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Fung’s Model of Arterial Wall Enhanced with a Failure Description

K.Y. Volokh∗

Abstract: One of the seminal contributions of
Y.C. Fung to biomechanics of soft tissue is the
introduction of the models of arterial deforma-
tion based on the exponential stored energy func-
tions, which are successfully used in various ap-
plications. The Fung energy functions, however,
explain behavior of intact arteries and do not in-
clude a description of arterial failure. The latter is
done in the present work where Fung’s model is
enhanced with a failure description. The descrip-
tion is based on the introduction of a limiter for
the stored energy – the average energy of chem-
ical bonds, which can be interpreted as a fail-
ure constant characterizing the material ’tough-
ness’. The limiting failure energy controls ma-
terials softening, which indicates the onset of fail-
ure. We demonstrate the efficiency of the en-
hanced Fung formulation on a problem of the ar-
terial inflation under internal pressure. We show,
particularly, that residual stresses delay the onset
of failure. The considered softening hyperelas-
ticity approach is an alternative to the simplistic
pointwise failure criteria of strength of materials
on the one hand and the sophisticated approach of
damage mechanics involving internal variables on
the other hand.

Keyword: Artery; Failure; Anisotropy; Fung
model; Softening

1 Introduction

In the 70s of the past century Y.C. Fung made pi-
oneering contributions in the field of soft tissue
mechanics and, especially, in the mechanics of the
arterial wall (Fung 1990; 1993). Since then enor-
mous progress has been made in phenomenolog-
ical modeling of arteries: von Maltzahn (1981);
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Chuong and Fung (1983); Tözeren (1984); Demi-
ray (1991); Wuyts et al (1995); Delfino (1997);
Simon et al (1998a, 1998b), Humphrey (2002);
Cowin and Humphrey (2002); Holzapfel and Og-
den (2003; 2006). Some issues, nonetheless, re-
quire further elaboration. Among them is a theo-
retical description of arterial failure.

Two approaches to predict arterial failure are
available. The first – strength of materials – ap-
proach is based on a pointwise criticality condi-
tion. According to it, material/structure failure
is claimed when, for example, the maximum von
Mises stress at a point reaches a critical value. Ev-
idently, such an approach is restrictive because the
local state of deformation defines global failure,
which is not necessarily correct. Moreover, the
critical value of the von Misses stress is defined
separately from stress analysis. The drawbacks
of the first approach do not exist in the second –
damage mechanics – approach that allows model-
ing global failure and includes the failure condi-
tion in its constitutive description. In damage me-
chanics a scalar or tensor parameter is introduced
to describe the degradation of material properties
during mechanical loading. The damage param-
eter is an internal variable whose magnitude is
constrained by a damage evolution equation and a
critical threshold condition. Theoretically, the ap-
proach of damage mechanics is very flexible and
allows reflecting the physical processes trigger-
ing macroscopic damage at small length scales.
Practically, the experimental calibration of dam-
age theories is far from trivial and, because of that,
it is reasonable to look for alternative theories that
present the bulk failure in more feasible ways than
the traditional damage theories.

As a physically-based alternative to the simplis-
tic description of strength of materials on the one
hand and the sophisticated approach of damage
mechanics on the other hand we present a soften-
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ing hyperelasticity approach where the constitu-
tive description of arteries is enhanced with strain
softening, which is controlled by material con-
stants. The novel approach is attractive because
the new material constants can be readily cali-
brated in experiments and the failure description
is included in the constitutive law. We use the
Fung arterial model with softening for studying
the effect of residual stresses on arterial failure
and find that residual stresses provide delay of the
failure onset.

The paper is organized as follows. The second
section presents general formulae for the hyper-
elastic arterial wall under internal pressure. The
Fung stored energy function is specified in section
three where numerical solutions are generated for
the experimentally calibrated materials constants.
The concept of softening hyperelasticity is intro-
duced in section four to describe the material fail-
ure. The concept is applied to the Fung model in
section five where the results of numerical simu-
lations are presented. The paper ends with a dis-
cussion in section six.

