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Abstract

Two approaches to predict failure of soft tissue are available. The first is based on a pointwise criticality condition, e.g. von Mises

maximum stress, which is restrictive because only local state of deformation is considered to be critical and the failure criterion is

separated from stress analysis. The second is based on damage mechanics where internal (unobservable) variables are introduced which

make the experimental calibration of the theory complex. As an alternative to the local failure criteria and damage mechanics we present

a softening hyperelasticity approach, where the constitutive description of soft tissue is enhanced with strain softening, which is

controlled by material constants. This approach is attractive because the new material constants can be readily calibrated in experiments

on the one hand and the failure criteria are global on the other hand. We illustrate the efficiency of the softening hyperelasticity approach

on the problem of prediction of arterial failure. For this purpose, we enhance a bi-layer fiber–matrix microstructural arterial model with

softening and analyze the arterial failure under internal pressure. We show that the overall arterial strength is (a) dominated by the media

layer, (b) controlled by microfibers and (c) increased by residual stresses.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Enormous progress has been made in phenomenological
modeling of soft tissue: (Fung, 1993; Humphrey, 2002;
Cowin and Humphrey, 2002; Holzapfel and Ogden, 2003,
2006). Some issues, nonetheless, require further elabora-
tion. Among them is a theoretical description of tissue
failure. Two approaches to predict failure of soft tissue are
available. The first—strength of materials—approach is
based on a pointwise criticality condition. According to it,
material/structure failure is claimed when, for example, the
maximum von Mises stress at a point reaches a critical
value. Evidently, such an approach is restrictive because
the local state of deformation defines global failure, which
is not necessarily correct. Moreover, the critical value of
the von Misses stress is defined separately from stress
analysis. The drawbacks of the first approach do not exist
in the second—damage mechanics—approach that allows

modeling global failure and includes the failure condition
in its constitutive description. In damage mechanics, a
scalar or tensor parameter is introduced to describe the
degradation of material properties during mechanical
loading (Hurschler et al., 1997; Hokanson and Yazdami,
1997; Liao and Belkoff, 1999; Arnoux et al., 2002;
Schechtman and Bader, 2002; Natali et al., 2005; Rodri-
guez et al., 2006; Calvo et al., 2006). The damage
parameter is an internal variable whose magnitude is
constrained by (a) a damage evolution equation and (b) a
critical threshold condition. Theoretically, the approach of
damage mechanics is very flexible and allows reflecting the
physical processes triggering macroscopic damage at small
length scales. Practically, the experimental calibration of
damage theories is far from trivial and, because of that, it is
reasonable to look for alternative theories that present the
bulk failure in more feasible ways than the traditional
damage theories.
As an alternative to the simplistic description of strength

of materials on the one hand and the sophisticated
approach of damage mechanics on the other hand we
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present a softening hyperelasticity approach, where the
constitutive description of soft tissue is enhanced with
strain softening, which is controlled by material constants.
The novel approach is attractive because the new material
constants can be readily calibrated in experiments and the
failure description is included in the constitutive law. We
illustrate the efficiency of the softening hyperelasticity
approach on the problem of the prediction of arterial
failure. For this purpose, we enhance the earlier bi-layer
fiber-reinforced arterial model with softening and analyze
the arterial failure under internal pressure.

2. Methods

2.1. Constitutive model of the intact arterial wall

Histological analysis of the arterial wall (Humphrey, 2002; Holzapfel

and Ogden, 2003) reveals that the artery comprises three layers—intima,

media, and adventitia. While the mechanical role of intima is minor, the

media and adventitia contribute to the arterial strength. Both media and

adventitia are anisotropic composite materials reinforced with a net of

oriented collagen fibers. There are a number of constitutive theories

presenting passive behavior of arteries which include material anisotropy

(Vaishnav et al., 1973; Fung et al., 1979; von Maltzahn et al., 1981;

Chuong and Fung, 1983; Tözeren, 1984; Demiray, 1991; Humphrey, 1995;

Wuyts et al., 1995; Delfino et al., 1997; Simon et al., 1998a, b). We choose

the latest and most complicated theory proposed by Holzapfel et al. (2000)

to account for the bi-layer structure of the artery, where both adventitia

and media are fiber-reinforced composites.

We start with the classical formulation of continuum mechanics

according to which a generic material particle of body O occupying

position X at the reference state moves to position x(X) in the current

configuration. The deformation of the particle is defined by the tensor of

deformation gradient F ¼ @x/@X. The equilibrium equation and boundary

conditions are set in the form

divr ¼ 0 in O, (1)

x ¼ x̄ on qOx or rn ¼ t̄ on qOt, (2)

where ‘div’ operator is with respect to the current coordinates; r is the

Cauchy stress tensor; t is traction per unit area of the current surface with

the unit outward normal n. The barred quantities are prescribed.

