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Abstract

Material failure analysis based on the constitutive model of isotropic softening hyperelasticity is presented. In addition
to the bulk and shear moduli the model includes only one material constant of volumetric failure work. The latter is in
contrast to the traditional damage theories, which include internal variables that are difficult to calibrate experimentally.
The softening hyperelasticity model is used to analyze the critical hydrostatic tension corresponding to the onset of insta-
bility of spherical and cylindrical voids. It is shown that the critical tension predicted by the softening hyperelasticity model
does not depend on the void size in agreement with the linear elasticity solution showing that the stress/strain state at the
edge of the void does not depend on its size. This prediction stays in contrast to the prediction based on the Griffith energy
method where the critical tension depends on the size of the void and tends to infinity when the void radius approaches
zero. It is argued that the controversial results of the Griffith method are a consequence of a separation of stress analysis
and criticality conditions. It is concluded, based on the considered examples, that a description of material failure should
be an inseparable part of constitutive models of materials.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The basic idea underlying bulk failure modeling is to introduce a damage parameter, scalar or tensor, which
describes the degradation of material properties during mechanical loading: Kachanov (1958, 1986), and Kra-
jcinovic (1996), Skrzypek and Ganczarski (1999), Lemaitre and Desmorat (2005). The damage parameter is an
internal variable though its possible interpretation as a volumetric density of voids or microcracks is reason-
able. The magnitude of the damage parameter is constrained by (a) a damage evolution equation and (b) a
critical threshold condition similar to the plasticity theories. Potentially, the approach of damage mechanics
is very flexible and allows reflecting the physical processes triggering macroscopic damage at small length
scales. Practically, the experimental calibration of damage theories is far from trivial. It is difficult to measure
the damage parameter directly. The experimental calibration should be implicit and it should include both the
0020-7683/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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damage evolution equation and the damage criticality condition. Because of these difficulties, it seems reason-
able to look for alternative theories that present the bulk material failure in more feasible ways than the tra-
ditional damage theories. Softening hyperelasticity is a possible candidate for a simple description of material
failure.

The roots of the softening hyperelasticity approach can be traced to atomistic analysis of fracture relating
material debonding to atomic separation. Gao and Klein (1998) and Klein and Gao (1998) (and, more recent-
ly, Volokh and Gao, 2005) showed how to mix the atomistic and continuum material descriptions in order to
simulate the fracture process. They applied the Cauchy–Born rule linking microscopic and macroscopic length
scales to empirical potentials, which include a possibility of the full atomic separation. The continuum–atom-
istic linkage called the Virtual Internal Bond method led to the formulation of macroscopic strain energy
potentials allowing for the stress/strain softening and strain localization. The VIB method is very effective
at small length scales where purely atomistic analysis becomes computationally intensive. This approach
found applications in bio- and nano-mechanics concerning the problems of bone fracture (Gao et al., 2003;
Ji and Gao, 2004) and strength of carbon nanotubes (Zhang et al., 2004; Volokh and Ramesh, 2006). Unfor-
tunately, the direct use of the ideas of Gao and Klein in macroscopic damage problems is not very feasible
because the computer implementation of the VIB method includes a numerically involved procedure of the
averaging of the interatomic potentials over a representative volume.

As a macroscopic alternative to the VIB method a phenomenological softening hyperelasticity approach for
modeling material failure has been announced by Volokh (2004) and it is developed and applied to the prob-
lems of cavitation in the present study. The basic idea of the phenomenological softening hyperelasticity
approach is to formulate (find) an expression of the strain-energy, which enforces stress/strain softening.
An example of such strain-energy potential is discussed below. It is crucial that the presented material model
is characterized by two standard constants—shear and bulk moduli—and only one additional constant of the
volumetric failure work, which can be readily calibrated in experiments. The proposed softening hyperelasticity
model of material failure is applied to the problems of spherical and cylindrical void expansion under hydro-
static tension. It is shown that the critical tension corresponding to the instability of the void and initiation of
the dynamic failure propagation does not depend on the size of the void. The latter is in harmony with the
results of linear elasticity that predict independence of stresses and strains at the void edge on the void size.
The observation of the void-size-independent critical tension obtained by using the softening hyperelasticity
approach is remarkably different from the critical tension prediction based on the Griffith (1921) energy
approach widely adapted in the classical fracture mechanics: Bazant and Planas (1998), Broberg (1999), Hertz-
berg (1989), Kanninen and Popelaar (1973), and Knott (1985). We postpone the discussion of this interesting
issue to the last section of the present work.

