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On Foundations of Discrete Element Analysis of Contact in Diarthrodial
Joints

K. Y. Volokh∗, E. Y. S. Chao†, M. Armand‡

Abstract: Information about the stress dis-
tribution on contact surfaces of adjacent bones
is indispensable for analysis of arthritis, bone
fracture and remodeling. Numerical solution of
the contact problem based on the classical ap-
proaches of solid mechanics is sophisticated and
time-consuming. However, the solution can be
essentially simplified on the following physical
grounds. The bone contact surfaces are covered
with a layer of articular cartilage, which is a soft
tissue as compared to the hard bone. The lat-
ter allows ignoring the bone compliance in anal-
ysis of the contact problem, i.e. rigid bones are
considered to interact through a compliant car-
tilage. Moreover, cartilage shear stresses and
strains can be ignored because of the negligi-
ble friction between contacting cartilage layers.
Thus, the cartilage can be approximated by a set
of unilateral compressive springs normal to the
bone surface. The forces in the springs can be
computed from the equilibrium equations itera-
tively accounting for the changing contact area.
This is the essence of the discrete element analy-
sis (DEA). Despite the success in applications of
DEA to various bone contact problems, its classi-
cal formulation required experimental validation
because the springs approximating the cartilage
were assumed linear while the real articular car-
tilage exhibited non-linear mechanical response
in reported tests. Recent experimental results of
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Ateshian and his co-workers allow for revisiting
the classical DEA formulation and establishing
the limits of its applicability. In the present work,
it is shown that the linear spring model is remark-
ably valid within a wide range of large deforma-
tions of the cartilage. It is also shown how to ex-
tend the classical DEA to the case of strong non-
linearity if necessary.
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1 Introduction

Cartilage is not an easy material to model its phys-
ical behavior under load. It is soft, multiphase,
anisotropic, and inhomogeneous and its mechan-
ical response to applied loads is essentially time-
dependant (Huang et al, 2005). Nonetheless, at-
tempts to describe mechanical behavior of the car-
tilage in a diarthrodial joint may not be hopeless
and they are necessary for understanding the dis-
tribution of contact pressure. The latter is impor-
tant for revealing the mechanisms of osteoarthri-
tis, bone fracture and remodeling.

Mow et al (1980) treated cartilage as a biphasic
material in their seminal work where a continuum
mixture theory was used for mathematical model-
ing. Alternatively, a poroelasticity theory (Cowin,
1999; Coussy, 2004) can be used to describe ar-
ticular cartilage. Both approaches are technically
sophisticated and numerically complex. Analyti-
cal and semi-analytical solutions of the bone con-
tact problems including cartilage (Ateshian et al,
1994; Ateshian and Wang, 1995; Donzelli et al,
1999) are restricted to simple geometries and lin-
ear materials what makes the problems tractable,
while numerical solutions for more realistic con-
tact surfaces that use commercial software (Wu et
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al, 1998; Han et al, 2005) are expensive and time-
consuming.

Development of a reasonably simple numerical
framework for modeling cartilage on the realistic
contact surfaces should rely upon physically moti-
vated simplifications of the mathematical model.
The cartilage deforms in three stages: first – the
early stage of instantaneous deformation, when
the cartilage fluid bears most contact pressure;
second – the transient stage, when the fluid starts
moving; third – the steady stage, when mainly the
solid phase of the cartilage supports the applied
load. According to Mow et al (1980), the fluid
flows out of the compressed region in about 5 sec-
onds after loading, while Ateshian et al (1994),
Ateshian, and Wang (1995) conclude that the fluid
phase of cartilage plays a major role in provid-
ing load support during first 100-200 seconds af-
ter contact loading. Such diversity in the predic-
tion of the fluid outflow is affected by the spe-
cific conditions of experiments and restrictive as-
sumptions of analysis. What stage of the cartilage
deformation, instantaneous, transient, or steady,
dominates a load-bearing activity? This question
has no simple answer.

