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Abstract

Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy

under the strain increase. It is clear, however, that no real material can accumulate the energy

unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain

energy—the critical failure energy, which can be interpreted as a failure constant characterizing the

material ‘toughness’. We show that the critical failure energy controls materials softening. The

softening can enrich any existing model of the intact material with a failure description. We

demonstrate the efficiency of the softening hyperelasticity approach on a variety of analytically

tractable boundary value problems with a variety of material models. The proposed softening

hyperelasticity approach is a possible alternative to the simplistic pointwise failure criteria of strength

of materials on the one hand and the sophisticated approach of damage mechanics involving internal

variables on the other hand.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Traditional hyperelastic models of materials allow for the unlimited increase of strain
energy under the strain increase. It is clear, however, that no real material can sustain large
enough strains. To account for the material failure a phenomenological approach of
damage mechanics has been developed. The basic idea of damage mechanics is to
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introduce a damage parameter, scalar or tensor, which describes the degradation of
material properties during mechanical loading (Kachanov, 1958, 1986; Krajcinovic, 1996;
Skrzypek and Ganczarski, 1999; Lemaitre and Desmorat, 2005). The damage parameter is
an internal variable though its possible interpretation as a volumetric density of voids or
microcracks is reasonable. The magnitude of the damage parameter is constrained by (a) a
damage evolution equation and (b) a critical threshold condition similar to the plasticity
theories. Theoretically, the approach of damage mechanics is very flexible and allows
reflecting the physical processes triggering macroscopic damage at small length scales.
Practically, the experimental calibration of damage theories is far from trivial. It is difficult
to measure the damage parameter directly. The experimental calibration should be implicit
and it should include both the damage evolution equation and the damage criticality
condition. Because of these difficulties, it seems reasonable to look for alternative theories
that present the bulk material failure in more feasible ways than the traditional damage
theories. Softening hyperelasticity is a possible candidate for a simple description of
material failure.
The roots of the softening hyperelasticity approach can be traced to atomistic analysis of

fracture relating material debonding to atomic separation. Gao and Klein (1998) and Klein
and Gao (1998) and, more recently, Volokh and Gao (2005) and Volokh and Ramesh (2006)
showed how to mix the atomistic and continuum material descriptions in order to simulate
the failure process—the virtual internal bond (VIB) method. They applied the Cauchy–Born
rule linking microscopic and macroscopic length scales to empirical potentials, which include
a possibility of the full atomic separation. The continuum-atomistic linkage led to the
formulation of macroscopic strain energy potentials allowing for the stress/strain softening
and strain localization. The continuum-atomistic method is very effective at small length
scales where purely atomistic analysis becomes computationally intensive. This approach
found applications in bio- and nano-mechanics concerning the problems of bone fracture
(Gao et al., 2003; Ji and Gao, 2004) and strength of carbon nanotubes (Zhang et al., 2004;
Volokh and Ramesh, 2006). Unfortunately, the direct use of the continuum-atomistic method
in macroscopic damage problems is not very feasible because its computer implementation
includes a numerically involved procedure of the averaging of the interatomic potentials over
a representative volume.
As a macroscopic alternative to the continuum-atomistic method, a phenomenological

softening hyperelasticity approach for modeling materials failure has been considered by
Volokh (2004, 2007) for the isotropic Hookean solid. An expression of the strain energy
was found that enforces strain softening controlled by material constants. Unfortunately,
the strain energy expression considered in the cited works is material-specific and it is not
readily extended to other materials. In the present work, we lift the softening hyperelasticity

approach to a level of generality and introduce a universal formula for the treatment of

material failure. Now any hyperelastic material model can be enhanced with softening
automatically. The softening is controlled by constant F of the critical failure energy
indicating the maximum strain energy that the infinitesimal material volume can sustain
without failure. This constant can be interpreted as the material ‘toughness’ analogously to
the critical energy release rate in the classical fracture mechanics (Bazant and Planas, 1998;
Broberg, 1999; Hertzberg, 1989; Kanninen and Popelaar, 1973; Knott, 1985). Despite the
analogy, the difference between the classical fracture mechanics and softening
hyperelasticity should not be missed. The classical fracture mechanics introduces the
length-dependence in the failure calculations because of the introduction of the surface
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energy. The length-dependence may lead to physically meaningless results as will be
emphasized later (Section 5). The softening hyperelasticity approach does not introduce
the surface energy and the length-dependence in harmony with the physical intuition. We
examine the proposed approach on a variety of the boundary value problems with a
variety of material models.

The paper is organized as follows. The basic equations of nonlinear continuum
mechanics are reviewed in Section 2. The general concept of softening hyperelasticity is
formalized in Section 3. The simple shear and uniaxial tension examples that can be used
for the experimental calibration of the critical strain energy are considered in Section 4.
The spherically symmetric problems of cavitation and balloon inflation are analyzed in
Sections 5 and 6 accordingly. The arterial failure calculations are given in Section 7. The
motivation for the introduction of the concept of the critical failure energy based on the
atomistic considerations is presented in Section 8. Discussion of the obtained results and a
possible finite element implementation of softening hyperelasticity appears in Section 9.

2. Basic equations

We consider the classical formulation of nonlinear continuum mechanics (Truesdell and
Noll, 2003) according to which a generic material particle of body O occupying position X

at the reference state moves to position xðXÞ at the current state. The deformation of the
particle is defined by the tensor of deformation gradient F ¼ qx=qX.

The equilibrium equation in O and boundary conditions on qO are set in the Eulerian
form as follows:

divr ¼ 0, (2.1)

x ¼ x̄ or rn ¼ t̄, (2.2)

where ‘div’ operator is with respect to current coordinates x; r is the Cauchy stress tensor; t
is traction per unit area of the current surface with the unit outward normal n; and the
barred quantities are prescribed.

Alternatively, the equilibrium equation and boundary conditions can be set in the
Lagrangian form as follows

DivP ¼ 0, (2.3)

x ¼ x̄ or Pn0 ¼ t̄0, (2.4)

where ‘Div’ operator is with respect to referential coordinates X; P is the 1st
Piola–Kirchhoff stress tensor; t0 is traction per unit area of the reference surface with
the unit outward normal n0; and the barred quantities are prescribed.