The paper is organized as follows. We formulate the softening hyperelasticity concept in Section 2.1. Then,
we show how to solve the problem of spherical and cylindrical voids under a hydrostatic tension in Sections
2.2 and 2.3 accordingly. The results of the solution are presented in Section 2.4. After that, we analyze the
cavitation problem by using the Griffith energy method in Sections 3.1 and 3.2 for spherical and cylindrical
voids accordingly. A discussion of the obtained results and comparison of the softening hyperelasticity and
Griffith approaches is given in the last section of the work.
2. Softening hyperelasticity

2.1. Governing equations

We set the strain energy per unit volume in the form
W ¼ U� U 1þ
ffiffiffiffiffiffiffiffiffiffi
K=U

p
tr eÞ expð�

ffiffiffiffiffiffiffiffiffiffi
K=U

p
tr e� ðl=UÞe : e

� �
; ð2:1Þ
where e = e � (tr e)1/3 is the deviatoric strain; coefficients K and l are the bulk and shear moduli, respectively;
and U is a new constant of the isotropic brittle solid—volumetric failure work. Its dimension is work per unit
volume, i.e. it is the same as the dimension of K and l and the dimension of stress. It is worth emphasizing that
the introduced volumetric failure work is different from the separation work traditionally used in the cohesive-



K.Y. Volokh / International Journal of Solids and Structures 44 (2007) 5043–5055 5045
surface-approach to fracture (or the energy release rate of the classical fracture mechanics), which dimension is
work per unit area. In the subsequent analysis, we assume that e is a tensor of small strains.

The physical meaning of the proposed strain energy expression can be clarified by using a schematic dia-
gram shown in Fig. 1. If the material deformation is different from pure hydrostatic compression then the
strain energy approaches a limit value U as a function of an equivalent strain measure jej. Such energy limit
shows that the material cannot sustain arbitrarily large deformations. This is in contrast to the convex energy
function of linear elasticity or polyconvex energy functions of other hyperelastic material models that allow
for arbitrarily large deformation without failure.

Stresses defined by the softening hyperelasticity model (2.1) take the form
Fig. 1.
r ¼ oW
oe
¼ 2~leþ ð~K � 2~l=3Þð tr eÞ1; ð2:2Þ
where
~l ¼ l 1þ
ffiffiffiffiffiffiffiffiffiffi
K=U

p
treÞ expð�

ffiffiffiffiffiffiffiffiffiffi
K=U

p
tr e� ðl=UÞe : e

� �
; ð2:3Þ
and
~K ¼ K exp �
ffiffiffiffiffiffiffiffiffiffi
K=U

p
tr e� ðl=UÞe : e

� �
ð2:4Þ
are the nonlinear shear and bulk moduli, which depend on strains.
The motivation for the specific choice of the strain energy function comes from the consideration of simple

shear and hydrostatic pressure.
In the case of simple shear
s ¼ r12 ¼ r21; c ¼ e12 ¼ e21; ð2:5Þ
(2.2) reduces to
s
U
¼ 2

l
U

c exp �2
l
U

c2
� �

: ð2:6Þ
The shape of this curve appears in Fig. 2a. Qualitatively, this means that the magnitude of the shear stress
increases with the shear strain, reaches a maximum, and then approaches zero with increasing separation.
The local maximum of the curve is at point cmax ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
U=4l

p
. Assume, for example, that the maximum shear

for the given material is
cmax ¼ 10�3: ð2:7Þ
Then we have
l=U ¼ 2:5� 105: ð2:8Þ
W

Φ

ε

Linear elasticity

Softening hyperelasticity 

Linear elasticity without limiters of the strain energy versus softening hyperelasticity with a limited magnitude of the strain energy.
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Fig. 2. Physical motivation of the softening hyperelasticity model with simple shear (a) and hydrostatic pressure (b).

