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Abstract

A new strain gradient plasticity theory is formulated to accommodate more than one material
length parameter. The theory is an extension of the classical J2 flow theory of metal plasticity to
the micron scale. Distinctive features of the proposed theory as compared to other existing theories
are the simplicities of mathematical formulation, numerical implementation and physical
interpretation.

The proposed theory is based on the physical idea that the effective plastic strain is a measure of
the defect1 density. The latter allows interpreting the yield/hardening condition as an equation
describing (quasi-static) evolution of defects. At the macroscopic scale, the defect diffusion is negli-
gible and the yield condition is a purely algebraic equation. At the scale of microns, however, the
defect diffusion is sound and it can be included in the yield condition through the divergence of
the vector of the defect flux. We propose that the defect flux is linearly proportional to the gradient
of the defect density, i.e. the accumulated plastic strain. This proportionality is provided by a second-
order tensor of the defect conductivity. Such tensor is the main source of the material characteristic
lengths. If, for example, this tensor is equivalent to the length-scaled identity tensor then we arrive at
the earlier Aifantis theory of strain gradient plasticity where the defect diffusion is isotropic. It is rea-
sonable, however, to assume that the defect diffusion is not purely isotropic and stresses induce
anisotropy. The latter means that the defect conductivity tensor should depend on the scaled stress
tensor. The corresponding formulation of strain gradient plasticity is developed in the present work.
It appears that the proposed theory is, probably, the simplest one among the theories, which include
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more than one characteristic length. It is also important that in contrast to the majority of strain
gradient theories no direct use of higher-order stresses, which can hardly be interpreted in simple
physical terms, has been made in the present work.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Defects/dislocations; Plasticity theory; Strain gradients

1. Introduction

Over the past few decades the research focus in materials science and solid mechanics
has shifted towards small length scales. This trend was necessitated by the technological
development of small structures like MEMS, thin films, etc. on the one hand and the need
to understand and hopefully design materials based on their microstructural properties on
the other hand. Traditional approaches of the classical continuum mechanics fail to pro-
vide vital information about mechanical behavior of materials and structures at the
micron scale. For example, experiments with wire torsion and film bending as well as
the indentation tests unambiguously demonstrate that inelastic deformation of metal
structures is size-dependent at the micron scale: smaller is stronger (e.g. Fleck et al.,
1994; Fleck and Hutchinson, 1997; Nix and Gao, 1998; Stolken and Evans, 1998; McElha-
ney et al., 1998; Hutchinson, 2000). Evidently, the classical formulation of continuum
mechanics, which is length-independent, should be modified to display the size effect.

An implicit and physically sound (yet computationally involved) way to account for the
size effect is to consider the dynamics of defects/dislocations (Devincre and Kubin, 1997;
Zbib et al., 2002; Deshpande et al., 2005; Ohashi et al., 2007). An explicit and phenome-
nological way to account for the size effect is to consider enhanced continuum formula-
tions where the characteristic length appears naturally in the governing equations. It is
possible, for example, to introduce non-local continua where the stress at a point depends
on the deformation history in finite and small neighborhood of the considered point. The
size of this neighborhood is the desired length scale. Such an approach is based on an inte-
gral rather than a differential dependence in the constitutive equations (Bazant et al., 1984;
Pijaudier-Cabot and Bazant, 1987). This approach has mainly been employed in conjunc-
tion with a damage theory formulation but can also be used to introduce a length scale
into a plasticity theory (Leblond et al., 1994; Stromberg and Ristinmaa, 1996; Needleman
and Tvergaard, 1998; Polizzotto et al., 1998; di Luzio and Bazant, 2005). Another
approach to the enhancement of the classical continuum is provided by relaxing the
assumption that the stress at a point depends on the first gradient of deformation only.
The introduction of the second deformation gradient leads to a variety of the ‘gradient’
theories which present the mainstream of the works on the length-dependent elastic–plas-
tic continua. The name ‘gradient’ reflects the idea of introducing the characteristic lengths
as scaling factors for the spatial derivatives of strains (second gradients of deformations) in
order to provide the dimensional consistency of differential equations. Aifantis (1984)
introduced this idea in his pioneering work on strain gradient plasticity (SGP) where a
length-scaled Laplacian of the effective plastic strain was included in the yield condition.
This formulation acquired a sound mathematical form in the work by Muhlhaus and
Aifantis (1991) and led to the growing interest in the development of various SGP theories
(de Borst, 1993).
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Among the influential developments of SGP we mention a series of papers by Fleck
et al. (1994) and Fleck and Hutchinson (1993, 1997, 2001). The earlier papers of these
authors introduced a phenomenological SGP as an extension of the Toupin–Mindlin elas-
ticity theory (with higher-order stresses work-conjugate to spatial derivatives of strains) to
inelasticity. Later Fleck and Hutchinson (2001) reformulated their earlier higher-order
SGP theory aiming at the significant reduction of the number of unknowns and equations.
Such compactification allowed them to introduce three independent length factors within a
relatively simple theoretical framework. A variety of theories have been developed aimed
at relating the parameters that enter a phenomenological theory to physical quantities.
Many of them focus on crystalline solids where the deformation mechanism is dislocation
glide. For example, Gao et al. (1999) and Huang et al. (2000) introduced a phenomenolog-
ical SGP where a multi-scale link to the microscopic dislocation structure had been made.
Their approach has been further extended from phenomenological to crystal plasticity
(Han et al., 2005a,b). Gurtin (2000, 2002, 2003) and Gurtin and Anand (2005) developed
a very general and elegant size-dependent crystal plasticity framework. In a different con-
text, a similar approach can be found in Gudmundson (2004) and Fredriksson and Gud-
mundson (2005). A variant of the physically based theory of gradient plasticity has been
proposed by Al-Rub and Voyiadjis (2006) recently.

Reviewing the SGP development, we should mention that Acharya and Bassani (2000)
and Bassani (2001) proposed a class of lower-order gradient theories, which main premise
is that the higher-order gradients of plastic strains can be introduced in the tangent hard-
ening moduli without adding boundary conditions (see also Huang et al., 2004; Liu et al.,
2004; Hwang et al., 2004; Qu et al., 2006; Wallin and Ristinmaaw, 2005; Brinckmann
et al., 2006; Zhang et al., 2007). Evidently, this premise is mathematically doubtful because
the increase of the order of differential equations, as a result of the introduction of the
higher-order gradients of plastic strains, should be accompanied by the introduction of
additional boundary conditions, which provide the well-posedness of the boundary value
problem. Advancing this argument Volokh and Hutchinson (2002) demonstrated that the
problem of simple shear of an elastic–plastic layer is ill-posed within the framework of a
lower-order SGP. Particularly, they showed that a third-order differential equation with
only two boundary conditions prescribed by the lower-order SGP in the case of simple
shear possesses an unlimited number of solutions, which can be readily generated numer-
ically. Defending the lower-order SGP Acharya et al. (2004) presented a lengthy argument
that, in our opinion, did not resolve the main problem of the lower-order theories – math-
ematical inconsistency. Unfortunately, this inconsistency is often hidden by numerical
procedures that regularize the ill-posed problem implicitly. An interesting investigation
of the validity of the lower-order theories can be found in Yun et al. (2004) where the prin-
cipal conclusion directly supports the Volokh and Hutchinson’s (2002) argument though
on the different theoretical grounds. This point is further discussed in Huang et al. (2004)
where the inability of the lower-order theories to capture the boundary layer solutions is
emphasized.