The Eulerian and Lagrangian quantities are related as follows:

n ¼ F�Tn0jF
�Tn0j

�1, (2.5)

r ¼ J�1PFT, (2.6)

t ¼ t0J�1jF�Tn0j
�1, (2.7)

J ¼ detF. (2.8)
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We consider a purely mechanical theory for a hyperelastic material described by the
strain energy, cðCÞ, which depends on the right Cauchy–Green deformation tensor

C ¼ FTF. (2.9)

The constitutive equation can be written in the general form

P ¼ 2F
qc
qC

, (2.10)

or

r ¼ 2J�1F
qc
qC

FT. (2.11)

Eqs. (2.1), (2.2), (2.11) or (2.3), (2.4), (2.10) set the boundary value problem of
hyperelasticity in Eulerian or Lagrangian formulation accordingly.

3. Hyperelastic material with softening

Traditionally, the strain energy of hyperelastic materials is defined as

c ¼W , (3.1)

where W is used for the strain energy of the intact material.
For example, the isotropic Hookean model presenting the behavior of many engineering

materials under small deformations is described by

W ¼ lðE : 1Þ2=2þ mE : E, (3.2)

where l and m are the Lame material constants and

E ¼ ðC� 1Þ=2 � ðHþHTÞ=2 (3.3)

is the Green strain; 1 is the second-order identity tensor and H ¼ qu=qX is the
displacement, u ¼ x� X, gradient. The second approximate equality in (3.3) is valid for
small deformations.
Another example is the Mooney–Rivlin isotropic model presenting rubber-like materials

W ¼ aðI1 � 3Þ=2þ bðI2 � 3Þ=2, (3.4)

where a and b are the material constants and

I1 ¼ C : 1, (3.5)

I2 ¼ ðI
2
1 � C2 : 1Þ=2 (3.6)

are the first and the second principal invariants of C. Mooney–Rivlin materials are usually
assumed incompressible, det F ¼ 1 ¼ det C, which leads to the appearance of an
undefined pressure-like term, �p1, in the expression of the true stress. This term, p, is
the Lagrange multiplier, which enforces the geometric incompressibility constraint.
The Neo-Hookean material is obtained for b ¼ 0 in (3.4).
Final example is the Fung-type model of soft biological tissues

W ¼ gðeQðCÞ � 1Þ, (3.7)

where g is a material constant and Q is a function of C. Biological materials are usually
assumed incompressible because their response to hydrostatic stresses is much stronger

ARTICLE IN PRESS
K.Y. Volokh / J. Mech. Phys. Solids 55 (2007) 2237–22642240



Author's personal copy

than their response to shearing. In this sense, the soft tissues resemble fluids. Actually,
many soft tissues are saturated by fluids what partially justifies the incompressibility
assumption. It seems, however, that the applicability of the incompressibility assumption
essentially depends on the specific loading and deformation of the material under
consideration (Volokh, 2006a).

The mentioned models and their modifications present a wide variety of engineering and
biological materials. It is important to realize that the traditional constitutive models
target intact materials predominantly. It is reasonable in this case to assume that the
mathematically correct model should provide the existence of the solution of the
corresponding boundary value problem and the stability of the numerical algorithm
implementing this solution. Such a desire gave rise, for example, to the famous Ball (1977)
results on polyconvexity of the strain energy functions.

Simplistically, the intact material models can be characterized as follows:

kCk ! 1) c!1, (3.8)

where k . . . k is a tensorial norm. In other words, the increasing strain increases the
accumulated energy and the possible energy increase is unlimited.

Evidently, the consideration of only intact materials is restrictive and no real material
can sustain large enough strains. The latter means that the energy increase should be
limited by a critical value

kCk ! 1) c ¼ F ¼ constant, (3.9)

where F can be called the material failure energy.
By analogy with the classical fracture mechanics where only one constant of material

toughness (or the critical energy release rate) is introduced to describe failure we assume
that F is the only constant characterizing the material failure properties. Despite the
analogy, we should strongly emphasize the difference between the classical fracture
mechanics and the softening hyperelasticity approach advocated in the present work. The
former approach introduces the length-dependence in the failure calculations because of
the introduction of the surface energy. The length-dependence may lead to physically
meaningless results as will be shown later. The latter approach does not introduce the
surface energy and, consequently, the length-dependence in harmony with the physical
intuition as will be discussed later.

There is a variety of possibilities to formulate the strain energy obeying condition (3.9).
Our desire, however, is to enrich the already existing models, which describe intact
behavior of materials reasonably well, with the failure condition. Such a desire can be
formalized as follows:

kCk ! 1) cðW ðCÞÞ ¼ F ¼ constant. (3.10)

In other words, we are looking for a strain energy expression, c, which is a function of the
strain energy of an intact material, W. A possible solution to this problem is

cðW Þ ¼ F� F expð�W=FÞ, (3.11)

where

cðW ¼ 0Þ ¼ 0 (3.12)
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and

cðW ¼ 1Þ ¼ F. (3.13)

We notice that in the case of the intact material behavior

W

F
51, (3.14)

the power series expansion of (3.11) reads

cðW Þ �W (3.15)

preserving the features of the intact material (Fig. 1).
Substituting (3.11) in (2.10), (2.11) we have accordingly

P ¼ 2F
qW

qC
expð�W=FÞ, (3.16)

r ¼ 2J�1F
qW

qC
FT expð�W=FÞ. (3.17)

Thus, the exponential multiplier enforces material softening and the models based on
(3.16), (3.17) can be called hyperelasticity with softening or, simpler, softening

hyperelasticity. Our subsequent analysis of examples aims at elaborating on the presented
formulation of softening hyperelasticity.