5046 K.Y. Volokh / International Journal of Solids and Structures 44 (2007) 5043–5055
Substituting (2.8) in (2.6) we obtain
s
U
¼ 5� 105c exp �5� 105c2

� �
: ð2:9Þ
The graph of this function is shown in Fig. 2a. In the case of pure hydrostatic pressure
r ¼ r1; e ¼ e1; ð2:10Þ
(2.2) reduces to
r
U
¼ 3

K
U

e exp �3

ffiffiffiffi
K
U

r
e

 !
: ð2:11Þ
The shape of this curve appears in Fig. 2b. Qualitatively, it can be interpreted as increase of tension with the
increase of the material volume at the point, it reaches a maximum, and then approaches zero with increasing
separation. The latter is nothing but the void nucleation.

Assume that material is defined by K/l = 1.5, for example, then
K=U ¼ 3:75� 105 ð2:12Þ
and (2.11) takes the form
r
U
¼ 11:25� 105e exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:25� 105

p
e

� �
: ð2:13Þ
The graph of this function is shown in Fig. 2b.
Equilibrium equations and natural boundary conditions for the softening hyperelasticity model defined by

(2.1) are obtained by varying the total energy with respect to displacements
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dEtotal ¼ d
Z

X
W dV �

Z
oX

�t � dudA; ð2:14Þ
where X is a body under consideration with boundary oX where tractions �t or displacements u are prescribed.
In case of small strains, we have the following local equilibrium equations and boundary conditions
accordingly
divr ¼ 0; ð2:15Þ
rn ¼ �t; ð2:16Þ
where n is a unit outward normal.
Finally, we should note that linearizing Eq. (2.2) with respect to strains we obtain the classical equations of

linear elasticity
r ¼ 2leþ ðK � 2l=3Þð tr eÞ1: ð2:17Þ
This same result is obtained alternatively by setting U!1 in (2.3) and (2.4) in correspondence with Fig. 1.

2.2. Spherical void

Let us consider centrally symmetric deformation of a spherical void—Fig. 3 (left). In this case displace-
ments and strains take the following form in spherical coordinates {r,h,u}:
u ¼ uðrÞkr; ð2:18Þ
e ¼ 1

2
ruþruT
� �

¼ errkr � kr þ ehhkh � kh þ euuku � ku; ð2:19Þ

err ¼
ou
or

; ehh ¼
u
r

; euu ¼
u
r
; ð2:20Þ
where
kr ¼ ðsin h cos u; sin h sin u; cos hÞT;
kh ¼ ðcos h cos u; cos h sin u; � sin hÞT;
ku ¼ ð� sin u; cos u; 0ÞT:

8><
>: ð2:21Þ
In this case, the stress tensor takes the following form
r ¼ rrrkr � kr þ rhhkh � kh þ ruuku � ku; ð2:22Þ
rrr ¼ 2~lerr þ ð~K � 2~l=3Þtr e;

rhh ¼ 2~lehh þ ð~K � 2~l=3Þtr e;

ruu ¼ 2~leuu þ ð~K � 2~l=3Þtr e:

8><
>: ; ð2:23Þ
a

b

p

p

ab

Fig. 3. Spherical and cylindrical cavities under hydrostatic tension.
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and equilibrium Eq. (2.15) reduces to
orrr

or
þ 2

rrr � rhh

r
¼ 0: ð2:24Þ
Two boundary conditions are imposed on it
rrrðr ¼ aÞ ¼ 0;

rrrðr ¼ bÞ ¼ p:

�
ð2:25Þ
Substituting (2.20) and (2.23) in (2.24) and (2.25), we obtain a nonlinear two-point boundary value problem in
terms of radial displacement u.
2.3. Cylindrical void

Let us consider axially symmetric and plane strain deformation of a cylindrical void—Fig. 3 (right). In this
case, displacements and strains take the following form in cylindrical coordinates {r,h,z}:
u ¼ uðrÞkr; ð2:26Þ
e ¼ 1

