, they are not universal and can be ac-
cepted only when the shell thickness is much smaller
than the length of the deformation half-wave. Evidently,
the latter does not cover high-frequency vibrations, wave
propagation, boundary effects etc. Let us assume now
that we need to find the Young modulus (Poisson ratio
is known) of an isotropic and homogeneous material of
a thin plate. For this purpose, it is possible to bend the
plate experimentally and to extract the Young modulus
from the comparison of, say, the measured maximum de-
flection of the plate with its theoretical prediction. It is
crucial, however, that the prediction can be made by us-
ing 3D elasticity without any geometric constraints or a
plate theory where geometric constraints are enforced.
Can the result of the Young modulus evaluation be dif-
ferent depending on what theory is used? The answer is,
definitely, no. The situation with the incompressibility
constraint for a compliant material seems to be analo-
gous. The imposition of the constraint should not affect
the determination of material constants.

We made this remark on the determination of material
constants with and without the incompressibility assump-
tion because Chuong and Fung (1984) stated that ”the
use of the incompressibility assumption greatly affects
the material constants”. Since this statement contradicts
the remark given above, we revisit the results of Chuong
and Fung, which gave rise to their statement.

A rectangular specimen of size h× a× b excised from
a rabbit thoracic aorta was placed by Chuong and Fung
(1984) between two rigid plates. Nonzero pressure5

σ11(x1 = ±h/2) = σ11 transmitted through the plates
with no friction was measured while the specimen edges
were stress-free σ22(x2 = ±a/2) = 0 and σ33(x3 =
±b/2) = 0. It was assumed that strains and stresses are

5 The notation of the present work is adopted instead of the original
notation of Chuong and Fung (1984).
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homogeneous. Strains E11, E22, E33 were calculated af-
ter measuring the changing specimen size. Material con-
stants were identified from the stresses, which obeyed
boundary conditions and constitutive equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ11 = −p+c(1+2E11)(c1E11 +c4E22 +c6E33)eQ

σ22 = −p+c(1+2E22)(c4E11 +c2E22 +c5E33)eQ

σ33 = −p+c(1+2E33)(c6E11 +c5E22 +c3E33)eQ

.

(25)

The measured deformation is incompressible (J = 1) and
the enforcement of the incompressibility assumption in
the constitutive equations is due to parameter p. Chuong
and Fung describe two algorithms, with and without the
incompressibility assumption, to identify 7 material con-
stants c, c1, c2, c3, c4, c5, c6 as follows. “For the incom-
pressible case, subtraction of equations (A12) and (A13)
from equation (A11) yields expressions of σ11 −σ22 and
σ11 −σ33 in terms of the strain components with p can-
celled. Seven sampling steps were carried out for each
loading path, thus giving us fourteen simultaneous equa-
tions to solve. Without the incompressibility assumption,
it is straightforward to solve 21 simultaneous equations.
Numerically, the material constants are determined by
minimizing the least-squares errors with the Gaushaus
routine. . . ” Performing numerical fit with two described
algorithms, the authors obtained two essentially differ-
ent sets of material constants, presented in Table 1 of
the original paper, and they concluded, ”. . . the use of
the incompressibility assumption greatly affects the ma-
terial constants”. There is a point for discussion, how-
ever, in the authors’ interpretation of the algorithms for
fitting material constants.

First, let us assume that the incompressibility assump-
tion is relaxed and equations (A1) do not include the
Lagrange multiplier p. Then, instead of directly us-
ing the constitutive equations (A1) without p as Chuong
and Fung suggest in their second algorithm, we subtract
equations (A12) and (A13) from equation (A11) form-
ing expressions of σ11 −σ22 and σ11 −σ33. This is le-
gitimate, of course. Since the real deformation is iso-
choric (J = 1) then the expressions of the constitutive
equations for the subtractions will be the same as the ex-
pressions of the constitutive equations for σ11 −σ22 and
σ11 − σ33, which were obtained under the incompress-
ibility assumption. This means that material constants

obtained by using the first Chuong and Fung algorithm
with the incompressibility assumption are equally appli-
cable to the case without the incompressibility assump-
tion. Shortly speaking it is impossible to make a distinc-
tion between the enforced or relaxed incompressibility
assumptions within the subtraction approach.

Second, let us assume that the material constants were
obtained by the direct use of equation (A1) without p, as
Chuong and Fung suggest in their second algorithm. The
constitutive equations with these constants must obey the
reduced constitutive equations for subtractions σ11 −σ22

and σ11 −σ33. The latter, however are equivalent to the
constitutive equations with the enforced incompressibil-
ity assumption. In other words, the material constants
obtained without the incompressibility assumptions must
be the same as in the case where the incompressibility
assumption was enforced. Again, no distinction between
’compressible’ and ’incompressible’ material constants
can be made.

The fact that material constants calculated by Chuong
and Fung have essentially different values should be
attributed, in our opinion, to the numerical procedure,
which minimizes the least-squares errors. There are
some potential numerical pitfalls typical of the algo-
rithms of this kind. These pitfalls cannot be analyzed
with respect to the Chuong and Fung results because
of the vital lack of the data in their report. Moreover,
such analysis would bring us far beyond the scope of the
present work.
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