4. Calibration: simple shear and uniaxial tension

We consider simple shear and uniaxial tension problems for brittle and soft materials
accordingly in this section. Their solutions can be used for the experimental calibration of
the models.
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4.1. Simple shear of isotropic Hookean material

We start with the simple shear of an isotropic Hookean material under small
deformations. In this case, we have

E ¼ gðe1 � e2 þ e2 � e1Þ, (4.1)

r ¼ tðe1 � e2 þ e2 � e1Þ, (4.2)

and the Hooke law with softening

rffi
qW

qE
expð�W=FÞ ¼ ð2mEþ lðE : 1Þ1Þ expð�W=FÞ (4.3)

reduces to

t ¼ 2mg expð�2ðlþ mÞg2=FÞ, (4.4)

where ei is the Cartesian basis.
The shape of this curve appears in Fig. 2. Qualitatively, this means that the magnitude of

the shear stress increases with the shear strain, reaches a maximum, and then approaches
zero with increasing failure. The local maximum of the curve is at point
gmax ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F=ðlþ mÞ

p
=2. Assume, for example, that the maximum experimental shear

for the given material is gmax ¼ 10�3. Then, we have ðlþ mÞ=F ¼ 2:5� 105 and
t=m ¼ 2g expð�5� 105g2Þ—Fig. 2.

4.2. Uniaxial tension of Neo-Hookean material

Next, we consider the uniaxial tension of the Neo-Hookean material with softening.
This material is a particular case of the Mooney–Rivlin class of materials and it is
described as follows:

W ðI1Þ ¼
a
2
ðI1 � 3Þ, (4.5)

r ¼ �p1þ 2W 1B expð�W=FÞ, (4.6)
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where

B ¼ FFT, (4.7)

W i � qW=qI i. (4.8)

In the case of uniaxial tension the deformation is

x1 ¼ lX 1; x2 ¼ l�1=2X 2; x3 ¼ l�1=2X 3, (4.9)

B ¼ l2e1 � e1 þ l�1ðe2 � e2 þ e3 � e3Þ, (4.10)

where l designates stretch.
Based on (4.6) we find1

s11 ¼ 2ðl2 � l�1ÞW 1 expð�W=FÞ

¼ aðl2 � l�1Þ expf�aðl2 þ 2l�1 � 3Þ=ð2FÞg. ð4:11Þ

The stress–stretch curve described by (4.11) is shown in Fig. 3. The maximum point on the
curve corresponding to the softening material indicates the onset of the material failure/
rupture. After the stretch reaches the magnitude of 	1:8 ða ¼ FÞ no stable solution of the
statical problem exists. The uniaxial tension test can be used for the calibration of the
material failure constant F. Indeed, measuring the critical stretch one can fit the
load–stretch curve and find the constant.

4.3. Tension of bio-fiber

Finally, we consider the tension test of a biological fiber described in the following strain
energy function and the constitutive law (Holzapfel et al., 2000):

W ðJÞ ¼
k1

2k2
ðexpðk2ðJ � 1Þ2Þ � 1Þ, (4.12)

r ¼ 2
qW

qJ
m�m expð�W=FÞ, (4.13)
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Fig. 3. Uniaxial tension of the Neo-Hookean material with softening.

1This is an extension of the celebrated Rivlin’s (1948) solution to the case with softening.
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where

m ¼ FM, (4.14)

J ¼ m 
m, (4.15)

and M ( Mj j ¼ 1Þ is the initial fiber direction.
In the case of tension of an individual fiber we have m ¼ lM and J ¼ l2, consequently,

the stress–stretch curve is given by

s �
m 
 rm
m 
m

¼ 2l2
qW

qJ
expð�W=FÞ. (4.16)

Fig. 4 presents the stress–stretch curve of a bio-fiber with constants k1 ¼ 2:3632 kPa and
k2 ¼ 0:8392. The magnitudes are experimentally calibrated for the medial arterial fibers
(see Section 7). We also assumed F ¼ k1 in Fig. 4. As in the previous example, the
experimental calibration of a specific fiber can be made.

5. Cavitation problem

In this section, we consider the cavitation problem for the Hookean and Neo-Hookean
materials with softening.

5.1. Cavitation in isotropic Hookean solid

Let us start with the centrally symmetric deformation of a spherical void of radius a in a
Hookean sphere of radius b. In this case small displacements we will not make difference
between the referential and current configurations. The displacement and strains take the
following form in spherical coordinates fr; y;og:

u ¼ uðrÞ gr, (5.1)

E ¼ Errgr � gr þ Eyygy � gy þ Eoogo � go, (5.2)

Err ¼
qu

qr
; Eyy ¼

u

r
; Eoo ¼

u

r
, (5.3)
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where

gr ¼ ðsin y coso; sin y sino; cos yÞ
T;

gy ¼ ðcos y coso; cos y sino;� sin yÞT;

go ¼ ð� sino; coso; 0ÞT:

8><
>: (5.4)

The stress tensor takes the form

r ¼ srrgr � gr þ syygy � gy þ soogo � go, (5.5)

srr ¼ ð2mErr þ lE : 1Þ expð�W=FÞ;

syy ¼ ð2mEyy þ lE : 1Þ expð�W=FÞ;

soo ¼ ð2mEoo þ lE : 1Þ expð�W=FÞ;

8><
>: (5.6)

W ¼ lðErr þ Eyy þ EooÞ
2=2þ mðE2

rr þ E2
yy þ E2

ooÞ, (5.7)

and the equilibrium equation reduces to

qsrr

qr
þ 2

srr � syy
r

¼ 0. (5.8)

Two boundary conditions are imposed on it

srrðr ¼ aÞ ¼ 0;

srrðr ¼ bÞ ¼ p:

(
(5.9)

Substituting (5.3) and (5.6) in (5.8) and (5.9) we obtain a nonlinear two-point boundary
value problem in terms of radial displacement u.
Numerical solution of the described problems is generated by using the shooting method

with a displacement control. According to it, we, first, make the initial guess for
displacement uð0Þ at the void surface r ¼ a. Second, we calculate ðqu=qrÞð0Þ at the void
surface from condition ð5:9Þ1. Third, we solve the initial value problem with given uð0Þ and
ðqu=qrÞð0Þ. The latter step is accomplished by using the ‘NDSolve’ numerical integrator of
Mathematica for the solution of the initial value problem. Three mentioned steps are
repeated iteratively unless the normal stress at the outer surface r ¼ b converges to the
given magnitude p and condition ð5:9Þ2 is obeyed.
The curve presenting the critical pressure versus the changing void size curve is shown in

Fig. 5 for m=F ¼ 15� 105=11 and m=l ¼ 6=5. The curve does not change for
b=a4b=a410, i.e. the critical tension is independent of the void size.