2 Artery inflation under internal pressure

We start with the classical formulation of nonlin-
ear elasticity according to which a generic mate-
rial particle of body Ω occupying position X at
the reference state moves to position x(X) in the
current configuration. The deformation of the par-
ticle is defined by the tensor of deformation gra-
dient, F = ∂x/∂X. The boundary-value problem
is set in the form

divσσσ = 0 in Ω, (1)

σσσ = −p1+F
∂ψ
∂E

FT , (2)

x = x on ∂Ωx or σn = t on ∂Ωt, (3)

where ’div’ operator is with respect to the current
coordinates; σσσ is the Cauchy stress tensor; 1 is
the second order identity tensor; E = (FT F−1)/2
is the Green strain tensor; ψ is a stored energy;
t is traction per unit area of the current surface
with the unit outward normal n; and the barred
quantities are prescribed.

The Lagrange multiplier p in (2) enforces the ma-
terial incompressibility assumption

detF = 1. (4)

Such an assumption is often used for analysis of
soft biological materials because their response to
hydrostatic pressure is much stronger than their
response to shearing. It seems, however, that the
applicability of the incompressibility assumption
essentially depends on the specific loading and
deformation of the material under consideration
(Volokh, 2006a).

We consider the radial inflation of an artery as a
symmetric deformation of a cylinder obeying the
incompressibility conditions (Fung, 1990)

r =

√
R2−A2

γs
+a2, θ = γΘ, z = sZ, (5)

where a point occupying position (R, Θ, Z) in
the reference configuration is moving to position
(r, θ , z) in the current configuration; s is the axial
stretch; γ = 2π/(2π −ω), where ω is the artery
opening angle in the reference configuration; A
and a are the internal artery radii before and after
deformation accordingly.

In the present work, we introduce residual stresses
via the opening central angle, ω , in a stress-free
reference configuration following Fung. Resid-
ual stresses are one of the most intriguing fea-
tures of mechanics of living tissues (Vaishnav et
al, 1973; Rachev and Greenwald, 2003). While
the qualitative nature of residual stresses related
with tissue growth is understood reasonably well,
the best way to quantify them remains to be set-
tled (Volokh, 2006b).

Accounting for (5), the deformation gradient and
the nontrivial components of the Green strain take
the following forms

F = (R/γsr)kr⊗KR+(γr/R)kθ ⊗KΘ +skz⊗KZ,

(6)

⎧⎨
⎩

ERR = {(R/γsr)2−1}/2
EΘΘ = {(γr/R)2−1}/2
EZZ = {s2−1}/2

, (7)
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where {KR, KΘ, KZ} and {kr, kθ , kz} are the or-
thonormal bases1 in cylindrical coordinates at the
reference and current configurations accordingly.

Accounting for (2), (6)-(8) and assuming that the
stored energy depends on the nontrivial strain
components only we get the following nonzero
components of the Cauchy stress⎧⎪⎪⎨
⎪⎪⎩

σrr = −p+ R2

(srγ)2
∂ψ

∂ERR

σθθ = −p+ (rγ)2

R2
∂ψ

∂EΘΘ

σzz = −p+ s2 ∂ψ
∂EZZ

. (8)

Besides, there is only one nontrivial equilibrium
equation

∂σrr

∂ r
+

σrr −σθθ

r
= 0. (9)

The traction boundary conditions are{
σrr(r = a) = −g

σrr(r = b) = 0
, (10)

where a, b are the inner and outer radii of the
artery after the deformation, which were equal to
A, B before the deformation accordingly; and g is
the internal pressure.

We integrate equilibrium equation (9) over the
wall thickness with account of boundary condi-
tions (10) and get

g(a) = −
b(a)∫
a

(σrr −σθθ )
dr
r

= −
b(a)∫
a

(
R2

(γsr)2

∂ψ
∂ERR

− (γr)2

R2

∂ψ
∂EΘΘ

)
dr
r

,

(11)

where b(a) =
√

a2 +(B2 −A2)/(γs).
Equation (11) presents the pressure-radius (g−a)
relationship, which we examine below. Before
doing that, however, we introduce dimensionless
variables as follows

g =
g
c

; ψ =
ψ
c

; r =
r
A

;

R =
R
A

; a =
a
A

; b =
b
A

,
(12)

1 KR = (cosΘ,sinΘ,0)T ; KΘ = (−sinΘ,cosΘ,0)T ; KZ =
(0,0,1)T ; kr = (cosθ ,sin θ ,0)T ; kθ =
(−sinθ ,cosθ ,0)T ; kz = (0,0,1)T

where the shear modulus, c, will be defined in the
next section.