In the present work, we develop a simple version of the phenomenological SGP the-
ory naturally accommodating two (or more) characteristic lengths. The physical idea
behind this development is that the accumulated effective plastic strain is a measure
of defect/dislocation density (Aifantis, 1987). This allows interpreting the yield condition
as a defect (quasi-static) evolution equation, which links the plastic hardening to the
motion of defects. At the macroscopic scale, the defect diffusion is negligible and the
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yield condition is a purely algebraic equation. At the scale of microns, however, the
defect diffusion is sound and it can be included in the yield condition through the diver-
gence of the vector of defect flux. We propose that the defect flux is linearly proportional
to the gradient of the defect density, i.e. the accumulated plastic strain. This proportion-
ality is provided by the introduction of a second-order tensor of the defect conductivity.
Such tensor is the main source of the material characteristic lengths. If, for example, this
tensor is equivalent to the length-scaled identity tensor then we arrive at the earlier
Aifantis theory of strain gradient plasticity where the defect diffusion is isotropic. We
assume, however, that the defect diffusion is not purely isotropic and stresses induce
the diffusion anisotropy. The latter means that the scaled stress tensor should be a part
of the defect conductivity tensor. The corresponding formulation of strain gradient plas-
ticity is developed in the present work. It appears that the proposed theory is, probably,
the simplest one among the theories, which include more than one characteristic length.
It is also important that in contrast to the majority of strain gradient theories no direct
use of higher-order stresses, which can hardly be interpreted in simple physical terms,
has been made in the present work.

2. Governing equations

We consider equilibrium of elastic–plastic solids under small deformations

divr ¼ 0 in X; ð1Þ
rn ¼ �t or u ¼ �u on oX; ð2Þ

where r is the Cauchy stress tensor; t is a surface traction; n is a unit outward normal to
the boundary oX of body X; and u is a displacement field. The barred quantities are
prescribed.

The strain tensor is decomposed in the elastic and plastic parts

e ¼ ðruþruTÞ=2 ¼ ee þ ep; ð3Þ
where the plastic deformation is incompressible

trep ¼ 0: ð4Þ
Hooke’s law for isotropic elasticity takes the form

r ¼ C : ðe� epÞ; Cijmn ¼ ðK � 2G=3Þdijdmn þ Gðdimdjn þ dindjmÞ; ð5Þ
where K and G are the bulk and shear moduli accordingly.

The flow rule takes the form

_ep ¼ _epm; ð6Þ
where

_ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2_ep : _ep=3

p
; ð7Þ

m ¼ 3s=ð2rÞ; ð8Þ
s ¼ r� ðtrrÞ1=3; ð9Þ
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s : s=2

p
: ð10Þ

Introducing the effective or accumulated plastic strain

2088 K.Y. Volokh, P. Trapper / International Journal of Plasticity 23 (2007) 2085–2114



Author's personal copy

ep ¼
Z

_ep dt; ð11Þ

we can write the yield condition in the following form

f ¼ r� ryðepÞ � divgðrepÞ ¼ 0; ð12Þ
where the hardening function ryðepÞ is derived experimentally and g is a vector of the de-
fect flux discussed below.

We have to comment on the physical phenomena underlying the phenomenological the-
ory of plasticity in order to motivate the specific form of (12). We start with the notion,
which is widely accepted by researchers in the field of metal plasticity, that the macro-
scopic plastic flow is essentially a result of the motion and accumulation of crystal defects2

including point defects, dislocations, and surface defects. While the microscopic flow of
the defects is usually confined to certain directions within the grains, the macroscopic plas-
tic flow is an average over numerous grains and its direction is defined by the macroscopic
(normalized) stress as it appears, for example, in the flow rule (6). The rate of the flow is
defined by the rate of the accumulation of plastic strain – the plastic multiplier in (6). The
flow rule cannot capture, however, the conditions of the flow onset. Such a condition – the
yield condition – is usually separated from the flow rule and it depends on the current state
of the defect distribution. The yield condition generally changes with the defect flow rep-
resenting the so-called hardening effect. To characterize the state of the defect distribution
its measure should be chosen. The defect density seems to be an appropriate measure of
the microscopic defect distribution and it is natural to regard the accumulated plastic
strain (11) as a macroscopic measure of the defect density. Thus, the yield condition
depends on the accumulated plastic strain or the defect density. We interpret the yield con-
dition as an indicator of the quasi-static evolution of the defect distribution. Such an indi-
cator is usually set in the stress space. The latter, apparently, gave rise to the interpretation
of the yield condition as the microforce balance by some authors. Such an interpretation is
meaningless, of course, if the yield condition is set in the strain space. The latter is the rea-
son why we prefer to consider the yield condition as an indicator of the evolution of the
defect distribution without directly referring to its specific appearance. It is traditionally
assumed that the yield condition depends only on the magnitude of the accumulated strain
or the defect distribution and not on its spatial gradient. This assumption is natural
because it allows ruling out non-local effects and preserving the length-independence of
the macroscopic theories. If, however, the length-dependence is necessary as in the case
of the structures at the micron scale or the problems of the shear band formation then
the non-local nature of the defect distribution should be taken into account and the spatial
gradients of the accumulated strain/defect density should be included in the yield condi-
tion. The latter can be arranged in a variety of ways. Keeping in mind that the yield con-
dition describes the gradual evolution of the defect distribution, it is natural to set the yield
condition in the form of a quasi-static evolution equation of the reaction diffusion type.
Such a formulation implies the appearance of the third term on the right-hand side of
(12) where a measure, g, of the defect/accumulated strain flux is introduced. This measure
is a function of the spatial gradient of the defect density/accumulated strain. Assuming the

2 Of course, twinning, void growth, grain boundary sliding and phase transitions can also contribute to the
plastic flow.
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simplest linear relationship between the measure of the defect flux and the spatial gradient
of the defect density we can write the following constitutive law

g ¼ �Drep; ð13Þ
where D can be called the defect conductivity tensor by analogy with similar laws in mass
and heat transfer. It is reasonable to assume that the defect diffusion should be stress-
dependent as the defect flow itself. Thus, the coefficient tensor D should be stress-depen-
dent. Since we do not have enough information on this tensor, we can try the following
formal way to make it more specific. First, we assume that D is approximated by a poly-
nomial of the stress tensor

DðmÞ ¼ a1ðI2ðmÞ; I3ðmÞÞ1þ a2ðI2ðmÞ; I3ðmÞÞmþ a3ðI2ðmÞ; I3ðmÞÞm2; ð14Þ
where a1, a2, and a3 are functions of the second I2 and the third I3 principal invariants of
the normalized deviatoric stress tensor m; and 1 is the second-order identity tensor. The
first principal invariant equals zero I1 ¼ 0 by definition of m. The higher-order terms in
m can be reduced to the above form because of the Cayley–Hamilton theorem. Evidently,
(14) can also be interpreted as a power series expansion of the unknown tensor function.
Again, we do not know the specific forms of functions a1, a2, a3 and we assume that they
can be expanded in the power series with respect to the principal invariants of m or
approximated by the polynomials of the invariants. Because of the lack of information
we ignore all terms in such representations except constants

a1 ¼ b1 ¼ constant; a2 ¼ b2 ¼ constant; a3 ¼ b3 ¼ constant: ð15Þ

These constants are related to the characteristic lengths. We further reduce the number of
constants to two

b1 ¼ Ea2
1; b2 ¼ �Ea2

2; ð16Þ
where E is the elasticity modulus and a1 and a2 are the characteristic lengths. Negative sign
is chosen for b2 based on the solution of the void growth and beam bending problems,
which are considered in Section 3. The negative sign prevents from the degeneration of
Eqs. (71) and (89).