By way of contrast, we present the critical hydrostatic tension obtained by using the
Griffith energy approach (Volokh, 2007)

pc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EGc

3ð1� nÞa

s
, (5.10)

where E is the Young modulus; n is the Poisson ratio; a5b; and the critical energy release
rate Gc is a material constant. Thus, the critical tension is inversely proportional to the
square root of the void radius. The critical tension can increase unlimitedly with the radius

decrease. The latter conclusion is physically meaningless, of course.
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5.2. Cavitation in isotropic Neo-Hookean solid

Next, let us consider cavitation in the Neo-Hookean softening material. In this case, we
assume

r ¼ rðRÞ; y ¼ Y; o ¼ O, (5.11)

where a point occupying position ðR;Y;OÞ in the initial configuration is moving to position
ðr; y;oÞ in the current configuration. Then the deformation gradient takes the form

F ¼ ðqr=qRÞ gr �GR þ ðr=RÞ gy �GY þ ðr=RÞgo �GO, (5.12)

where the current base vectors were defined in (5.4) and the referential base vectors are

GR ¼ ðsinY cosO; sinY sinO; cosYÞT;

GY ¼ ðcosY cosO; cosY sinO;� sinYÞT;

GO ¼ ð� sinO; cosO; 0ÞT:

8><
>: (5.13)

It is worth mentioning that material incompressibility implies

qr

qR
¼

R2

r2
. (5.14)

Designating the radii of the void A and a before and after the deformation accordingly, we
can integrate (5.14) and get

r3 � a3 ¼ R3 � A3. (5.15)

In view of (5.12) and (5.14), the left Cauchy–Green deformation tensor takes the form

B ¼ ðR=rÞ4 gr � gr þ ðr=RÞ2 gy � gy þ ðr=RÞ 2go � go, (5.16)

and the constitutive equations (4.5) and (4.6) take the following form:

srr ¼ �pþ aðR=rÞ4 exp �
a
2
ðI1 � 3Þ=F

n o
;

syy ¼ soo ¼ �pþ aðr=RÞ2 exp �
a
2
ðI1 � 3Þ=F

n o
:

8><
>: (5.17)
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In the case under consideration, we have only one scalar Eulerian equation of equilibrium

qsrr

qr
þ 2

srr � syy
r

¼ 0. (5.18)

This equation is completed with two boundary conditions

srrðr ¼ aÞ ¼ 0;

srrðr ¼ bÞ ¼ g:

(
(5.19)

The traction-free condition is set at the edge of the void. The hydrostatic tension g is
imposed at the remote boundary, whose radius changes from B to b during deformation.
Integrating (5.18) with account of (5.19) we have

g ¼ 2

Z b

a

syy � srr

r
dr ¼ 2a

Z b

a

ðr2=R2 � R4=r4Þ exp �
a
2
ðI1 � 3Þ=F

n o dr

r
, (5.20)

where I1 ¼ R4=r4 þ 2r2=R2 and R2 ¼ ðr3 � a3 þ A3Þ
2=3.

We introduce new variables to reformulate (5.20) in the dimensionless form

ḡ ¼
g

a
; r̄ ¼

r

A
; R̄ ¼

R

A
; ā ¼

a

A
; b̄ ¼

b

A
. (5.21)

Substituting (40) in (39) we have

ḡ ¼ 2

Z b̄

ā

ðr̄2=R̄
2
� R̄

4
=r̄4Þ exp �

a
2F
ðR̄

4
=r̄4 þ 2r̄2=R̄

2
� 3Þ

n o dr̄

r̄
, (5.22)

where R̄
2
¼ ðr̄3 � ā3 þ 1Þ2=3 and we choose F ¼ a. We track the hydrostatic tension, ḡ,

versus void expansion, ā, curve—Fig. 6. It is remarkable that the curve does not change for
varying b̄ starting from b̄440ā. This observation can be interpreted as the independence of

the critical tension on the size of the void for small voids. Evidently, dynamic analysis of
failure propagation is necessary when the tension reaches the critical value. The classical
Neo-Hookean material without softening exhibits the asymptotic convergence to the
tension magnitude g=a ¼ 5=2 as expected.
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6. Balloon rupture

In this section, we examine the balloon inflation problem for various materials.

6.1. General formulae

Restricting attention to spherically symmetric deformations of incompressible materials
we will use the general pressure–stretch solution as it appears in Beatty (1987) and can be
traced back to Green and Zerna (1954) and Green and Adkins (1960):

pðlÞ ¼
4h

lR
ð1� l�6Þðc1 þ l2c2Þ, (6.1)

where ci ¼ qc=qI i; h5R is the thickness of the balloon; R is its initial radius; l ¼ r=R is
the stretch where r is the current radius and the principal invariants are

I1 ¼ 2l2 þ l�4, (6.2)

I2 ¼ ð2l
2
þ l�4Þ2=2� ð2l4 þ l�8Þ=2. (6.3)

In the case of material with softening, we can rewrite (6.1) as follows:

pðlÞ ¼
4h

lR
ð1� l�6ÞðW 1 þ l2W 2Þ expð�W=FÞ. (6.4)

To ignore softening one sets F!1 and the exponential multiplier disappears.