2
ruþruT
� �

¼ errkr � kr þ ehhkh � kh; ð2:27Þ

err ¼
ou
or

; ehh ¼
u
r
; ð2:28Þ
where
kr ¼ ðcos h; sin h; 0ÞT

kh ¼ ð� sin h; cos h; 0ÞT

kz ¼ ð0; 0; 1ÞT

8><
>: : ð2:29Þ
In this case, the stress tensor takes the following form
r ¼ rrrkr � kr þ rhhkh � kh þ rzzkz � kz; ð2:30Þ
rrr ¼ 2~lerr þ ð~K � 2~l=3Þ tr e

rhh ¼ 2~lehh þ ð~K � 2~l=3Þ tr e

rzz ¼ ð~K � 2~l=3Þ tr e

8><
>: ; ð2:31Þ
and equilibrium Eq. (2.15) reduces to
orrr

or
þ rrr � rhh

r
¼ 0: ð2:32Þ
Two boundary conditions are imposed on it
rrrðr ¼ aÞ ¼ 0;

rrrðr ¼ bÞ ¼ p:

�
ð2:33Þ
Substituting (2.28) and (2.31) in (2.32) and (2.33) we obtain a nonlinear two-point boundary value problem in
terms of the radial displacement u.
2.4. Results

Numerical solution of the described problems is generated by using the shooting method with a displace-
ment control. According to it, we, first, make the initial guess for displacement u(0) at the void surface r = a.
Second, we calculate (ou/or)(0) at the void surface from condition (2.25)1 or (2.33)1. Third, we solve the initial
value problem with given u(0) and (ou/or)(0). The latter step is accomplished by using the ‘NDSolve’ numerical
integrator of Mathematica for the solution of the initial value problem. Three mentioned steps are repeated
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iteratively unless the normal stress at the outer surface r = b converges to the given magnitude p and condi-
tions (2.25)2 or (2.33)2 are obeyed.

Typical pressure–displacement curves are presented in Fig. 4 for spherical (a) and cylindrical (b) voids with
l/U = 2.5 · 105 given in (2.8) and K/U = 3.75 · 105 given in (2.12). These curves do not change for a/b < 0.01,
i.e. the critical tension is independent of the void size!

Fig. 5 presents parametric studies of the normalized critical tension pcr/l for different values of maximum
shear strain cmax and Poisson ratio m, which are related to the normalized volumetric failure work and bulk
modulus as follows: U=l ¼ 4c2

max and K/l = 2(1 + m)/3(1 � 2m). The critical tension increases with the increas-
ing work of material failure U as expected.

3. Griffith energy approach

Griffith (1921) energy approach consists of two steps. First, the solution of linear elasticity is obtained. Sec-
ond, the energy balance is considered to provide creation of a new surface at the void edge.

3.1. Analysis of the spherical void expansion

In the case of linear elasticity, the setting of Section 2.2 is simplified with account of constant bulk and
shear moduli. Particularly, (2.23) takes form
rrr ¼ 2lerr þ ðK � 2l=3Þ tr e;

rhh ¼ 2lehh þ ðK � 2l=3Þ tr e;

ruu ¼ 2leuu þ ðK � 2l=3Þ tr e:

8><
>: : ð3:1Þ
Then equilibrium equation in terms of displacements reduces to the following form:
o2u
or2
þ 2

ou
ror
� 2

u
r2
¼ 0: ð3:2Þ
Its solution with account of boundary conditions (2.25) is
u ¼ p

1� ða=bÞ3
1� 2m

E
r þ 1þ m

E
a3

r2

� 	
; ð3:3Þ
where elasticity modulus E = 9Kl/(3K + l) and Poisson ratio m = (3K � 2l)/2(3K + l) were used. Substitut-
ing this solution in kinematic (2.20) and constitutive (3.1) equations we have
err ¼ ou
or ¼

p
1�ða=bÞ3

1�2m
E �

2ð1þmÞ
E

a3

r3

� �
;

ehh ¼ u
r ¼

p
1�ða=bÞ3

1�2m
E þ 1þm

E
a3

r3

� �
;

euu ¼ u
r ¼

p
1�ða=bÞ3

1�2m
E þ 1þm

E
a3

r3

� �
;