After all simplifications, the tensor of the defect conductivity takes the form

D ¼ Eða2
11� a2

2mÞ: ð17Þ
Obviously, the first length parameter a1 is related with isotropic diffusion presented by the
second-order identity tensor 1; the second length parameter a2 is related with anisotropic
diffusion presented by the normalized stress deviator m. Thus, we correct the general iso-
tropic diffusion term with the anisotropy induced by stresses.

It is worth mentioning that a slightly different discussion of the physical basis for equa-
tions of type (12) and (17) can be found in numerous works of Aifantis and his co-workers.
Our mathematical development of the earlier Aifantis theory is in relaxing the form of the
diffusion coefficient which was assumed to be a scalar in the original theory. Here, we pro-
pose the second-order defect conductivity tensor, which is generally stress-dependent,
instead of the constant scalar diffusion coefficient.

Though a rough physical reasoning is unavoidable in developing a phenomenological
theory it is always speculative. Those readers who are not fully satisfied with the argu-
ments presented above may wish to alternatively consider the mechanism-based strain gra-
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dient plasticity developed by Gao and Huang and their collaborators. They link the meso-
scale kinematics to the dislocation structure directly. Though this achievement decreases
the physical uncertainty of the phenomenological plasticity model the necessity to intro-
duce a collection of physically unclear higher-order stresses, which are work-conjugate
to the strain gradients, seems to increase the uncertainty back.

Considering the yield equation in the form (12) it must be remembered that the intro-
duction of the spatial derivatives of the effective plastic strain requires additional bound-
ary conditions on the surface of the plastic zone

ep ¼ 0 or g � n ¼ 0; on oXp: ð18Þ
The first condition corresponds to the constrained and the second to the non-constrained
motion of defects on the proper boundary of a plastic zone. It is fortunate that the first
condition is automatically satisfied on the boundaries of plastic zones inside the body.
Thus, conditions (18) should be set on the general body boundaries

ep ¼ 0 or g � n ¼ 0; on oX: ð19Þ
Our treatment of boundary conditions follows that of Fleck and Hutchinson (2001) and
we consider the elastic–plastic interface free of dislocations. Alternatively, Gudmundson
(2004) suggests that dislocations are accumulated at the interface between the elastic
and plastic phases. It is not clear in the latter case what serves as an obstacle for further
intervention of the dislocations into the elastic region. It should be admitted, nonetheless,
that physical connotation of the additional boundary conditions is a subtle matter. It is
possible, for example that conditions (19) represent two extreme cases while many prob-
lems should require somewhat intermediate situations. The dislocation dynamic simula-
tion can hopefully, shed light on the correct formulation of the continuum boundary
conditions (19). Han et al. (2006) found, for example, that dislocations behaved similarly
at the free surface and the substrate interface of a thin film subjected to a uniform applied
stress (Fig. 7 of Han et al., 2006). This result based on the dislocation dynamic simulation
is somewhat surprising. Definitely, the clarification of the formulation of boundary condi-
tions is on agenda.

Completing the BVP formulation we setup the elastic/plastic loading/unloading
(Kuhn–Tucker) conditions as usual

f 6 0; _epf ¼ 0 and _ep P 0: ð20Þ

Assuming a1 ¼ 0 and a2 ¼ 0 we arrive at the classical von Mises J2 plasticity. The same
effect is also achieved when the second gradients of the effective plastic strain are small.
Setting a2 ¼ 0 we obtain the Aifantis theory (see Aifantis, 1984; Muhlhaus and Aifantis,
1991).

3. Examples

We analyze simple shear, wire torsion, void growth, and beam bending in this section.
The examples are solved semi-analytically. Such solutions are achievable because the load
increases monotonically and no elastic unloading occurs. In this case, we can consider the
elastic–plastic hardening starting from the very beginning of the load application. The lat-
ter means that we have to include the elastic range in the hardening curve or, in other
words, to use the Ramberg–Osgood experimental curve for the total strain
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e
e0

¼ ry

r0

þ ry

r0

� �n

ð21Þ

with r0 ¼ Ee0 for a stress corresponding to the onset of the plastic deformation; n for a
material parameter; and e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e : e=3

p
for the effective strain. It will be shown below that

it is possible to integrate the flow rule exactly and, consequently, to consider finite incre-
ments instead of the infinitesimal ones. Material parameters are common to all examples:
the Poisson ratio is m ¼ 0:3; the hardening parameter is n ¼ 5; and the shear modulus is
G ¼ E=2ð1þ mÞ ¼ E=2:6.

We should mention, besides, that though the described examples are often examined
in the literature within various theoretical frameworks the specific solution procedures
presented below are unique because the flow theory is considered and the total
equilibrium condition is obeyed. Typically, the analogous solutions in the literature
are based on the so-called deformation theory where no distinction between elastic
and plastic deformations is made and/or the equilibrium conditions are obeyed incre-
mentally only.

3.1. Simple shear

An infinite �1 6 x1 61 elastic–plastic layer �l 6 x2 6 l in the state of plane strain is
considered. Each face is bonded to a rigid substrate. The substrates undergo relative shear
displacements u1ðlÞ ¼ �u and u1ð�lÞ ¼ ��u. We will use the Cartesian frame with base vec-
tors k1 ¼ ð1; 0; 0ÞT; k2 ¼ ð0; 1; 0ÞT; k3 ¼ ð0; 0; 1ÞT and assume the following expression for
the displacement field

u ¼ uðx2Þk1: ð22Þ
In this case, the total strain tensor takes form

e ¼ 1

2

ou
ox2

ðk1 � k2 þ k2 � k1Þ: ð23Þ

It is assumed that the plastic strain can be presented similarly

ep ¼ 1

2
bpðx2Þðk1 � k2 þ k2 � k1Þ; ð24Þ

where bp is unknown.
Based on (23) and (24) we have for the stresses tensor (5), effective stress (10) and

dimensionless deviatoric stress (8) accordingly

r ¼ s ¼ Gðou=ox2 � bpÞðk1 � k2 þ k2 � k1Þ; ð25Þ
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s : s=2

p
¼

ffiffiffi
3
p

Gðou=ox2 � bpÞ; ð26Þ
m ¼

ffiffiffi
3
p
ðk1 � k2 þ k2 � k1Þ=2: ð27Þ

Now, the flow rule (6) reduces to

_bp ¼
ffiffiffi
3
p

_ep: ð28Þ
Integrating it under condition epðt ¼ 0Þ ¼ bpðt ¼ 0Þ ¼ 0 we have

bp ¼
ffiffiffi
3
p

ep: ð29Þ
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The equilibrium equation reads

divr ¼ Gðo2u=ox2
2 � obp=ox2Þk1 ¼ 0: ð30Þ

This equation is supplemented by the following boundary conditions with account of
symmetry

uðx2 ¼ 0Þ ¼ 0;

uðx2 ¼ lÞ ¼ �uk1:

�
ð31Þ

Now, the yield condition (12) takes the following form

f ¼ r� ryðepÞ þ a2
1E

o2ep

ox2
2

¼ 0: ð32Þ

This equation is supplemented by the following boundary conditions

oep

ox2
ðx2 ¼ 0Þ ¼ 0;

epðx2 ¼ lÞ ¼ 0:

(
ð33Þ

Here the first condition is dictated by the symmetry of the plastic flow with respect to the
middle plane while the second condition is imposed on the stiff boundary which prevents
from any defect intervention.