6.2. Inflation of Mooney– Rivlin balloon

We start by examining the Mooney–Rivlin material W ¼ aðI1 � 3Þ=2þ bðI2 � 3Þ=2. In
this case (6.4) takes the form

pðlÞ ¼ ð2ha=RÞl�1ð1� l�6Þð1þ gl2Þ expð�aðI1 � 3þ gðI2 � 3ÞÞ=2FÞ. (6.5)

Fig. 7 presents two curves described by (6.5) and generated for g ¼ b=a ¼ 0:055 with,
F=a ¼ 2500, and without, F=a ¼ 1, softening. It is remarkable that both curves exhibit
the first limit point, which is observed in the balloon inflation experiments in the intact
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rubber-like materials, while the second limit point indicating rupture can be captured by
the model with softening only.

6.3. Inflation of Fung-type (biomaterial) balloon

We turn now to a biological tissue defined by the Fung-type strain energy

W ¼
a
2b
fexpðbðI1 � 3ÞÞ � 1g, (6.6)

where a and b are material constants.
In this case, (6.4) takes the form

pðlÞ ¼ ð2ah=RÞl�1ð1� l�6Þ expðbðI1 � 3ÞÞ expð�W=FÞ. (6.7)

Fig. 8 presents two curves described by (6.7) and generated for b ¼ 0:067 with, F=a ¼ 20,
and without, F=a ¼ 1, softening. Evidently, the biomaterial without softening is not
capable of capturing rupture.

7. Arterial failure

In this section, we use the softening hyperelasticity approach to study arterial failure.
Histological analysis of the arterial wall (Humphrey, 2002) reveals that the artery
comprises three layers—intima, media, and adventitia. While the mechanical role of intima
is minor, media and adventitia contribute to the arterial strength. Both media and
adventitia are anisotropic composite materials where the cellular matrix is reinforced with
a net of oriented elastin and collagen microfibers. There are a number of constitutive
theories presenting passive behavior of intact arteries which include material anisotropy
(Vaishnav et al., 1973; Fung et al., 1979; von Maltzahn et al., 1981; Chuong and Fung,
1983; Tözeren, 1984; Demiray, 1991; Humphrey, 1995; Wuyts et al., 1995; Delfino et al.,
1997; Simon et al., 1998a, b). We choose the latest theory proposed by Holzapfel et al.
(2000) to account for the bi-layer structure of the artery where both adventitia and media
are fiber-reinforced composites.
We ignore the residual stresses, which develop during artery growth because of the

following two reasons. First, we assume that such stresses do not affect the failure
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predictions targeted below. Second, the existing approach to estimating residual stresses
based on the ring-cutting experiments is somewhat open to discussion (Rachev and
Greenwald, 2003; Volokh, 2006b).

Holzapfel et al. (2000) suggest writing the constitutive equations for adventitia or media

in the following form:

r ¼ rM þ rF1 þ rF2 , (7.1)

rM ¼ �p1þ 2W M
1 B, (7.2)

rF1 ¼ 2W F1

1 m1 �m1, (7.3)

rF2 ¼ 2W F2

2 m2 �m2. (7.4)

Here the Cauchy stress tensor is decomposed into rM representing the layer matrix and rF1

and rF2 representing two families of fibers; W M ðI1Þ is the strain energy of the matrix;
vectors mi ¼ FMi designate ‘pushed forward’ initial fiber units Mi (jMij ¼ 1Þ; W Fi ðJiÞ is
the strain energy of the stretching fibers: Ji ¼ mi 
mi; and W M

1 � qW M=qI1;
W Fi

i � qW F i=qJi.
The matrix material is Neo-Hookean:

W MðI1Þ ¼
a
2
ðI1 � 3Þ, (7.5)

while the fibers are described by the exponential stored energy

W Fi ðJiÞ ¼
k1

2k2
fexpðk2ðJi � 1Þ2Þ � 1g, (7.6)

where a; k1; k2 are the material constants.
Enforcing softening in accordance with (3.11) we replace (7.5) and (7.6) by the following

formulae accordingly:

cM
¼ FM � FM expð�W M=FM Þ, (7.7)

cFi ¼ FFi � FFi expð�W Fi=FFi Þ, (7.8)

where FM ;FFi are material failure constants equal to the limit strain energies.
We consider a radial inflation of an artery as a symmetric deformation of a cylinder

under the plane strain conditions

r ¼ rðRÞ; y ¼ Y; z ¼ Z, (7.9)

where a point occupying position ðR;Y;ZÞ in the initial configuration is moving to
position ðr; y; zÞ in the current configuration. Then, the deformation gradient takes the
form

F ¼ ðqr=qRÞ gr �GR þ ðr=RÞ gy �GY þ gz �GZ, (7.10)

where the orthonormal bases in cylindrical coordinates at the reference and current
configurations take the following forms accordingly:

GR ¼ ðcosY; sinY; 0Þ
T; GY ¼ ð� sinY; cosY; 0ÞT; GZ ¼ ð0; 0; 1Þ

T, (7.11)

gr ¼ ðcos y; sin y; 0Þ
T; gy ¼ ð� sin y; cos y; 0ÞT; gz ¼ ð0; 0; 1Þ

T. (7.12)
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Incompressibility condition implies for (7.10)

det F ¼
qr

qR

r

R
¼ 1 (7.13)

or

qr

qR
¼

R

r
. (7.14)

Designating the internal radii of the artery A and a before and after the deformation
accordingly, we can integrate (7.14) and get

r2 � a2 ¼ R2 � A2. (7.15)

In view of (7.10) and (7.14), the left Cauchy–Green deformation tensor takes form

B ¼ FFT ¼ ðR=rÞ2 gr � gr þ ðr=RÞ2 gy � gy þ gz � gz. (7.16)

The fiber kinematics is described by

m1 ¼ FM1 ¼ ðr cos b=RÞ gy þ ðsin bÞgz, (7.17)

m2 ¼ FM2 ¼ ðr cos b=RÞ gy � ðsin bÞgz, (7.18)

where the initial fiber directions are M1 ¼ cos bGY þ sin bGZ and M2 ¼ cos bGY�

sin bGZ. Here b is the angle between the fibers and the circumferential direction of
the artery.
Gathering all terms with the help of (7.1)–(7.8) and (7.16)–(7.18) we get the nontrivial

components of the Cauchy stress:

srr ¼ �pþ 2cM
1 ðR=rÞ2;

syy ¼ �pþ 2cM
1 ðr=RÞ2 þ 2ðcF1

1 þ cF2

2 Þðr=RÞ2cos2b;

szz ¼ �pþ 2cM
1 þ 2ðcF 1

1 þ cF2

2 Þsin
2b

8>><
>>: (7.19)

and strain invariants

I1 ¼ ðr=RÞ2 þ ðR=rÞ2 þ 1;