8>>>><
>>>>:

ð3:4Þ

rrr ¼ p
1�ða=bÞ3 1� a3

r3

� �
;

rhh ¼ p
1�ða=bÞ3 1þ a3

2r3

� �
;

ruu ¼ p
1�ða=bÞ3 1þ a3

2r3

� �
:

8>>>><
>>>>:

ð3:5Þ
Assuming b� a, we obtain the following strains and stresses at the void surface r = a:
err ¼ �ð1þ 4mÞp=E;

ehh ¼ euu ¼ ð2� mÞp=E;

�
ð3:6Þ

rrr ¼ 0;

rhh ¼ ruu ¼ 3p=2:

�
ð3:7Þ
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Let us consider, following Griffith, the energy balance during the void expansion. The total strain energy is
W T ¼ 1
2

4pb2p
� �

ub ¼ 2pb2pub; ð3:8Þ
where ub�u(r = b).
Suppose now that the void extends to radius a + da where da is a small perturbation. In this case, new sur-

face of area 4p(a+da)2�4pa2 ffi 8pada is created. Thus, the energy release for the creation of this area can be
written as follows
G8pada ¼ 4pb2pdub � dW T; ð3:9Þ
where the first term on the right-hand side is for the work of the external forces and
ub ¼ uðbÞ ¼ p

1� ða=bÞ3
1� 2m

E
bþ 1þ m

E
a3

b2

� 	
: ð3:10Þ
Substituting (3.10) in (3.9) we obtain
G8pada ¼ 2pb2p
dub

da
da: ð3:11Þ
where
dub

da
¼ 1� m

E
6pða=bÞ2

1� ða=bÞ3
� �2

: ð3:12Þ
Thus, the energy release rate takes the form
G ¼ 3ð1� mÞ
2E

p2a

1� ða=bÞ3
� �2

; ð3:13Þ
If the critical energy release rate Gc is known for the given material, we can compute the critical tension for
b� a:
pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EGc

3ð1� mÞa

s
: ð3:14Þ
Thus, the critical tension is inversely proportional to the square root of the void radius. The critical tension
can increase unlimitedly with decrease of the radius.

3.2. Analysis of the cylindrical void expansion

In the case of linear elasticity, the setting of Section 2.3 is simplified with account of constant bulk and
shear moduli. Particularly, (2.31) takes form
rrr ¼ 2lerr þ ðK � 2l=3Þ tr e;

rhh ¼ 2lehh þ ðK � 2l=3Þ tr e;

rzz ¼ ðK � 2l=3Þ tr e:

8><
>: ; ð3:15Þ
Then equilibrium equation in terms of displacements reduces to the following form:
o2u
or2
þ ou

ror
� u

r2
¼ 0: ð3:16Þ
Its solution with account of boundary conditions (2.33) is
u ¼ 1þ m
E

p

1� ða=bÞ2
ð1� 2mÞr þ a2

r

� 	
: ð3:17Þ
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Substituting this solution in kinematic (2.28) and constitutive (3.15) equations we have
err ¼ ou
or ¼ 1þm

E
p

1�ða=bÞ2 ð1� 2mÞ � a2

r2

� �
;

ezz ¼ 0;

ehh ¼ u
r ¼ 1þm

E
p

1�ða=bÞ2 ð1� 2mÞ þ a2

r2

� �
;

8>>><
>>>:

ð3:18Þ

rrr ¼ p
1�ða=bÞ2 1� a2

r2

� �
;

rhh ¼ p
1�ða=bÞ2 1þ a2

r2

� �
;

rzz ¼ 2mp
1�ða=bÞ2 :

8>>>><
>>>>:

ð3:19Þ
Assuming b� a we obtain the following strains and stresses at the void surface r = a:
err ¼ �2mð1þ mÞp=E;

ehh ¼ 2ð1� m2Þp=E;

ezz ¼ 0;

8><
>: ð3:20Þ

rrr ¼ 0;

rhh ¼ 2p;

rzz ¼ 2mp:

8><
>: ð3:21Þ
Let us consider, following Griffith, the energy balance during the void expansion. The total strain energy is
W T ¼ 1
2

2pbpð Þub ¼ pbpub; ð3:22Þ
where ub�u(r = b).
Suppose now that the void extends to radius a + da where da is a small perturbation. In this case, new sur-

face of area 2p(a+da)�2pa ffi 2pda (for a unit height of the void) is created. Thus, the energy release for the
creation of this area can be written as follows:
G2pda ¼ 2pbpdub � dW T; ð3:23Þ
where the first term on the right-hand side is for the work of the external forces and
ub ¼ uðbÞ ¼ 1þ m
E

pb2

b2 � a2
ð1� 2mÞbþ a2

b

� 	
: ð3:24Þ
Substituting (3.24) in (3.23) we obtain
G2pda ¼ pbp
dub

da
da: ð3:25Þ
where
dub

da
¼ 1� m2

E
4pb3a

ðb2 � a2Þ2
: ð3:26Þ
Thus, the energy release rate takes the form
G ¼ 1� m2

E
2p2b4a

ðb2 � a2Þ2
; ð3:27Þ
If the critical energy release rate Gc is known for the given material, we can compute the critical tension for
b� a:
pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EGc

2ð1� m2Þa

s
: ð3:28Þ
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Again, like in the previous section the critical tension is inversely proportional to the square root of the void
radius. The critical tension can increase unlimitedly with decrease of the radius.

4. Discussion

A constitutive theory of softening hyperelasticity for modeling failure of isotropic solids has been developed
and applied to the problem of cavitation. The exponential stored energy expression describes material failure
via strain softening. The material bulk modulus and the shear modulus of an isotropic material are completed
with a new constant—the volumetric failure work, which controls softening. The material model is interpreted
based on the simple shear and hydrostatic pressure examples. The distortional (deviatoric) deformation at the
given point exhibits behavior analogous to the simple shear, which graph is shown in Fig. 2a. The dilatational
(volumetric) deformation at the given point exhibits behavior analogous to the hydrostatic pressure, which
graph is shown in Fig. 2b. The softening hyperelasticity framework is applied to the problem of spherical
and cylindrical void growth under hydrostatic tension. The force–displacement curves are tracked numerically
(Fig. 4) and the critical tension is calculated. It is found that the critical tension does not depend on the size of
the void for small voids. This result is intuitively expected because the constitutive model does not include the
characteristic length. Parametric studies of the dependence of the critical tension on the parameter of the vol-
umetric failure work are performed. It is shown that the critical tension increases with the increase of the mag-
nitude of the volumetric failure work (Fig. 5).

Besides, an alternative analysis of cavitation is considered based on the Griffith energy approach. It is found
that the critical tension depends on the size of the void—Eqs. (3.14) and (3.28). The latter notion leads to a
controversial conclusion that the critical tension can increase unlimitedly with the decrease of the void size. It
is important to realize that controversial results of the Griffith approach are not inherent in the problems of
the spherical or cylindrical void growth only. There is a general issue of size dependence concerning the Grif-
fith approach. To illustrate this point, let us consider an elliptic cavity/crack. We assume that the cavity is
small as compared to the size of the hosting body. In this case, the stress/strain concentration at the edge
of the cavity is independent of the cavity size though it depends on the ratio of the elliptic radii. Even in
the limit case of an ideal mathematical crack when the ratio of the elliptic radii approaches zero and the stress
state is singular, there is no size dependence in stresses and strains. The size independence of the solution of
cavity problem is a consequence of the fact that the elasticity theory and the classical continuum mechanics are
length-independent. Contrary to these theories, the Griffith approach is length-dependent because it introduc-
es the surface energy in analysis and the G/E ratio, for example, sets up the characteristic length. Introduction
of the characteristic length in the Griffith approach is not in peace with the basic formulation of the classical
continuum mechanics. Evidently, the Griffith criticality condition is separated from stress analysis both phys-
ically and mathematically. We find this fact discouraging and emphasize the necessity to include the criticality
(failure) conditions directly in the constitutive model of materials.