Substituting (12) in (11) we get

g(a) = −
b(a)∫
a

(
R

2

(γsr)2

∂ψ
∂ERR

− (γr)2

R
2

∂ψ
∂EΘΘ

)
dr
r

,

(13)

where

b(a) =
√

a2 +((B/A)2−1)/(γs), (14)

R
2 = γs(r2 −a2)+1. (15)

The dimensionless Lagrange multiplier p = p/c
is obtained from (9) and (10)1 by integration

p(r) =
R(r)2

(γsr)2

∂ψ
∂ERR

(r)−g(a)

+
r∫

a

(
R(ρ)2

(γsρ)2

∂ψ
∂ERR

(ρ)− (γρ)2

R(ρ)2

∂ψ
∂EΘΘ

(ρ)
)

dρ
ρ

,

(16)

and normalized stresses take the form⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ rr = σrr
c = −p + R2

(srγ)2
∂ψ

∂ERR

σ θθ = σθθ
c = −p + (rγ)2

R2
∂ψ

∂EΘΘ

σ zz = σzz
c = −p + s2 ∂ψ

∂EZZ

. (17)

3 Fung’s arterial model

We use the exponential stored energy function to
accomplish the formulation of the boundary-value
problem of the previous section (Fung et al, 1979;
Chuong and Fung, 1983; Fung, 1993)

W =
c
2
(eQ −1)

Q =c1E2
RR +c2E2

ΘΘ +c3E2
ZZ +2c4ERREΘΘ

+2c5EZZEΘΘ +2c6ERREZZ

(18)

with c the only dimensional elastic parameter and
ci dimensionless.

We generate the pressure-radius curves (13) and
stresses (19) – Figures 1 and 2 – for the follow-
ing set of material parameters (Chuong and Fung,
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Figure 1: Pressure-radius (left) and true stresses (right) curves for artery without pre-stress.
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Figure 2: Pressure-radius (left) and true stresses (right) curves for artery with pre-stress.

1983; Holzapfel et al, 2000): c1 = 0.0089, c2 =
0.9925, c3 = 0.4180, c4 = 0.0193, c5 = 0.0749,
c6 = 0.0295.

Firstly, we set an unprestressed state with ω =
0◦ and the internal and external reference radii
A = 0.71mm and B = 1.10mm accordingly. The
pressure-radius and stress distribution curves are
calculated with the help of Mathematica (Wol-
fram, 2003) presented in Fig.1. We choose stress
for dimensionless pressure g = 0.5, which corre-
sponds to pressure g = 13.47KPa for the shear
modulus c = 26.95KPa.

Secondly, we set a prestressed state with ω =
160◦ and the internal and external reference radii
A = 1.43mm and B = 1.82mm accordingly. The
pressure-radius and stress distribution curves are
presented in Fig.2. We again choose stress for di-
mensionless pressure g = 0.5, which corresponds
to pressure g = 13.47KPa for the shear modulus
c = 26.95KPa.

We note that the pressure increase always corre-
sponds to the radius increase, i.e. the artery defor-
mation is always stable and no failure is observed.

The latter is unphysical, of course, and a failure
description should be included in the constitutive
setting and observed on the pressure-radius curve
as an onset of instability.

4 Softening hyperelasticity: microscopic mo-
tivation and macroscopic formulation

This section aims at motivating and establishing
the softening hyperelasticity approach for model-
ing arterial failure.

Consider a solid body comprised of particles, for
example molecules, placed at ri in the 3D space.
Generally, the volumetric density of the total po-
tential energy of the body is a function of the par-
ticle positions: E(r1,r2, . . .,rN), where N is the
number of particles. More specifically, the poten-
tial energy density, i.e. the strain energy, can be
written with account of the two-particle interac-
tions as follows

ψ =
E

2V
=

1
2V ∑

i, j

U(ri j), ri j =
∣∣ri j
∣∣= ∣∣ri −r j

∣∣ ,
(19)
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where V is the volume occupied by the system.

According to the Cauchy-Born rule (Weiner,
1983; Tadmor et al, 1996), originally applied to
the crystal elasticity, the current ri j and initial2

(reference) Ri j = Ri −R j relative positions of the
same two particles can be related by the deforma-
tion gradient:

ri j = FRi j, (20)

where F is the deformation gradient – Fig.3.