We assume that material is incompressible in all subsequent

considerations

detF ¼ 1. (3)

Such an assumption is often used for analysis of soft biological materials

because their response to hydrostatic pressure is much stronger than their

response to shearing. It seems, however, that the applicability of the

incompressibility assumption essentially depends on the specific loading

and deformation of the material under consideration (Volokh, 2006a).

Holzapfel Gasser and Ogden (2000) suggest writing the constitutive

equations for the adventitia or media in the following form:

r ¼ rM þ rF1 þ rF2 , (4)

rM ¼ �p1þ 2W 1B, (5)

rF1 ¼ 2V1m1 �m1, (6)

rF2 ¼ 2V2m2 �m2, (7)

W 1 � qW=qI1; Vi � qV=qJi . (8)

Here the Cauchy stress tensor is decomposed into rM representing the arterial

matrix and rF1 and rF2 representing two families of fibers; p is the Lagrange

multiplier enforcing the incompressibility condition (3); 1 is the second order

identity tensor; W(I1) is a stored elastic energy of the arterial matrix per unit

reference volume defined as a function of the first principal invariant of the

left B ¼ FFT Cauchy–Green deformation tensor: I1 ¼ tr B; vectors mi ¼ FMi

designate ‘pushed forward’ initial fiber directionsMi (|Mi| ¼ 1); and V(J1, J2)

is a stored elastic energy of the stretching fibers: Ji ¼ mi �mi.

The matrix material is Neo–Hookean

W ðI1Þ ¼
c

2
ðI1 � 3Þ, (9)

while the fibers are described by the exponential stored energy

V ðJ1; J2Þ ¼
k1

2k2
fexpðk2ðJ1 � 1Þ2Þ

þ expðk2ðJ2 � 1Þ2Þ � 2g. ð10Þ

Substituting (9) and (10) in (8) we have

W 1 ¼
c

2
, (11)

Vi ¼ k1ðJi � 1Þ expðk2ðJi � 1Þ2Þ. (12)

In the case of the uniaxial tension of the matrix material (without fibers)

the deformation can be described as follows:

x1 ¼ lX 1; x2 ¼ l�1=2X 2; x3 ¼ l�1=2X 3. (13)

Based on (5) we find 1 (Fig. 1)

sM � sM
11 ¼ 2W 1ðl2 � l�1Þ ¼ cðl2 � l�1Þ. (14)

In the case of tension of an individual fiber we have mi ¼ lMi) Ji ¼ l2

and, consequently, (Fig. 2)

sFi � m � rFim=ðm �mÞ ¼ 2Vil
2

¼ 2k1ðl
2
� 1Þl2 expfk2ðl

2
� 1Þ2g. ð15Þ

We will use (14) and (15) for the calibration of the softening hyperelasticity

model in the next section.

2.2. Constitutive model of the arterial wall with failure

The idea to include intrinsic softening in the phenomenological

description of material failure appears in Volokh (2004, 2007a), where it

is applied to quasibrittle materials undergoing small deformations. Below

we extend the softening hyperelasticity approach to the arterial model

which allows for large deformations and strains.

We introduce a softening Neo–Hookean model for the matrix material

as follows:

W ðI1Þ ¼ f� f exp �
c

2f
ðI1 � 3Þ

� �
. (16)
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Fig. 1. Neo–Hookean matrix material in uniaxial tension.

1This is a particular case of the celebrated Rivlin’s, (1948) solution.
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Constant f designates the maximum work which material can undergo

before failure. Indeed, putting I1-N, i.e. considering the tension

dominated deformation, we get W(N) ¼ f. Thus f is a material failure

work which is a material constant. This is in contrast to the traditional

Neo–Hookean material where the work on deformation is unlimited

W(N) ¼N. The latter is unphysical, of course, because no real material

can sustain large enough deformations without failure. It should be noted

that the linearized version of (16) presents the classical Neo–Hookean

material.

Fig. 3 demonstrates the qualitative difference between the classical

Neo–Hookean material without softening—(9)—and the one with

softening—(16).