It should not be missed, however, that the discussed above independence of the solution on the defect size is
violated in the following two limit cases. The first limit case corresponds to a defect whose size is comparable
with the size of the hosting structure. It is not a simple matter to define the comparability; actually, the stress/
strain state in a structure under consideration will affect such a definition. It is important, however, that in this
case the continuum mechanics analysis will ‘feel’ the size of the defect. The latter means, particularly, that the
critical tension for a big spherical cavity in the softening hyperelasticity analysis considered in our work will
depend on the ratio between the cavity size and the hosting sphere radius. In other words, the classical con-
tinuum mechanics with the embedded material failure conditions will exhibit the length-dependence for a big
defect. Another limit case is a very small cavity. The classical continuum mechanics may not be applicable at
very small length scales and an enhanced continuum formulations can be required where the characteristic
lengths are a part of the general theoretical framework like in the case of strain-gradient plasticity (Hutchin-
son, 2000), for instance. We believe, however, that the generalized continuum formulation should include a
possible mechanism of the material failure as its integral part and not as a separate condition like in the case
of the Griffith approach.

Concerning the cavitation problem considered in the present work it should be noted that a number of
approaches based on various nonlinear elasticity theories, including those called ’deformation plasticity’, have



5054 K.Y. Volokh / International Journal of Solids and Structures 44 (2007) 5043–5055
been considered in the literature: Bassani et al. (1980), Ball (1982), Abeyaratne and Horgan (1985), Huang
et al. (1991), Fond (2001). Cavitation instabilities were described in these works based on various constitutive
models. It is interesting, however, that none of these models included strain softening on purpose as it is done
in the present work where the softening is controlled by a material constant, /.

Considering restrictions of the present study we should emphasize that the softening hyperelasticity
approach was used in the above calculations for the prediction of the critical state of deformation where
the onset of global instability occurs due to material failure. When the general postcritical evolution of failure
is of interest two numerical problems concerning the finite element implementation of softening hyperelasticity
should be addressed. First, it is necessary to introduce the energy dissipation in the finite element model in
order to preclude from the material healing. This can be done, for example, by decreasing the material con-
stants within a finite element by few orders of magnitude after the element energy reaches the critical value of
the volumetric failure work. In other words, the damaged material should have new and low magnitudes of the
material constants. The second issue is related with the necessity to regularize the ill-posed numerical problem
where the loss of ellipticity/hyperbolicity of the governing equations with softening can lead to the patholog-
ical mesh-sensitivity1 (Crisfield, 1997; Belytschko et al., 2000; de Borst, 2001). The regularization procedure
should introduce a characteristic length in the calculation precluding the mesh sensitivity. Three following
approaches are considered in the literature to regularize the numerical problem of the FE-mesh sensitivity.
The first approach suggests replacing the classical continuum formulation with a generalized continuum for-
mulation—higher-order, gradient, or non-local theories (de Borst and van der Giessen, 1998). The generalized
continuum formulations introduce material length parameters, which control the strain localization processes.
The only shortcoming of the generalized continuum formulations is the need to give a clear physical interpre-
tation to the necessary additional boundary conditions. The second approach goes back to the work of Hil-
lerborg et al. (1976). The basic idea of this approach is to introduce a characteristic material length directly in
the FE model bypassing the PDE formulation. This approach proved itself in numerical simulations suppress-
ing the pathological mesh sensitivity and it was adapted by ABAQUS for analysis of concrete structures. The
third approach to the treatment of mesh sensitivity can be called dynamic regularization. The basic idea of this
approach is to introduce the characteristic length in the problem implicitly through the rate dependence of the
constitutive or balance equations. Needleman (1988), for example, observed that rate-dependence of the mate-
rial regularizes the ill-posed numerical problem. He notes, however, that whether or not the introduced implic-
it length-scale is relevant depends on the particular circumstances. Another sort of regularization was reported
by Zhang et al. (2002), who added the viscous forces to the momentum balance equations within the frame-
work of the VIB method. They observed in simulations that the artificial dumping suppressed the mesh sen-
sitivity. These results are promising and they can be applied for the regularization of the failure evolution
problem within the framework of the softening hyperelasticity theory proposed in the present work.
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