Introducing the following set of parameters

y �
bp

e0

; x � x2

l
; z � u

le0

; q � a1

l
; r� � ry

r0

¼ ry

Ee0

; ð34Þ

we can restate the boundary value problem (BVP) in the non-dimensional form

o2z
ox2
� oy

ox
¼ 0; ð35Þffiffiffi

3
p

2:6

oz
ox
� y

� �
� r� þ q2ffiffiffi

3
p o2y

ox2
¼ 0; ð36Þ

1ffiffiffi
3
p oz

ox
¼ r� þ ðr�Þn; ð37Þ

zðx ¼ 0Þ ¼ 0;

zðx ¼ 1Þ ¼ �z;

�
ð38Þ

oy
ox ðx ¼ 0Þ ¼ 0;

yðx ¼ 1Þ ¼ 0:

(
ð39Þ

Here we have equations of equilibrium (35) and yield (36) with boundary conditions (38)
and (39) accordingly. The Ramberg–Osgood curve given by (37) is not resolved analyti-
cally with respect to r* and can be considered as a mathematical constraint imposed on
the variables involved in the BVP.

Finally, the shear traction S can be written in the dimensionless form as follows

S
e0G
¼ oz

ox
� y ¼ constant: ð40Þ

Boundary value problem (35)–(40) is discretized by using finite differences. The solution is
visualized in Figs. 1 and 2 for various magnitudes of the dimensionless length-scale param-
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eter q. The stiffness of the shearing layer increases with the increase of the length param-
eter. The plastic shear decreases towards the fixed boundary as expected.

Our results presented in Figs. 1 and 2 are in a very good correspondence with the results
of Fleck and Hutchinson (2001) presented in Figs. 1 and 2 of their paper. The qualitative
similarity is striking. Some quantitative dissimilarity can be explained by slightly different
theoretical formulations and solution methods.

3.2. Wire torsion

An elastic–plastic wire of radius a is considered. A cylindrical coordinate frame r; h; z
with unit base vectors kr ¼ ðcos h; sin h; 0ÞT; kh ¼ ð� sin h; cos h; 0ÞT; kz ¼ ð0; 0; 1ÞT is used
and the following expression for the displacement field is assumed

u ¼ razkh; ð41Þ
where a is twist per unit length.

In this case, the total strain tensor takes form

e ¼ 1

2
raðkh � kz þ kz � khÞ: ð42Þ

We assume that the plastic strain can be presented similarly

ep ¼ 1

2
bpðrÞðkh � kz þ kz � khÞ; ð43Þ

where bp is unknown.
Based on (42) and (43) we have for the stresses tensor (5), effective stress (10) and

dimensionless deviatoric stress (8) accordingly

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

05.0=q

0ε
β p

1.0

25.0

5.0

0.1

lx /2

Fig. 1. Plastic shear distribution for half-layer for various values of the relative length parameter q ¼ a1=l.
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r ¼ s ¼ Gðar � bpÞðkh � kz þ kz � khÞ; ð44Þ
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s : s=2

p
¼

ffiffiffi
3
p

Gðb� bpÞ; ð45Þ
m ¼

ffiffiffi
3
p
ðkh � kz þ kz � khÞ=2: ð46Þ

Now, the flow rule (6) reduces to

_bp ¼
ffiffiffi
3
p

_ep: ð47Þ
Integrating it under condition epðt ¼ 0Þ ¼ bpðt ¼ 0Þ ¼ 0 we have

bp ¼
ffiffiffi
3
p

ep: ð48Þ

The equilibrium condition is satisfied identically

divr ¼ 0; ð49Þ
as well as the boundary conditions of the traction-free wire surface

rkr ¼ 0: ð50Þ
The boundary conditions at the edges of the wire should read

uðz ¼ 0Þ ¼ 0;

uðz ¼ lÞ ¼ ralkh ¼ rAkh;

�
ð51Þ

where A ¼ al is prescribed.
Now, the yield condition (12) takes the following form

f ¼ r� ryðepÞ þ a2
1E

o2ep

or2
þ oep

ror

� �
¼ 0: ð52Þ
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Fig. 2. Effect of the material length parameter on the relation between shear tractions and displacements for the
elastic–plastic layer.
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This equation is supplemented by the following boundary conditions

oep

or ðr ¼ 0Þ ¼ 0;
oep

or ðr ¼ aÞ ¼ 0:

(
ð53Þ

The first boundary condition in (53) is dictated by the symmetry of the problem and the
necessity to suppress the singularity of the yield condition (52) at r ¼ 0. The second
boundary condition manifests the zero defect flux at the free surface as opposed to the case
of the fixed boundary where condition (19)1 should be obeyed.

Introducing the following set of parameters

y �
bp

e0

; x � r
a
; z � aa

e0

; q � a1

a
; r� � ry

r0

¼ ry

Ee0

; ð54Þ

we can restate the boundary value problem (BVP) in the non-dimensional formffiffiffi
3
p

2:6
ðzx� yÞ � r� þ q2ffiffiffi

3
p o2y

ox2
þ oy

xox

� �
¼ 0; ð55Þ

xzffiffiffi
3
p ¼ r� þ ðr�Þn; ð56Þ

oy
ox ðx ¼ 0Þ ¼ 0;
oy
ox ð1Þ ¼ 0:

(
ð57Þ

Here we have the equations of yield (55) with boundary conditions (57). The Ramberg–
Osgood curve given by (56) is not resolved analytically with respect to r* and can be
considered as a mathematical constraint imposed on the variables involved in the
BVP.

Finally, the torque can be written as follows

T ¼
Z 2p

0

Z a

0

rhzr2 dr dh ¼ 2p
Z a

0

rhzr2 dr ¼ 2pG
Z a

0

ðra� bpÞr2 dr; ð58Þ

or dimensionless

T

e0Ga3
¼ 2p

Z 1

0

ðxz� bpÞx2 dx ð59Þ

Boundary value problem (55)–(57) is discretized by using finite differences. The solution is
given in Fig. 3 for various magnitudes of the dimensionless length-scale parameter q. As in
the case of plastic shear considered in the previous section we have stiffening for the
increasing value of the length parameter. It is interesting that both wire torsion and layer
shearing are not affected by the second characteristic length. This happens because the de-
fect flow is ‘orthogonal’ to the stress field in view of the constitutive equation for the defect
flux (13) and (17). This is a feature of the considered constitutive model. A different model
would not lead to this conclusion generally.

Our results presented in Fig. 3 are in a very good qualitative correspondence with (I) the
results of Fleck and Hutchinson (2001) presented in Fig. 3 of their paper; (II) the results of
Gudmundson (2004) presented in Fig. 1 of his paper; and (III) the results of Huang et al.
(2000) presented in Fig. 3 of their paper. Some quantitative dissimilarity is expected
because of the different theoretical formulations and solution methods.
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3.3. Void growth

Growth of an isolated spherical void of radius a inside an elastic–plastic incompressible
continuum is considered. Spherical coordinate frame r, h, / with unit base vectors
kr ¼ ðsin h cos /; sin h sin /; cos hÞT, kh ¼ ðcos h cos /; cos h sin /;� sin hÞT, k/ ¼ ð� sin /;
cos /; 0ÞT is used.