Consider, for example, a hip joint under condi-
tions of standing up, normal walking, and run-
ning. At the time of standing up an instantaneous
pressure is applied at the top of the femoral head,
which is supported by the cartilage fluid. If the
standing position is not changing during few sec-
onds then the fluid flows out of the compressed re-
gion and the steady state occurs. When a walking
starts, an additional instantaneous load is applied
to the hip joint producing extra instantaneous re-
sponse of the remaining fluid, which starts flow-
ing out of the compressed region. Since the pe-
riod of the gait-cycle is shorter than the time of
fluid transition then the steady response of the car-
tilage is achieved after a number of cycles when
an additional amount of the cartilage fluid leaves
the contact region of the femoral head with the
acetabulum. When a running starts, additional in-
ertia forces are applied to the hip joint producing
further instantaneous response of the remaining
fluid, which flows out of the compressed region
and so on. Summarizing this example qualita-

tively it is possible to state that instantaneous and
fluid-supported deformation of the cartilage oc-
curs when the loading is changing while a steady
and solid-supported deformation occurs when the
loading is also steady – constant or cyclic. The
time proportion of these two types of deformation
depends on the character of the functional activ-
ity. Those, who are exposed to a monotonic and
steady physical activity, seem to be more suscep-
tible to the direct loading of the cartilage solid
phase.

Since the transient stage gives intermediate con-
tact pressure, it can be omitted from the analy-
sis and only the initial, instantaneous, and the fi-
nal, steady, stages are to be analyzed providing
the bounds for contact pressure. It is important
that while the instantaneous response, which is
dominated by the elasticity of the fluid phase, can
be considered linear, the steady response, which
is dominated by the elasticity of the solid phase,
should allow for finite elastic strains of the carti-
lage. The latter is the focus of the present work.
Based on experimental results of Ateshian and his
co-workers a ’non-linear spring’ model of the ar-
ticular cartilage is developed. It is found that the
linearization of the nonlinear model is applicable
to a surprisingly wide range of the engineering
strain varying from zero to 25-30%. Normally,
these strains cover the physiological range of the
cartilage deformation. Nonetheless, we show how
to modify the classical DEA to account for strains
larger than 30%.

2 Discrete Element Analysis

2.1 Non-linear spring model

Ateshian et al (1997) and Huang et al (2005) per-
formed experimental and theoretical analyses of
the one-dimensional confined compression of ar-
ticular cartilage. They found that the axial stress-
stretch law for non-linear behavior of the speci-
men could be approximated as follows

σ =
HA0(λ 2 −1)

2λ 2β+1
exp

{
β (λ 2−1)

}
, (1)

where σ is the axial Cauchy stress in the solid
phase; λ is the axial stretch (other principal
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stretches equal unity); HA0 and β are material
parameters. These material parameters can be
roughly estimated for the human and bovine artic-
ular cartilage: 0.3 ≤ HAO ≤ 0.6; 0.05 ≤ β ≤ 0.6.

Based on the analysis of Ateshian et al (1994), we
assume that stretches are essentially uniform with
depth of the cartilage layer. This allows introduc-
ing a non-linear spring with a uniform deforma-
tion along its length. Let the average spring stress
be designated σ and the relative elongation of the
spring is ε = Δh/h where h and h+Δh is the car-
tilage thickness before and after deformation ac-
cordingly. Then λ = ε + 1 and Eq. (1) takes the
form

σ(ε) =
HA0((1+ε)2 −1)

2(1+ε)2β+1
exp

{
β ((1+ε)2−1)

}
.

(2)

The graph of this formula is presented in Fig. 1
for the material parameters taking the limit values
of the range 0.05 ≤ β ≤ 0.6. The positive val-
ues of the relative elongation (engineering strain)
and the corresponding stresses are irrelevant, of
course, because the springs are unilateral and they
do not resist tension. However, the tension of
the springs should be taken into account to pro-
vide robustness of the computational algorithm
described below. The negative values of strains
and the corresponding compressive stress are of
interest. It is remarkable that the stress-strain
curve is almost linear up to 30% strain while
a slight deviation from the linearity emerges in
the strain range of 30-40%, i.e. at the limits of
the physiologically reasonable values of engineer-
ing strain. This observation gives an experi-
mental validation for the classical discrete el-
ement analysis based on the linear spring ap-
proximation when engineering strains do not
exceed 30%. If, however, the strains are about
30% or more the classical discrete element analy-
sis should be modified as follows.

Remark 1. We use the experiment with the con-
fined compression for calibration of the spring
model. The confined compression means that the

cross-section of the specimen does not change
during its mechanical response and the stretches
of the specimen are unit in the cross-sectional
plane. This condition seems to ideally fit the
spring model, which does not undergo cross-
sectional changes during the deformation. The
unconfined compression experiments would be
difficult to interpret in the terms of the spring
model because, in this case, there should be an
interaction between the adjacent springs.