J1 ¼ J2 ¼ ðr=RÞ2cos2bþ sin2b:

(
(7.20)

There is only one nontrivial equilibrium equation

qsrr

qr
þ

srr � syy
r

¼ 0, (7.21)

and the traction boundary conditions are

srrðr ¼ aÞ ¼ �g;

srrðr ¼ bÞ ¼ 0;

(
(7.22)

where b is the outer radius of the artery after the deformation, which was equal to B before
the deformation.
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We integrate equilibrium equation (7.21) over the wall thickness with account of
boundary conditions (7.22) and get

gðaÞ ¼ �

Z bðaÞ

a

ðsrr � syyÞ
dr

r

¼ �

Z bðaÞ

a

ð2cM
1 ðR=rÞ2 � 2cM

1 ðr=RÞ2 � 4cF1

1 ðr=RÞ2cos2bÞ
dr

r
, ð7:23Þ

where bðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ B2 � A2

p
because of the incompressibility condition and cF1

1 ¼ cF2

2 .
Eq. (7.23) presents the pressure–radius (g–a) relationship, which we examine for various

material constants. Before doing that, however, we introduce dimensionless variables as
follows:

ḡ ¼
g

a
; r̄ ¼

r

A
; R̄ ¼

R

A
; ā ¼

a

A
; b̄ ¼

b

A
. (7.24)

Now (7.23) takes the form

ḡðāÞ ¼ �

Z b̄ðāÞ

ā

ð2ðR̄=r̄Þ2c̄
M

1 � 2ðr̄=R̄Þ2c̄
M

1 � 4ðr̄=R̄Þ2c̄
F1

1 cos2bÞ
dr̄

r̄
, (7.25)

where

b̄ðāÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ā2 þ ðB=AÞ2 � 1

q
, (7.26)

c̄
M

1 ¼
1

2
exp �

a
2FM
ðI1 � 3Þ

� �
, (7.27)

c̄
F1

1 ¼
k1

aFF1
ðJ1 � 1Þ expðk2ðJ1 � 1Þ2Þ exp �

k1

2k2FF1
½expðk2ðJ1 � 1Þ2Þ � 1�

� �
, (7.28)

I1 ¼ ðr̄=R̄Þ2 þ ðR̄=r̄Þ2 þ 1, (7.29)

J1 ¼ ðr̄=R̄Þ2cos2bþ sin2b, (7.30)

R̄
2
¼ ðr̄2 � ā2Þ þ 1. (7.31)

It should not be missed that material constants change from media to adventitia and, thus,
the integral in (7.25) is additively split into computations in two integrals for the media and
adventitia accordingly.

The purpose of numerical simulations is twofold. First, we aim at clarifying the relative
importance of matrix and fibers within the media layer2 of the arterial wall. Second, we
examine the comparative contribution of the adventitia and the media in the overall
arterial strength.

As a ‘ground state’ of material constants, which will vary in calculations, we choose the
parameters reported by Holzapfel et al. (2000) for the media: cM ¼ 3:0 kPa,
k1M ¼ 2:3632 kPa, k2M ¼ 0:8392, A ¼ 0:7mm, BM ¼ 0:96mm, bM ¼ p=6; and for the
adventitia: cA ¼ 0:3 kPa, k1A ¼ 0:562 kPa, k2A ¼ 0:7112, AA ¼ BM (the media–adventitia
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interface), B ¼ 1:09mm, bA ¼ p=3. These parameters were fitted to the experimental data
of Chuong and Fung (1983) for a carotid artery of a rabbit. We complete the softening
hyperelastic model with material constants controlling failure of the media and the
adventitia accordingly: FM

M ¼ aM , FF1

M ¼ k1M and FM
A ¼ aA, F

F1

A ¼ k1A.
The pressure–radius curve #1 in Fig. 9 presents the media failure for the ground state. In

this case the softening is allowed for both matrix and fibers. The media without softening,
i.e. FM

M ¼ 1 and FF1

M ¼ 1, is presented by curve #2. The case where the matrix does not
soften while the fibers do, i.e. FM

M ¼ 1, is presented by curve #3 and the case where the
fibers do not soften while the matrix does, i.e. FF 1

M ¼ 1, is presented by curve #4. It is
readily observed in Fig. 9 that the overall strength is controlled by the strength of the fibers.
Indeed, when the fibers soften the media softens and when the fibers do not the media
does not.
Further, Figs. 10 and 11, we examine the effect of the 10 times decrease k1M ¼

0:23632 kPa and the 10 times increase k1M ¼ 23:632 kPa of the fiber stiffness accordingly.
We repeat all previous calculations for the entirely softening media, curves #5 and #9, the
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media without softening, curves #6 and #10, the case where the matrix does not soften
while the fibers do, curves #7 and #11, and the case where the fibers do not soften while the
matrix does, curves #8 and #12. Though the quantitative changes are evident as compared
to Fig. 9 the qualitative conclusion remains the same: the overall strength is controlled by

the strength of the fibers.
Then, Figs. 12 and 13, we examine the effect of the increase bM ¼ p=4 of the fiber angle

and the increase FM
M ¼ 10aM of the matrix failure constant accordingly. We repeat all

previous calculations for the entirely softening media, curves #13 and #17, the media
without softening, curves #14 and #18, the case where the matrix does not soften while the
fibers do, curves #15 and #19, and the case where the fibers do not soften while the matrix
does, curves #16 and #20. Though the quantitative changes are again evident as compared
to Fig. 9 the qualitative conclusion remains the same again: the overall strength is controlled

by the strength of the fibers.
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At this point, our first task, the examination of the relative contribution of the matrix
and fibers to the overall layer strength, is accomplished. We turn to the second task—
examination of the relative contribution of the media and the adventitia to the overall layer
strength.
The pressure–radius curve for the bi-layer arterial model including the media and the

adventitia is presented in Fig. 14 for the ‘ground state’ of material constants described
above. The figure also includes the separate contributions of the media and adventitia
shown by the dashed lines. The considered set of material constants led to the domination
of the media strength. This situation can change when the adventitia fibers enjoy the fiber
constant FF1