The continuum incompressibility condition implies the following expression for the dis-
placement field

u ¼ Ar�2kr; ð60Þ
where A is an amplitude factor.

In this case, the total strain tensor takes form

e ¼ Ar�3ð�2kr � kr þ kh � kh þ k/ � k/Þ: ð61Þ
We assume that the plastic strain can be presented similarly

ep ¼ bpðrÞð�2kr � kr þ kh � kh þ k/ � k/Þ; ð62Þ

where bp is unknown.
Based on (61) and (62) we have for the stresses tensor (5), effective stress (10) and

dimensionless deviatoric stress (8) accordingly

r ¼ 2Gðb� bpÞð�2kr � kr þ kh � kh þ k/ � k/Þ; ð63Þ
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s : s=2

p
¼ 6Gðb� bpÞ; ð64Þ

m ¼ ð�2kr � kr þ kh � kh þ k/ � k/Þ=2: ð65Þ

Now, the flow rule (6) reduces to
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Fig. 3. Wire torsion: torque versus twist for varying characteristic length q ¼ a1=a.

K.Y. Volokh, P. Trapper / International Journal of Plasticity 23 (2007) 2085–2114 2097



Author's personal copy

_bp ¼ _ep=2: ð66Þ
Integrating it under condition epðt ¼ 0Þ ¼ bpðt ¼ 0Þ ¼ 0 we have

bp ¼ ep=2: ð67Þ
The equilibrium equation divðr� p1Þ ¼ 0 reads

oðrrr � pÞ
or

þ 2
rrr � rhh

r
¼ oðrrr � pÞ

or
þ 3

rrr

r
¼ 0; ð68Þ

where p is the Lagrange multiplier enforcing the total incompressibility condition. Inte-
grating the equilibrium equation we have

pðrÞ ¼ rrrðrÞ þ 3

Z r

a

rrr

r
dr: ð69Þ

The following boundary conditions imposed on tractions should be obeyed

rrrðaÞ � pðaÞ ¼ 0;

rrrðbÞ � pðbÞ ¼ �3
R b

a
rrr
r dr ¼ r1 ðb!1Þ;

(
ð70Þ

where the remote stress r1 is prescribed.
Now, the yield condition (12) takes the following form

f ¼ r� ryðepÞ þ Eða2
1 þ a2

2Þ
o2ep

or2
þ Eð2a2

1 � a2
2Þ

oep

ror
¼ 0: ð71Þ

This equation is supplemented by the following boundary conditions

oep

or ðr ¼ aÞ ¼ 0;
oep

or ðr ¼ b!1Þ ¼ 0:

(
ð72Þ

We introduce the following set of parameters

y �
bp

e0

; x � r
a
; z � DV

V 0e0

¼ 3A
a3e0

; q1 �
a1

a
; q2 �

a2

a
; r� � ry

r0

¼ ry

Ee0

; ð73Þ

where the void volume changes have been designated as follows

V ¼ ð4=3Þpðaþ A=a2Þ3 � V 0 þ DV ; V 0 ¼ 4pa3=3; DV ¼ 4pA: ð74Þ
Now, we can restate the boundary value problem (BVP) in the non-dimensional form

ðzx�3 � 3yÞ=1:3� r� þ 2ðq2
1 þ q2

2Þ
o

2y
ox2
þ 2ð2q2

1 � q2
2Þ

oy
xox
¼ 0; ð75Þ

2zx3=3 ¼ r� þ ðr�Þn; ð76Þ
oy
ox ðx ¼ 1Þ ¼ 0;
oy
ox ðx ¼ b=a!1Þ ¼ 0:

(
ð77Þ

Here we have the equation of yield (75) with boundary conditions (77) and the Ramberg–
Osgood curve given by (76).

Finally, the remote stress can be written as follows

r1
Ge0

¼ 4

Z b=a

1

ðzx�3 � 3yÞx�1 dx: ð78Þ
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Boundary value problem (75)–(77) is discretized by using finite differences. The solution is
given in Figs. 4 and 5 for various magnitudes of the dimensionless length-scale parameters
q1 and q2. The numerical solution was generated for various ratios b=a. It converges for
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Fig. 4. Top: Remote stress as a function of the void volume expansion in the case of hydrostatic tension. Bottom:
Plastic strain decay around the expanding void. All calculations have been done for the fixed first length
parameter q1 ¼ 0:1 and the varying second length parameter q2 ¼ 0; 0:1; 0:25; 0:5; 1.
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b=a P 10 already. Interestingly, the plastic strain decays quickly away from the void sur-
face and the elastic–plastic boundary is readily observed. The increasing value of the first
length parameter q1 dominates the stiffening response of the growing void while the value
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Fig. 5. Top: Remote stress as a function of the void volume expansion in the case of hydrostatic tension. Bottom:
Plastic strain decay around the expanding void. All calculations have been done for the fixed first length
parameter q1 ¼ 0:25 and the varying second length parameter q2 ¼ 0; 0:1; 0:25; 0:5; 1.
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of the second length parameter q2 can provide some diffusion of the plastic zone into the
bulk. There is a stiffening–softening competition between these two parameters. Of course,
such behavior is inherent in the proposed constitutive model of the defect flux. A different
model would exhibit different features.

Our results presented in Figs. 4 and 5 are in a very good qualitative correspondence with
(I) the results of Fleck and Hutchinson (2001) presented in Fig. 4 of their paper; (II) the
results of Gudmundson (2004) presented in Figs. 3 and 4 of his paper; and (III) the results
of Huang et al. (2000) presented in Figs. 5 and 7 of their paper. Some quantitative dissim-
ilarity is expected because of the different theoretical formulations and solution methods.

3.4. Beam bending

Pure bending of an ultra-thin elastic–plastic beam of thickness h in the state of plane
strain is considered. As in the previous section the material is assumed to be incompress-
ible. The displacement field within the Cartesian frame is prescribed as follows

u ¼ jx1x2k1 �
1

2
jðx2

1 þ x2
2Þk2; ð79Þ

where j is the curvature. In this case, the strain tensor takes form

e ¼ jx2ðk1 � k1 � k2 � k2Þ: ð80Þ
We assume that the plastic strain can be presented similarly

ep ¼ bpðx2Þðk1 � k1 � k2 � k2Þ; ð81Þ

where bp is unknown.
Based on (80) and (81) we have for the stresses tensor (5), effective stress (10) and

dimensionless deviatoric stress (8) accordingly

r ¼ s ¼ 2Gðjx2 � bpÞðk1 � k1 � k2 � k2Þ; ð82Þ
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s : s=2

p
¼ 2

ffiffiffi
3
p

Gðjx2 � bpÞ; ð83Þ

m ¼
ffiffiffi
3
p

2
ðk1 � k1 � k2 � k2Þ: ð84Þ

Now, the flow rule (6) reduces to

_bp ¼
ffiffiffi
3
p

2
_ep: ð85Þ

Integrating it under condition epðt ¼ 0Þ ¼ bpðt ¼ 0Þ ¼ 0 we have

bp ¼
ffiffiffi
3
p

2
ep: ð86Þ

The equilibrium equation reads

divðr� p1Þ ¼ oðr11 � pÞ
ox1

k1 þ
oðr22 � pÞ

ox2

k2 ¼ 0; ð87Þ

where p is the Lagrange multiplier enforcing the total incompressibility condition. Inte-
grating the equilibrium equation and imposing zero traction boundary conditions on
the top and the bottom of the beam we have
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Fig. 6. Normalized bending moment versus normalized curvature of the bending beam for q1 ¼ 0:1;
q2 ¼ 0; 0:1; 0:25; 0:5; 1 – top, and q1 ¼ 0:25; q2 ¼ 0; 0:1; 0:25; 0:5; 1 – bottom.
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pðx2Þ ¼ r22ðx2Þ: ð88Þ
Now, the yield condition (12) takes the following form

f ¼ r� ryðepÞ þ E a2
1 þ

ffiffiffi
3
p

2
a2

2

 !
o

2ep

ox2
2

¼ 0: ð89Þ

This equation is supplemented by the following boundary conditions

epðx2 ¼ 0Þ ¼ 0;
oep

ox2
ðx2 ¼ h=2Þ ¼ 0:

(
ð90Þ

Introducing the following set of parameters

y �
bp

e0

; x � x2

h
; z � jh

e0

; q1 �
a1

h
; q2 �

a2

h
; r� � ry

r0

¼ ry

Ee0

; ð91Þ

we can restate the boundary value problem (BVP) in the non-dimensional form

f
Ee0

¼ 2
ffiffiffi
3
p

2:6
ðzx� yÞ � r� þ q2

1 þ
ffiffiffi
3
p

2
q2

2

 !
2ffiffiffi
3
p o

2y
ox2
¼ 0; ð92Þ

2zx=
ffiffiffi
3
p
¼ r� þ ðr�Þn; ð93Þ

yðx ¼ 0Þ ¼ 0;
oy
ox ðx ¼ 1=2Þ ¼ 0:

(
ð94Þ

Here we have the equations of yield (92) with boundary conditions (94). The Ramberg–
Osgood curve given by (93) is not resolved analytically with respect to r* and can be con-
sidered as a mathematical constraint imposed on the variables involved in the BVP.

Finally, the bending moment can be written as follows

M ¼
Z h=2

�h=2

ðr11 � pÞx2 dx2 ¼ 4

Z h=2

�h=2

Gðjx2 � bpÞx2 dx2; ð95Þ

or dimensionless

M

Gh2e0

¼ 4

Z 1=2

�1=2

ðzx� yÞxdx: ð96Þ

The moment–curvature curve shown in Fig. 6 indicates that the increase of the second
characteristic length leads to the stiffening response and it dominates the beam response
for q2 � 1.

Our results presented in Fig. 6 are in a very good qualitative correspondence with the
results of Huang et al. (2000) presented in Fig. 1 of their paper. The quantitative dissim-
ilarity is expected because of the different theoretical formulations and solution methods.

4. Comparison with the Fleck and Hutchinson (2001) theory

The 2001 Fleck–Hutchinson theory essentially inspired the present work in looking for
a mathematically simple yet consistent theory of strain gradient plasticity that accommo-
dates more than one characteristic length. In this sense, it is reasonable to make a more
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detailed comparison of the present theory with the FH one. The basic idea of the FH the-
ory which makes it different from and irreducible to all other SGP theories, including the
one presented above, is the introduction of the generalized effective plastic strain

Ep ¼
Z

_Ep dt; ð97Þ

_E2
p ¼ _e2

p þ l2
1r_eð1Þp

..

.
r_eð1Þp þ 4l2

2r_eð2Þp
..
.
r_eð2Þp þ ð8=3Þl2

3r_eð3Þp
..
.
r_eð3Þp ; ð98Þ

where the triple contraction of third-order tensors is defined symbolically: A..
.
A � AijkAijk;

and the gradient of the incremental plastic strain is decomposed in three mutually orthog-
onal tensors

r_ep ¼ r_eð1Þp þr_eð2Þp þr_eð3Þp : ð99Þ

Taking the flow rule (6) into account it is possible to rewrite (98) as follows

_E2
p ¼ _e2

p þr_ep � Ar_ep þ _epB � r_ep þ C _e2
p; ð100Þ

where

Aij ¼ l2
1ðdij=2þ 2mipmjp=5Þ þ epirmqrðL2

2epjvmqv þ L2
3eqivmpvÞ;

Bi ¼ l2
1ð4mpqmpi;q=3� 8mipmpq;q=15Þ þ 2epirmqrðL2

2epuvmqv;u þ L2
3equvmpv;uÞ;

C ¼ l2
1ðmij;kðmij;k þ 2mjk;iÞ � 4mki;imkj;j=15Þ þ epirmqr;iðL2

2epuvmqv;u þ L2
3equvmpv;uÞ

8><
>:

ð101Þ
and eijk is a third-order permutation tensor; L2

2 ¼ 4l2
2=3þ 8l2

3=5; L2
3 ¼ 4l2

2=3� 8l2
3=5.

Evidently, the generalized plastic strain includes gradient terms scaled by characteristic
material lengths l1; l2; l3. Although, generally, it is difficult to give a clear geometrical/
physical interpretation to the plastic strain gradients and characteristic lengths some par-
ticular cases of deformation allow such an interpretation. FH theory suggests that the clas-
sical accumulated plastic strain ep should be replaced by the generalized plastic strain Ep in
the yield/hardening condition. Using the notation of Section 2 of the present work we have
according to FH

r� ryðEpÞ � divgðEpÞ ¼ 0: ð102Þ

The constitutive law for the yield stress ryðEpÞ is obtained from the experimental curve
ryðepÞ by the direct substitution ep ! Ep. It is remarkable, however, that Fleck and Hutch-
inson do not provide a constitutive law for the defect flux (higher-order stress) vector
gðEpÞ. Instead, they formulate an incremental variational principle which defines the incre-
mental constitutive law

_g ¼ hðEpÞðAr_ep þ _epB=2Þ; ð103Þ

where h ¼ ory=oEp. Of course, the incremental formulation of the constitutive law differs
from the straightforward formulation of Section 2 of the present work. This is especially
important with regard to the presence of the normalized stress gradients rm in B and C

– (101). Incremental equations of yield/hardening of the FH theory include the second

spatial derivatives of stresses (because of the divergence term) while the equilibrium equa-
tion includes only first derivatives of stresses. In this case, the order of the yield condi-
tion equation is higher than the order of the equilibrium equation. Assume, for example,
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that boundary condition ep ¼ 0 is given on oX. In this case, the additional boundary
conditions which should be imposed on the stress gradients seem to be lacking. This sit-
uation can be avoided, however, if one assumes B ¼ 0 and C ¼ 0 in the FH setting. In-
deed, it can be easily observed in (101) that tensor A depends only on the normalized
stress deviator m and not on its gradients. The latter means that the yield equations will
not increase the BVP order. Actually, tensor A can be considered as the defect conduc-
tivity tensor in the sense of the theory presented in Section 2: D ¼ EA. Examination of
such an assumption is of interest though it is beyond the scope of the present work. In
summary, the present theory can be interpreted as a further simplification of the 2001
Fleck–Hutchinson theory.