2.2 Numerical implementation

The original form of the non-linear spring defini-
tion presented by Eq. (2) is not attractive for com-
putations. It can be expressed in a more attractive
form by using power series about ε = 0:

σ(ε) =
HA0

2

(
2ε −ε2 +(1+4β )ε3 +O(ε4)

)
.

(3)

Equations (2) and (3) almost coincide with each
other on the segment −0.4 ≤ ε ≤ 0.4 as can be
easily observed in Fig.1 for the limit values of β .
Of course, it is much simpler to manipulate Eq.
(3) than Eq. (2) in all analytical transformations.
Particularly, the density of the strain energy of the
springs can be readily written down

w(ε) =
∫

σ(ε)dε = α1
ε2

2
+α2

ε3

3
+α3

ε4

4
, (4)

⎧⎪⎨
⎪⎩

α1 = HA0

α2 = −HA0/2

α3 = HA0(1+4β )/2

, (5)

where w(0) = 0 was assumed. There is no con-
tact when the spring is in tension. This means
that deformations with ε > 0 should be excluded
from the considerations. The latter can be done
by excluding the springs in tension from the con-
tact zone. Changing the contact area iteratively it
is possible to find the equilibrium state where all
springs are compressed. It is important to empha-
size, however, that the use of all formulae in the
extended range of deformations (ε > 0) makes the
intermediate computations robust.

Consider two rigid bodies 1 and 2, which are con-
nected along the contacting surfaces by a layer
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Figure 1: Normalized stress versus engineering strain for articular cartilage: graphs of formulae (2) and (3)
for the limit values of parameter β .

of normal springs mimicking cartilage (Kawai,
1977; Genda et al, 2001). The total energy of the
system can be written in the following form

Φ(u) =
N

∑
i=1

Sihi
(
α1ε2

i /2+α2ε3
i /3+α3ε4

i /4
)

−uT r, (6)

where the sum is over N surface elements with
area Si each; εi = Δhi/hi is a relative elongation of
the normal spring associated with the ith element;
Δhi is the ith spring elongation and hi is the ith el-
ement thickness – spring initial length; α1, α2, α3

are material parameters defined in Eq. (5); u is a
generalized vector of displacements and rotations
of the considered rigid bodies, which takes the
following form in the Cartesian coordinate system
(x,y, z)

uT = {u1,v1,w1,θ1,φ1,χ1,u2,v2,w2,θ2,φ2,χ2} ,

(7)

and r is a vector of the corresponding forces and
moments, which may include the inertia forces as

well,

rT =
{

Fx1,Fy1,Fz1,Mx1,My1,Mz1,Fx2,Fy2,Fz2,

Mx2,My2,Mz2

}
. (8)

The relative displacement δi of the ith contact
point (xi,yi, zi) on the boundary surface of bod-
ies 1 and 2 can be expressed as a linear function
of the small relative displacements of the bodies

δi = Biu, (9)

where

Bi =
[−I M1 I M2

]
(10)

where

M1 =

⎡
⎣ 0 −(zi − z1) (yi −y1)

(zi − z1) 0 −(xi −x1)
−(yi −y1) (xi −x1) 0

⎤
⎦

M2 =

⎡
⎣ 0 (zi − z2) −(yi −y2)
−(zi − z2) 0 (xi −x2)
(yi −y2) −(xi −x2) 0

⎤
⎦



On Foundations of Discrete Element Analysis 71

and I is the identity matrix.

Here (x1,y1, z1) and (x2,y2, z2) are the coordinates
of the centroids of body 1 and 2 accordingly. It
should not be missed that small displacements of
the rigid bodies-bones (as compared to their size)
can produce large elongations of springs-cartilage
(as compared to their size).

Using Eq. (9) it is possible to find the relative
spring elongations included in Eq. (6) as follows

εi = h−1
i nT

i δi = h−1
i nT

i Biu, (11)

where ni is a unit normal at the ith point.