Differentiating (16) with respect to the first principal invariant we get

W 1 ¼
c

2
exp �

c

2f
ðI1 � 3Þ

� �
. (17)

In the case of uniaxial tension we have instead of (14)

sM � sM
11 ¼ 2ðl2 � l�1ÞW 1

¼ cðl2 � l�1Þ exp �
c

2f
ðl2 þ 2l�1 � 3Þ

� �
. ð18Þ

The load–stretch curves described by (14) and (18) are given in Fig. 4. The

maximum point on the curve corresponding to the softening material

indicates the onset of the material failure/rupture. After the stretch reaches

the magnitude of �1.8 no stable solution of the statical problem exists. All

this is in perfect correspondence with our physical intuition and

observation. Actually, the uniaxial tension test can be used for calibration

of the material failure constant f. Though we do not have the direct

experiments to calibrate the matrix material, some qualitative comparison

of the shape of the failure curve in Fig. 4 with the Raghavan and Vorp

(2000) experimental data on the rupture of the abdominal aortic aneurism

is encouraging.

We introduce the softening fiber model as follows:

Vi ¼ k1ðJi � 1Þ expfk2ðJi � 1Þ2

� k2ðJi � 1Þ2ni=ðx2i � 1Þ2ni g. ð19Þ

Now the fiber tension versus stretch (14) takes the form

sFi ¼ 2V il
2

¼ 2k1ðl
2
� 1Þl2 expfk2ðl

2
� 1Þ2

� k2ðl
2
� 1Þ2ni=ðx2i � 1Þ2ni g. ð20Þ

The graph of (20) with and without softening is presented in Fig. 5 for the

media: k2 ¼ 0.8392; xi ¼ 1.5; ni ¼ 2 or 10.

It should not be missed that the fiber is defined by two failure constants

x and n in contrast to the matrix material defined by only one failure

constant f. The second failure constant of the fiber, n, controls the

‘sharpness’ of the stress–strain curve as it is seen in Fig. 5.

2.3. Artery inflation

In this section, we use the model with softening developed above for

studying arterial failure under internal pressure. For this purpose, we

consider the radial inflation of an artery as a symmetric deformation of a

cylinder obeying the incompressibility conditions (Holzapfel et al., 2000)

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � A2

gs
þ a2

s
; y ¼ gY; z ¼ sZ, (21)

where a point occupying position (R, Y, Z) in the initial configuration is

moving to position (r, y, z) in the current configuration; s is the axial
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stretch; g ¼ 2p/(2p�o), where o is the artery opening angle in the

unstressed configuration; A and a are the internal artery radii before and

after deformation accordingly. Then, the deformation gradient and the left

Cauchy–Green deformation tensor take the following forms:

F ¼ ðgsr=RÞ�1kr �KR

þ ðgr=RÞky � KY þ skz �KZ, ð22Þ

B ¼ ðgsr=RÞ�2kr � kr

þ ðgr=RÞ2ky � ky þ s2kz � kz, ð23Þ

where {KR, KY, Kz} and {kr, ky, kz} are the orthonormal bases2 in

cylindrical coordinates at the reference and current configurations

accordingly.

The fiber kinematics is described by

m1 ¼ FM1 ¼ ðgr cos b=RÞky þ sðsin bÞkz, (24)

m2 ¼ FM2 ¼ ðgr cos b=RÞky � sðsin bÞkz, (25)

where the initial fiber directions are M1 ¼ cos b KY+sin b Kz and

M2 ¼ cos b KY�sin b Kz. Here b is the angle between the fibers and the

circumferential direction of the artery.

Gathering all stress terms with the help of (4)–(7) and (23)–(25), we get

the nontrivial components of the Cauchy stress

srr ¼ � pþ 2W 1R2=ðgsrÞ2,

syy ¼ � pþ 2W 1ðgr=RÞ2

þ 2ðV1 þ V2Þðgr cos b=RÞ2,

szz ¼ � pþ 2W 1s2 þ 2ðV 1 þV 2Þðs sin bÞ2,

szy ¼ syz ¼ 2ðV 1 � V2Þgrs cos b sin b, ð26Þ

where W1, V1, V2 are defined in (17) and (19) accordingly and the

invariants take the form

I1 ¼ R2=ðgsrÞ2 þ ðgr=RÞ2 þ s2,

J1 ¼ J2 ¼ ðgr cos b=RÞ2 þ ðs sin bÞ2. ð27Þ

We notice that the latter equation and the assumption x1 ¼ x2 provide

V1 ¼ V2 and, consequently, szy ¼ syz ¼ 0.

In summary, there is only one nontrivial equilibrium equation

qsrr

qr
þ

srr � syy
r

¼ 0. (28)

The traction boundary conditions are

srrðr ¼ aÞ ¼ �g,

srrðr ¼ bÞ ¼ 0, ð29Þ

where b is the outer radius of the artery after the deformation, which was

equal to B before the deformation.