5. Conclusions

A novel phenomenological theory of strain gradient plasticity is formulated to accom-
modate more than one material length parameter. This theory is an extension of the J2

flow theory of metal plasticity to the length scale of microns. In a special case of one mate-
rial length parameter the theory coincides with the Aifantis earlier theory. It is shown,
however, how to introduce additional material length parameters without significantly
complicating the SGP formulation. The necessity of introducing at least two material
length parameters emerges from the recent experimental observations (see Fleck and
Hutchinson, 2001). The theory developed in the present work is, to the best of our knowl-
edge, the simplest one among the available theories involving more than one material
length parameter. It is worth noting that the main problem of creating an attractive
SGP theory is to find a right balance between the mathematical sophistication and phys-
ical clarity. Some SGP theories enjoy elegant and consistent mathematical structure of
generalized continua. It is difficult, however, to interpret the new variables involved in
such theories as, for example, higher-order (microscopic) stresses in simple physical terms.
On the other hand, an attempt to oversimplify mathematics behind SGP can lead to incon-
sistency as in the case of lower-order strain gradient plasticity. It was attempted in the
present work to move towards the balance between mathematics and physics. No
higher-order stresses are involved in general. The only variable in our theory that corre-
sponds to a higher-order stress in the theories of Fleck and Hutchinson (2001) or Gurtin
(2000) is vector g in (12). It seems, however, that its physical interpretation as a vector of
defect flux is more attractive than its interpretation as a higher-order/microscopic stress.
Evidently, Eq. (19) provides the necessary additional boundary conditions providing
mathematical consistency of the theory.

It is important to emphasize that the following basic physical assumption provides
mathematical simplicity of the presented theory. It is assumed that the defect flux depends
explicitly on the stress field in addition to being proportional to the gradient of the defect
density (effective plastic strain). Such dependence is provided by the presence of a stress
tensor (or/and its invariants) in the defect conductivity tensor. In other words, stresses
make the defect diffusion anisotropic. The induced anisotropy does not necessarily affect
the defect flow. As it appears in the considered examples of simple shear and wire torsion
the gradient of the defect density can be orthogonal to the normalized deviatoric stress and
no anisotropic defect diffusion takes place. On the contrary, in the cases of void growth
and beam bending the stress-induced anisotropy can significantly affect the mechanical
response.
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Another distinct advantage of the considered theory over other existing SGP theories is
simplicity of its numerical implementation – see Appendix. The weak formulation is based
on two unknowns – the displacement vector field and a scalar field of the effective plastic
strain. We modified the integration algorithm proposed by de Borst and Muhlhaus (1992)
and de Borst and Pamin (1996) in order to adapt the proposed SGP framework. Consid-
ered numerical examples, where a comparison with analytical solutions is available, dem-
onstrate computational efficiency of the algorithm.

Our results of the analysis of wire torsion, layer shearing, void growth, and beam bend-
ing are qualitatively similar to the results of other authors listed in the references though
some features have to be discussed. The problems of wire torsion and simple shear include
only one active length parameter as in most other theories and the wire torsion experiment
can be used to calibrate the first length parameter, a1. The problems of void growth and
beam bending include both length parameters, a1 and a2. The void growth simulation
reveals the stiffening–softening competition concerning the role of the first and the second
material lengths correspondingly. The increase of the first material length parameter gen-
erally leads to the stiffening response of the growing void while the increase of the second
material length parameter leads to softening of response of the void. In the latter case the
elastic–plastic boundary moves deeper in the bulk and the maximum plastic strain at the
void edge decreases or, in other words, the plastic boundary layer around the void gets
wider while the plastic strain relaxes. In contrast to the void growth problem, the second
length parameter serves as a stiffening factor similar to the first length parameter in the
case of the beam bending. Moreover, the second length parameter can dominate the over-
all response of the beam. The latter makes it attractive to use the beam bending experiment
for calibration. Stolken and Evans (1998) performed such experiments fitting the material
length parameter of the earlier Fleck–Hutchinson theory. Unfortunately, the experiment
implies large rotations of the beam fibers while the theory assumes the rotations to be
small. It seems that any theory, including the present one, should be extended to large
rotations before it can be used for the interpretation of the beam bending experiments.
Another potential source of experimental data on the calibration of the second length
parameter is the indentation analysis. Begley and Hutchinson (1998) used the deformation
version of the earlier Fleck–Hutchinson theory for the FE analysis of microindentation.
Their results reveal that the FE approach is possible but not trivial way to calibrate the
second length parameter.

Appendix A

The examples in Section 3 were considered (semi-)analytically and, in this appendix, we
develop a more general finite element procedure following de Borst and Muhlhaus (1992)
and de Borst and Pamin (1996) with slight modifications for adapting the present formu-
lation of SGP. It should be noted, however, that alternative finite element approaches have
been presently developed by Han et al. (2007) in the context of the gradient formulation of
large strain crystal plasticity.

Consider the weak form of the incremental equilibrium equationZ
X

d _u � div _rdV ¼ 0; ðA:1Þ
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where d designates a virtual quantity and the dot designates an increment of a quantity.
Applying the divergence theorem to (A.1) we haveZ

X
d_e : _rdV �

Z
oX

d _u � _�tdA ¼ 0; ðA:2Þ

where

_e ¼ ðr _uþr _uTÞ=2: ðA:3Þ
Now we consider the weak incremental form of the yield condition (12)Z

X
d_epð _r� _ry � div _gÞdV ¼ 0: ðA:4Þ

Applying the divergence theorem to (A.4) and accounting for the boundary conditions
(19) we haveZ

X
ðd_ep _r� d_ep _ry þrd_ep � _gÞdV ¼ 0; ðA:5Þ

where

_r ¼ or
or

: _r ¼ m : _r; ðA:6Þ

_ry ¼
ory

oep

_ep � hðepÞ_ep; ðA:7Þ

_g ¼ og

or
: _rþ og

orep

r_ep: ðA:8Þ

Substituting (A.6)–(A.8) in (A.5) we haveZ
X
ðd_epm : _r� d_ephðepÞ_ep þrd_ep � ½ðog=orÞ : _rþ ðog=orepÞr_ep	ÞdV ¼ 0; ðA:9Þ

Finally, we substitute the incremental Hooke law (5) with account of flow rule (6)

_r ¼ C : ð_e� _epmÞ ðA:10Þ
in the weak form of the incremental equations of equilibrium (A.2) and yield (A.9)
accordinglyZ

X
d_e : C : ð_e� _epmÞdV �

Z
oX

d _u � _�tdA ¼ 0; ðA:11ÞZ
X
ðd_epm : C : ð_e� _epmÞ � d_ephðepÞ_ep þrd_ep � ½R : C : ð_e� _epmÞ þ rr_ep	ÞdV ¼ 0:

ðA:12Þ

The explicit expressions are obtained for the derivatives of the dislocation flux in view of
assumptions (13) and (17)

R � og

or
¼ 3Ea2

2

2r
1�rep �

1

3
rep � 1� 2

3
ðmrepÞ �m

� �
; ðA:13Þ

r � og

orep

¼ �Eða2
11� a2

2mÞ: ðA:14Þ

K.Y. Volokh, P. Trapper / International Journal of Plasticity 23 (2007) 2085–2114 2107