Substituting Eq. (11) in Eq. (6) and differentiat-
ing with respect to u it is possible to get the equi-
librium equation

g(u) =
(

∂Φ
∂u

)T

=
N

∑
i=1

hiSi
(
α1εi +α2ε2

i +α3ε3
i

)(
∂εi

∂u

)T

−r

= 0,

(12)

∂εi

∂u
=

1
hi

∂
∂u

nT
i Biu = h−1

i nT
i Bi. (13)

Substituting from Eqs. (11) and (13) in Eq. (12) it
is possible to obtain a nonlinear system of discrete
equations with respect to displacements u. The
Newton-Raphson method can be used to solve this
system. In order to do that we need to compute the
tangent stiffness matrix

K(u) =
∂g(u)

∂u
=

∂
∂u

(
∂Φ(u)

∂u

)T

. (14)

It is possible to get the closed form expression
for the tangent stiffness matrix. Indeed, consid-
ering Eq. (12) we have

K(u) =
∂g(u)

∂u
=

∂
∂u

(
∂Φ(u)

∂u

)T

=
N

∑
i=1

Si

hi

(
α1+2α2εi+3α3εi

2)(
nT

i Bi
)T (

nT
i Bi

)
.

(15)

It is useful to rewrite this matrix in a more com-
pact form

K(u) =
N

∑
i=1

ci(u)Di, (16)

where

ci(u) =
Si

hi
(α1 +2α2εi +3α3ε2

i ). (17)

D = (nT
i Bi)T (nT

i Bi). (18)

The Newton-Raphson method for solution of Eq.
(12) takes the following form

⎧⎪⎨
⎪⎩

K(u(n))ΔΔΔ(n) = −g(u(n))
u(n+1) = u(n) +ΔΔΔ(n)

n = 0,1, . . ., u(0) = 0

(19)

The process can be terminated, for example, when
∥∥u(n+1)−u(n)

∥∥∥∥u(n+1)
∥∥ < TOLERANCE = 10−6, (20)

where the norm is defined for any vector a as
‖a‖=

√
aT a.

Remark 2. Strictly speaking there is a slight de-
viation of the third-order polynomial (3) from the
original curve (2) in the limit case of parameter
β = 0.6 in Fig.1. This deviation can be taken into
account by using higher-order polynomials in the
series expansion in (3). For the sake of simplicity
we do not consider the higher-order polynomials
though technically it can be readily done.

3 Discussion

Based on the experimental results of Ateshian and
his coworkers we developed a nonlinear spring
model for discrete element analysis of contact in
diarthrodial joints. We showed, on the grounds of
the nonlinear model, that the linear spring approx-
imation is reasonable and, consequently, prefer-
able for cartilage strains not exceeding 30% while
larger strains require consideration of the physical
nonlinearity of the cartilage. The validation of the
classical DEA based on the linear spring approx-
imation is probably the main result of the present
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work. Besides, we described a possible modifica-
tion of the classical DEA that allow for taking this
nonlinearity into account.

Evidently, the spring model presents a simplifi-
cation of the real mechanical behavior of carti-
lage. This simplification does not allow for con-
sideration of the interaction of fluid and solid
phases within the cartilage. Neither the spring
model allows accounting for the electro-chemo-
mechanical coupling which takes place during de-
formation. In other words, the spring model is too
crude to give insights into physical processes trig-
gering the gross mechanical response of the carti-
lage. The drawbacks of the spring model should
be stated and realized. It is crucial, at the same
time, not to miss that the spring model is a very
important computational tool concerning practi-
cal clinical applications. For example, contrary
to more physically based approaches to modeling
cartilage, the spring model allowed us to tackle
the problem of the prediction of the collapse of the
femoral head in developing osteonecrosis (Volokh
et al, 2006). The collapse prediction required a
preliminary massive analysis of the contact pres-
sure distribution in the hip joint during activities
of daily living (Yoshida et al, 2006). No other
modeling approach, to the best of our knowledge,
has been applied to a realistic contact problem to
resolve issues occurring in orthopedic practice. It
is our viewpoint that various approaches to mod-
eling cartilage can be interpreted as the optical de-
vices of different resolutions and there is no need
to use a microscope where the naked eye is help-
ful.

Finally, we should mention that the discrete el-
ement method (springs) has been demonstrated
to be accurate and efficient in the Hertzian con-
tact problem as compared to the finite element
method based on the classical elasticity formula-
tion: Shih et al (1993); Stone et al (1996a); Stone
et al (1996b). Even in non-cemented prosthetic
implant and bone interface stress analysis, the dis-
crete element method could readily provide qual-
itative information without the use of finite ele-
ments (Ide et al, 1989). A method similar to DEA
was developed for modeling the knee contact by
Blankevoort et al (1991).
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