A ¼ 10k1A as shown in Fig. 15. In this case, the adventitia strength is
pronounced though the media strength is still higher.
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8. Critical failure energy: continuum-atomistic link

This section aims at justifying the assumption of the existence of the critical failure
energy, F. We consider the continuum-atomistic link for materials that can be described by
the Lennard-Jones or Morse interatomic potentials, for example, and we show how the
macroscopic parameter F can be calculated.

Consider a solid body comprising microparticles, for example atoms, placed at ri in the
3D space. Generally, the volumetric density of the total potential energy of the body is a
function of the particle positions: Eðr1; r2; . . . ; rN Þ, where N is the number of particles.
More specifically, the potential energy density, i.e. the strain energy, can be written with
account of the two-particle interactions as follows:

c ¼
E

2V
¼

1

2V

X
i;j

UðrijÞ, (8.1)

rij ¼ jrijj ¼ jri � rjj, (8.2)

where V is the volume occupied by the system.
According to the Cauchy–Born rule, originally applied to the crystal elasticity, the

current rij and initial (reference) Rij ¼ Ri � Rj relative positions of the same two particles
can be related by the deformation gradient, Fig. 16,

rij ¼ FRij . (8.3)

It is assumed here that the deformation is locally homogeneous.
Substituting (8.3) in (8.1) and (8.2) yields

c ¼
1

2V

X
i;j

UðrijÞ ¼ cðCÞ. (8.4)

Direct application of (8.4) to analysis of material behavior can be difficult because of the
large amount of microparticles. Gao and Klein (1998) and Klein and Gao (1998, 2000)
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considered the following averaging procedure:

c ¼ hUðlÞi �
1

V0

Z
V�0

UðlÞDV dV . (8.5)

Here V0 is the reference representative volume; l is the current virtual bond length; UðlÞ is
the bonding potential; DV is the volumetric bond density function; and V�0 is the
integration volume defined by the range of influence of U.
Introducing new notation it is possible to write

l ¼ rij ¼ L
ffiffiffi
n

p

 Cn ¼ LjFnj, (8.6)

L ¼ Rij ¼ jRi � Rjj, (8.7)

n ¼ ðRi � RjÞ=L. (8.8)

We start with considering the critical failure energy predictions based on the Lennard-
Jones potential

V ðlÞ ¼ 4�ððs=lÞ12 � ðs=lÞ6Þ, (8.9)

where � and s are the bond energy and length constants—Fig. 17. The minimum of
V ¼ �� is reached at the equilibrium bond length l ¼

ffiffiffi
26
p

s where no forces are acting
between the atoms.
In view of the continuum-atomistic link discussed above, we shift the energy expression

(8.9) by � to provide the zero minimum energy of the referential equilibrium state of the
bond deformation:

UðlÞ ¼ 4�ððs=lÞ12 � ðs=lÞ6Þ þ �. (8.10)
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Then (8.5) takes the form

cðCÞ ¼
1

V 0

Z
V�0

ð4ðs=L
ffiffiffiffiffiffiffiffiffiffiffiffi
n 
 Cn

p
Þ
12
� 4ðs=L

ffiffiffiffiffiffiffiffiffiffiffiffi
n 
 Cn

p
Þ
6
þ 1Þ�DV dV , (8.11)

where (8.6) and (8.10) have been used.
It is important to emphasize that the equilibrium bond length in a lattice is not

necessarily equivalent to the equilibrium bond length in a pair of atoms: L ¼
ffiffiffi
26
p

s. The
calculation of the equilibrium bond length in a lattice can generally be nontrivial and
require a numerical minimization procedure. Moreover, the interatomic forces may differ
from zero for pairs of atoms though the average force can be assumed zero.

We can define the critical energy value from (8.11) by using (3.10) as follows:

F ¼ cðkCk ! 1Þ ¼
1

V 0

Z
V�0

�DV dV , (8.12)

where

kCk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n 
 Cn

p
(8.13)

for any n.
Now we consider the critical failure energy predictions based on the Morse potential

V ðlÞ ¼ �ðe�2bðl�LÞ � 2e�bðl�LÞÞ, (8.14)

where � and L are the bond energy and equilibrium length accordingly, while b is a
constant having the inverse length dimension—Fig. 18. The minimum of V ¼ �� is
reached at the equilibrium bond length l ¼ L where no forces are acting between the
atoms.

In view of the continuum-atomistic link discussed above, we shift the energy expression
(8.14) by � to provide the zero minimum energy of the referential equilibrium state of the
bond deformation:

UðlÞ ¼ �ðe�2bðl�LÞ � 2e�bðl�LÞ þ 1Þ. (8.15)
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Then (8.5) takes the form

cðCÞ ¼
1

V0

Z
V�0

fexp½2bLð1�
ffiffiffiffiffiffiffiffiffiffiffiffi
n 
 Cn

p
Þ� � 2 exp½bLð1�

ffiffiffiffiffiffiffiffiffiffiffiffi
n 
 Cn

p
Þ� þ 1g�DV dV ,

(8.16)

where (8.6) and (8.15) have been used.
Again, we emphasize that the equilibrium bond length in a lattice is not necessarily

equivalent to the equilibrium bond length in a pair of atoms.
We can define the critical failure energy value from (8.16) by using (3.10) as follows:

F ¼ cðkCk !1Þ ¼
1

V 0

Z
V�0

�DV dV , (8.17)

where kCk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n 
 Cn

p
for any n.