Before deformation

ijr
ijR

X
xF

∂
∂=

ijij FRr =

X )(Xx
After deformation

Figure 3: Cauchy-Born rule

Substituting (20) in (19) yields

ψ =
1

2V ∑
i, j

U(ri j) = ψ(C), (21)

where C = FT F is the right Cauchy-Green defor-
mation tensor.

Direct application of (21) to analysis of mate-
rial behavior can be difficult because of the large
amount of particles. Gao and Klein (1998) and
Klein and Gao (1998) considered the following
statistical averaging procedure

ψ = 〈U(l)〉 ≡ 1
V0

∫
V ∗

0

U(l)DV dV , (22)

l = ri j = L
√

ξξξ ·Cξξξ = L |Fξξξ | ,
L = Ri j =

∣∣Ri −R j
∣∣ ,

ξξξ = (Ri −R j)/L,

(23)

2 We note that finding the initial equilibrium bond length
can generally require a numerical minimization proce-
dure. Moreover, the interatomic forces may differ from
zero for pairs of atoms though the average force can be
assumed zero.

where V0 is the reference representative volume;
l is the current virtual bond length; U(l) is the
bonding potential; DV is the volumetric bond den-
sity function; and V ∗

0 is the integration volume de-
fined by the range of influence of U .

Let us choose the Lennard-Jones potential to be
specific in further considerations

V(l) = 4ε((σ/l)12− (σ/l)6), (24)

where ε and σ are the bond energy and length
constants – Fig.4. The minimum of V = −ε is
reached at the equilibrium bond length l = 6

√
2σ

where no forces are acting between the atoms.
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Figure 4: Lennard-Jones potential

In view of the continuum-atomistic link discussed
above, we shift the energy expression (24) by ε to
provide the zero minimum energy of the referen-
tial equilibrium state of the bond deformation

U(l) = 4ε((σ/l)12− (σ/l)6)+ε . (25)

Then (22) takes form

ψ(C) =
1
V0

∫
V ∗

0

(
4
(

σ/L
√

ξξξ ·Cξξξ
)12

−4
(

σ/L
√

ξξξ ·Cξξξ
)6

+1

)
εDV dV. (26)

We can define the average bond energy by setting
the unlimited increase of deformation

Φ = ψ(‖C‖→ ∞) =
1

V0

∫
V ∗

0

εDV dV , (27)

where ‖C‖ =
√

ξξξ ·Cξξξ for any ξξξ .
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Thus, the average bond energy sets a limit for the
energy accumulation in deformation. This con-
clusion generally does not depend on the choice
of the atomic potential and it is valid for any inter-
action that includes a possible atomic separation –
the bond energy.

Contrary to the above conclusion traditional hy-
perelastic models of materials do not include the
energy limiter. The stored energy of hyperelastic
materials is defined as

ψ = W. (28)

Here W is used for the strain energy of the intact
material, which can be characterized as follows

‖C‖→ ∞ ⇒ ψ = W → ∞, (29)

where ‖. . .‖ is a tensorial norm.

In other words, the increasing strain increases the
accumulated energy unlimitedly. Evidently, the
consideration of only intact materials is restrictive
and unphysical. The energy increase of a real ma-
terial should be limited as it was shown above,

‖C‖→ ∞ ⇒ ψ = Φ = constant, (30)

where the average bond energy, Φ = constant, can
be called the material failure energy.

Equation (30) presents the fundamental idea of
introducing a limiter of the stored energy in the
elasticity theory. Such a limiter induces ma-
terial softening, indicating material failure, au-
tomatically. The choice of the limited stored
energy expression should generally be material-
specific. Nonetheless, a somewhat universal for-
mula (Volokh, 2007) can be introduced to enrich
the already existing models of intact materials
with the failure description

ψ(W) = Φ−Φexp(−W/Φ). (31)

where ψ(W = 0) = 0 and ψ(W = ∞) = Φ.

Formula (31) obeys condition ‖C‖ → ∞ ⇒
ψ(W(C)) = Φ and, in the case of the intact ma-
terial behavior, W  Φ, we have ψ(W) ≈W pre-
serving the features of the intact material.

The constitutive equation can be written in the
general form accounting for (31)

σσσ = 2J−1F
∂ψ
∂C

FT

= 2J−1F
∂W
∂C

FT exp(−W/Φ),
(32)

where σσσ is the Cauchy stress tensor; J = detF;
and the exponential multiplier enforces material
softening. Constitutive equation (32) is especially
effective for incompressible soft materials under-
going finite deformations.