Author's personal copy

The weak formulation (A.11)–(A.14) includes only unknown increments of displacements
and effective plastic strain, which can be approximated spatially by using the following
spatial discretization

uiðxÞ ¼
X

I

N I
i ðxÞaI ; _uiðxÞ ¼

X
I

N I
i ðxÞ _aI ; d _uiðxÞ ¼

X
I

N I
i ðxÞd _aI ; ðA:15Þ

epðxÞ ¼
X

I

H IðxÞbI ; _epðxÞ ¼
X

I

H IðxÞ _bI ; d_epðxÞ ¼
X

I

H IðxÞd _bI ; ðA:16Þ

where N I
i ðxÞ and HIðxÞ are the shape functions for the displacement and effective plastic

strain fields accordingly.
Substituting (A.15) and (A.16) in (A.11)–(A.14) and zeroing the coefficients of indepen-

dent variations we arrive at the following matrix equation

Kaa Kab

Kba Kbb

� �
_a
_b

� �
¼

_qa

_qb

� �
: ðA:17Þ

Here the matrix entries take the form

KIJ
aa ¼

Z
V

NI
i;jCijklNJ

k;l dV ; ðA:18Þ

KIJ
ab ¼ �

Z
V

NI
i;jCijklmklH J dV ; ðA:19Þ

KIJ
ba ¼

Z
V
ðHImij þ HI

;sRsijÞCijklNJ
k;l dV ; ðA:20Þ

KIJ
bb ¼

Z
V
ðHI

;irijH J
;j � ðH Imij þ H I

;sRsijÞCijklmklH J � H IhH J ÞdV ; ðA:21Þ

where

Rsij ¼
3Ea2

2

2r
dsi

X
L

HL
;jb

L � 1

3
dij

X
L

H L
;sb

L � 2

3
mijmsn

X
L

HL
;nbL

 !
; ðA:22Þ

rij ¼ �Eða2
1dij � a2

2mijÞ: ðA:23Þ

Comma is used to designate a partial derivative: ð. . . Þ;i � oð. . .Þ=oxi and summation from 1
to 3 over the repeated subscripts is implied.

The entries on the right-hand side of (A.17) take the form

_qI
a ¼

Z
X

NI
i
_�ti dX; ðA:24Þ

_qI
b ¼ 0: ðA:25Þ

This loading vector, however, gives the solution of a purely incremental problem. The lat-
ter is of limited interest since a significant departure from equilibrium can occur. In order
to solve the complete BVP we have to consider the left-hand side of (A.17) as the tangent
approximation of the equilibrium path of the elastic–plastic body in its state space. The
right-hand side of (A.17) should provide an iterative residual

_qI
a ¼

Z
oX

N I
i ð�ti þ _�tiÞdA� 1=2

Z
X
ðN I

i;j þ N I
j;iÞ�rij dV ; ðA:26Þ

_qI
b ¼ �

Z
V

HI �f dV ; ðA:27Þ
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where �ti, �rij, �f are the values accumulated in previous increments.
After solving (A.17) it is necessary to update variables a aþ _a; b bþ _b, the tan-

gent stiffness matrix, and the right-hand side of (A.17) properly. This proceeds until a glo-
bal convergence criterion is met. Thus applying the load incrementally we return to the
equilibrium path iteratively. The computational algorithm is summarized below where
the first upper index in parentheses designates the increment number while the second
index designates the iteration number:


 Input (after the (n � 1)th increment):

Kðn�1Þ
aa ;K

ðn�1Þ
ab ;K

ðn�1Þ
ba ;K

ðn�1Þ
bb ; aðn�1Þ; bðn�1Þ; qðn�1Þ

a ; q
ðn�1Þ
b :


 Onset of the nth increment:

Kðn;0Þaa ¼ Kðn�1Þ
aa ; K

ðn;0Þ
ab ¼ K

ðn�1Þ
ab ; K

ðn;0Þ
ba ¼ K

ðn�1Þ
ba ; K

ðn;0Þ
bb ¼ K

ðn�1Þ
bb ;

aðn;0Þ ¼ aðn�1Þ; bðn;0Þ ¼ bðn�1Þ; _aðn;0Þ ¼ 0; _bðn;0Þ ¼ 0

qðn;0Þa ¼ qðn�1Þ
a þ load increment; q

ðn;0Þ
b ¼ q

ðn�1Þ
b :


 Iterative loop i = 1,2, . . . to meet the global convergence criterion:
� Solve:

Kðn;i�1Þ
aa K

ðn;i�1Þ
ab

K
ðn;i�1Þ
ba K

ðn;i�1Þ
bb

" #
~a
~b

� �
¼

qðn;i�1Þ
a

q
ðn;i�1Þ
b

( )
:

� Update:

_aðn;iÞ ¼ _aðn;i�1Þ þ ~a; aðn;iÞ ¼ aðn;0Þ þ _aðn;iÞ;

_bðn;iÞ ¼ _bðn;i�1Þ þ ~b; bðn;iÞ ¼ bðn;0Þ þ _bðn;iÞ;

_eðn;iÞkl ¼ 0:5ðNT
k;l þNT

l;kÞ _aðn;iÞ; NT
k;l ¼ fN 1

k;l;N
2
k;l; . . .g;

_eðn;iÞp ¼ HT _bðn;iÞ; HT ¼ fH 1;H 2; . . .g;

rtrial
kl ¼ rðn;0Þkl þ Cklst _e

ðn;iÞ
st ;

Iff ðrtrial
kl ; bðn;iÞÞP 0;

then plasticity : rðn;iÞkl ¼ rtrial
kl � _eðn;iÞp Cklstmtrial

st ;

else elasticity : rðn;iÞkl ¼ rtrial
kl :

To validate the integration algorithms we considered all numerical examples of the pre-
vious section within the finite element framework developed above. The wire torsion
problem was considered in 1D and 2D formulations. We examined the coarse (150 ele-
ments) and fine (600 elements) meshes of linear triangles in the 2D formulation –
Fig. A1 – and the 100 linear elements in the 1D formulation. The load was applied
in 50 increments and the convergence to equilibrium did not require more than seven
iterations within the increment. The results of numerical simulations are presented in
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Fig. A2 including the analytical solution of the previous section. It is readily seen that
various curves practically coincide. In simulations of other problems – Figs. A3–A5 – we
accounted for the assumed symmetries and considered 1D meshes with the linear shape
functions. One hundred elements were used in all cases with the varying number of load
increments: 50 for the void growth; 40 for the simple shear; 20 for the beam bending.
The number of iterations within the load increment did not exceed seven in all cases.
As in the case of the wire torsion a very close resemblance between the FE and analyt-
ical solutions has been observed. In summary the developed FE scheme provides satis-
factory results for simulation of the examples considered in the previous section. It
should be noted that the slight difference between the analytical and FE solutions in
Figs. A4 and A5 can be explained by the fact that the analytical solution was based
on the total stress–strain curve (21) while the numerical solution operates the plastic
hardening only: h ¼ ory=oep ¼ ðE=nÞðep=e0Þ1=n�1.
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Fig. A1. 2D meshes of linear finite elements for the solution of the wire torsion problem.
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Fig. A2. Wire torsion. Comparison of analytical and FE solutions: analytical solution – dashed red line in
webversion; 100 1D elements – solid blue line in webversion; 150 2D elements – dotted purple line in webversion;
600 2D elements – solid green line in webversion.
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Fig. A3. Simple shear: analytical solution – dashed red line in webversion; 100 1D elements – solid blue line in
webversion.
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Fig. A4. Void growth: analytical solution – dashed red line in webversion; 100 1D elements – solid blue line in
webversion.
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Fig. A5. Beam bending: analytical solution – dashed red line in webversion; 100 1D elements– solid blue line in
webversion.
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