9. Discussion

In the present work, we proposed a new approach of softening hyperelasticity for
modeling materials failure. We assumed the existence of the maximum constant value of
strain energy, F, associated with the onset of material failure. This constant represents the
material ‘toughness’. We proposed a simple and universal formula, (3.11), to account for
possible failure of any hyperelastic material. It is important that the formula preserves all
features of behavior of intact materials unless the strain energy approaches the energy
limit, F. We examined the softening hyperelasticity approach considering a variety of
materials and boundary value problems.
It was shown, first, that simple shear and uniaxial tension experiments can be used for

the failure calibration of brittle Hookean and soft hyperelastic materials.
Then, we considered cavitation (void instability) under the hydrostatic tension. In the

case of the isotropic Hookean material, we found that the critical tension did not depend
on the void size for small voids. This result is physically reasonable if we assume that the
failure process develops due to the stresses/strains at the edge of the void. Such stresses/
strains do not depend on the void size and, consequently, the critical tension should not
depend on the void size. The situation, however, is strikingly different if one uses the
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Griffith energy method for the prediction of the critical tension. In the latter case, the
critical tension depends on the inverse square root of the void radius and tends to infinity
when the radius decreases. Evidently, the Griffith analysis brings physically meaningless
results. The reason for that is the length-dependence of the Griffith approach, which
contradicts the length-independence of the classical continuum mechanics. Indeed, Griffith
introduces the surface energy into consideration and, as a result, he sets a characteristic
length, say, the volume energy over the surface energy for example. Separation of the
failure condition from stress analysis is the main disease of the Griffith approach. An
interested reader is referred to Volokh (2007) for a detailed discussion of the issue.

The study of the cavitation in the softening Neo-Hookean material reveals the existence
of the critical tension where the dynamic failure propagation starts. This is in contrast to
the intact Neo-Hookean material where the critical tension does not exist. We should note
that the asymptotic value of the maximum tension existing for the intact Neo-Hookean
material could not be considered as a material failure indicator, as sometimes assumed,
because the material behavior is always stable.

Our examination of the balloon inflation problem further reveals the capacity of the
proposed framework to capture material failure. The intact biological material considered
in the present work did not exhibit any instability while its model with softening had the
instability point indicating the rupture onset. In this regard, the example of the inflating
Mooney–Rivlin balloon (Fig. 7) is remarkably instructive. The intact Mooney–Rivlin
material captures the phenomenon of the balloon softening presented by the first limit
point. It is unable, however, to capture rupture. The Mooney–Rivlin material enhanced
with softening exhibits two limit points where the second one corresponds to rupture.

We also examined the strength of the arterial wall. The wall included two layers of media
and adventitia. Every layer comprised a cellular matrix described by the Neo-Hookean
isotropic material with softening and two families of fibers described by the exponential
stored energy function with softening. We considered the axisymmetric inflation of the wall
under internal pressure and it was found that the fiber strength dominates the overall
arterial strength. Such qualitative conclusion has an immediate experimental implication:
it is necessary to calibrate the mechanical models of individual fibers in order to predict the
global arterial strength. It was also found that the relative contribution of media and
adventitia to the arterial strength depends on the relative strength of the fibers belonging in
media and adventitia.

Finally, we tracked the continuum-atomistic link allowing for the derivation of the
parameter of the critical failure energy, F. We showed how to derive it for the materials
that can be described by the Lennard-Jones or Morse potentials, for example.

Bearing in mind limitations of the present study, we should note that the softening
hyperelasticity approach targets brittle materials and soft hyperelastic materials
predominantly. The presented formulation is unable to handle failure of ductile materials
exhibiting essential plastic deformations before failure. Neither the proposed approach is
relevant to the micro-scale problems showing the pronounced length-dependence.

Considering further limitations of the present study, we should emphasize that the
softening hyperelasticity approach was used in the analytically tractable problems and,
consequently, the deformation modes were restrictive. To relax these restrictions general
finite element methods should be used within the softening hyperelasticity framework. Two
numerical problems concerning the finite element implementation should be addressed.
First, it is necessary to introduce the energy dissipation in the finite element model in order
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to preclude from the material healing. This can be done, for example, by decreasing the
material constants within a finite element by a few orders of magnitude after the element
energy reaches the critical value of the volumetric failure work. In other words, the
damaged material should have new and low magnitudes of the material constants. The
second issue is related with the necessity to regularize the ill-posed numerical problem
where the loss of ellipticity/hyperbolicity of the governing equations with softening can
lead to the pathological mesh-sensitivity (Crisfield, 1997; Belytschko et al., 2000; de Borst,
2001). The regularization procedure should introduce a characteristic length in the
calculation precluding the mesh sensitivity. Three following approaches are considered in
the literature to regularize the numerical problem of the FE-mesh sensitivity. The first
approach suggests replacing the classical continuum formulation with a generalized
continuum formulation—higher-order, gradient, or non-local theories (de Borst and van
der Giessen, 1998). The generalized continuum formulations introduce material length
parameters, which control the strain localization processes. The only shortcoming of the
generalized continuum formulations is the need to give a clear physical interpretation to
the necessary additional boundary conditions. The second approach goes back to the work
of Hillerborg et al. (1976). The basic idea of this approach is to introduce a characteristic
material length directly in the FE model bypassing the PDE formulation. This approach
was adapted by ABAQUS for the analysis of concrete structures. The third approach to
the treatment of mesh sensitivity can be called dynamic regularization. The basic idea of
this approach is to introduce the characteristic length in the problem implicitly through the
rate dependence of the constitutive or balance equations. Needleman (1988), for example,
observed that rate-dependence of the material regularizes the ill-posed numerical problem.
He notes, however, that whether or not the introduced implicit length-scale is relevant
depends on the particular circumstances. Another sort of regularization was reported by
Zhang et al. (2002), who added the viscous forces to the momentum balance equations
within the framework of the continuum-atomistic method. They observed in simulations
that the artificial dumping suppressed the mesh sensitivity. These results are promising and
they can be applied for the regularization of the failure evolution problem within the
framework of the softening hyperelasticity theory proposed in the present work.
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