We emphasize finally that the best form of the en-
ergy function can be material/problem-specific. It
is important, however, that a possible form of the
energy function should limit the energy increase.

5 Fung’s arterial model with the failure de-
scription

Following previous section we enhance Fung’s
model with softening

ψ =Φ−Φexp(−c(eQ −1)/2Φ)

Q =c1E2
RR +c2E2

ΘΘ +c3E2
ZZ +2c4ERREΘΘ

+2c5EZZEΘΘ +2c6ERREZZ

(33)

We again generate the pressure-radius curves (13)
and stresses (19) for the same set of material pa-
rameters: c1 = 0.0089, c2 = 0.9925, c3 = 0.4180,
c4 = 0.0193, c5 = 0.0749, c6 = 0.0295. We repeat
analyses shown in Figs.1 and 2 for Φ = Φ/c =
1; 2; 3. The results are shown in Figs. 5-10 ac-
cordingly.

We note first of all that failure appears on the pres-
sure radius curve as a limit point where static in-
stability occurs. Though the decreasing branch of
the curve is shown for the sake of consistency, it
should be clearly realized that it is not statically
stable and the dynamic failure propagation should
be monitored after the limit point.

There are two important features of behavior of
the arterial failure presented in Figs. 5-10. Firstly,
residual stresses delay the onset of failure. In-
terestingly the delay increases with the increasing
average bond energy, Φ. Let us define pre-stress
factor ς =

∣∣gp
c −gc

∣∣/ |gc| · 100%, where gp
c is the

critical pressure for a prestressed artery while gc
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Figure 5: Pressure-radius (left) and true stresses (right) curves for Φ = Φ/c = 1 without pre-stress.
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Figure 6: Pressure-radius (left) and true stresses (right) curves for Φ = Φ/c = 1 with pre-stress.
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Figure 7: Pressure-radius (left) and true stresses (right) curves for Φ = Φ/c = 2 without pre-stress.
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Figure 8: Pressure-radius (left) and true stresses (right) curves for Φ = Φ/c = 2 with pre-stress.
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Figure 9: Pressure-radius (left) and true stresses (right) curves for Φ = Φ/c = 3 without pre-stress.
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Figure 10: Pressure-radius (left) and true stresses (right) curves for Φ = Φ/c = 3 with pre-stress.

is the critical pressure for an unprestressed artery,
then the factor changes as shown in Table 1.

Table 1
Φ 1 2 3
ς(%) 20 29 38

Secondly, the prestress makes the distribution of
the hoop stresses more uniform. In a sense, the
prestress optimizes the stress distribution in a
loaded artery.

6 Discussion and conclusions

A novel softening hyperelasticity model of the ar-
terial wall was presented to allow for a description
of arterial failure. This model enhances the Fung
arterial model with a failure description. The lat-
ter is achieved by the introduction of the energy
limiter – the average bond energy, which controls
material softening. The softening is embedded
in the constitutive description and it indicates the
failure onset. Introduction of the new model was

motivated by the necessity to give a more compre-
hensive failure description than the local critical
stress criterion of strength of materials on the one
hand and to give a simpler approach to the failure
description than damage mechanics on the other
hand.

Failure analysis based on the softening hypere-
lasticity approach allows tracking a global load-
displacement path of an artery as shown in Figs.
5-10. The critical (limit) point corresponds to the
onset of instability of the static deformation path.
The instability occurs when the material, media or
adventitia, fails locally, i.e. the molecular bonds
tear, and the local failure develops. The post-
critical evolution corresponding to the decreasing
branches on the load-displacement curve requires,
generally, a dynamic consideration. The use of
the softening hyperelasticity for the dynamic fail-
ure propagation, however, is beyond the scope of
the present work.

The proposed model was applied to the problem
of the artery inflation under internal pressure. Nu-
merical simulations led to the following two find-
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ings. Firstly, it was found that residual stresses
can increase the overall arterial strength signifi-
cantly. The pre-existing compression in arteries
delays the onset of rupture like the pre-existing
compression in the pre-stressed concrete delays
the crack opening. More experiments are wel-
come to clarify this interesting issue. Secondly,
it was found that the prestress makes the distribu-
tion of the hoop stresses more uniform. In a sense,
the prestress optimizes the stress distribution in a
loaded artery.
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