We integrate equilibrium equation (28) over the wall thickness with

account of boundary conditions (29) and get

gðaÞ ¼ �

Z bðaÞ

a

ðsrr � syyÞ
dr

r

¼ �

Z bðaÞ

a

ð2W 1R2=ðgsrÞ2 � 2W 1ðgr=RÞ2

� 4V 1ðgr cos b=RÞ2Þ
dr

r
, ð30Þ

where bðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðB2 � A2Þ=ðgsÞ

q
.

Eq. (30) presents the pressure–radius (g�a) relationship, which we

examine for various material constants in the next section. Before doing

that, however, we introduce dimensionless variables as follows:

ḡ ¼
g

c
; r̄ ¼

r

A
; R̄ ¼

R

A
ā ¼

a

A
; b̄ ¼

b

A
. (31)

Now Eq. (30) takes form

ḡðāÞ ¼ �

Z b̄ðāÞ

ā

2W̄ 1R̄
2
=ðgsr̄Þ2 � 2W̄ 1ðgr̄=R̄Þ2

�

�4V̄ 1ðgr̄ cos b=R̄Þ2
�dr̄

r̄
, ð32Þ

where

b̄ðāÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ā2 þ ððB=AÞ2 � 1Þ=ðgsÞ;

q
(33)

W̄ 1 ¼
1

2
exp �

c

2f
ðI1 � 3Þ

� �
, (34)

V̄1 ¼
k1

c
ðJ1 � 1Þ expfk2ðJ1 � 1Þ2

� k2ðJ1 � 1Þ2n1=ðx21 � 1Þ2n1 g, ð35Þ

I1 ¼ R̄
2
=ðgsr̄Þ2 þ ðgr̄=R̄Þ2 þ s2, (36)

J1 ¼ ðgr̄ cos b=R̄Þ2 þ ðs sin bÞ2, (37)

R̄
2
¼ gsðr̄2 � ā2Þ þ 1. (38)

Remark 1. In the present work, we introduce residual stresses (Rachev

and Greenwald, 2003) via the opening angle parameter, o, in a stress-free

configuration (Holzapfel et al., 2000). Residual stresses are one of the most

intriguing features of mechanics of living tissues. While the qualitative

nature of residual stresses related with tissue growth is understood

reasonably well, the best way to quantify them remains to be settled

(Volokh, 2006b).

Remark 2. The idea to account for the matrix material failure with the

help of Eq. (16) is rather universal and can be applied to fibers as well as

any hyperelastic material too (Volokh, 2007b). Nonetheless, we prefer a

different description of fibers—(19)—because it adds flexibility to the

account of the shape of the stress–strain curve. In particular, formula (19)

with large n allows for the account of the abrupt rupture of fibers observed

in experiments and molecular dynamic simulations (Buehler, 2006; Kabla

and Mahadevan, 2007).

Remark 3. It should not be missed that material constants change from

the media to adventitia and, thus, the integral in Eq. (32) should be split in

computations in two integrals for the media and adventitia accordingly.

3. Results

The purpose of numerical simulations is twofold. First,
we aim at clarifying the relative importance of matrix and
fibers within the media layer3 of the arterial wall. Second,
we examine the comparative contribution of the adventitia
and media in the overall arterial strength as well as the
influence of residual stresses.
We use Mathematica (Wolfram, 2003) for the numerical

integration of Eq. (32).
As a ‘ground state’ of material constants, which will vary

in calculations, we choose the parameters reported by
Holzapfel et al. (2000) for the media: cM ¼ 3.0KPa,
k1M ¼ 2.36KPa, k2M ¼ 0.84, A ¼ 0.7mm, BM ¼ 0.96mm,
bM ¼ p/6; and for the adventitia: cA ¼ 3.0KPa,
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2KR ¼ ðcos Y; sin Y; 0ÞT; KY ¼ ð� sin Y; cos Y; 0ÞT; KZ ¼

ð0; 0; 1ÞT;kr ¼ ðcos y; sin y; 0ÞT; ky ¼ ð� sin y; cos y; 0ÞT; kz ¼

ð0; 0; 1ÞT: 3We choose the media because it is stiffer than the adventitia.
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k1A ¼ 0.56KPa, k2A ¼ 0.7112, AA ¼ BM, B ¼ 1.09mm,
bA ¼ p/3. These parameters were fitted to the experimental
data of Chuong and Fung (1983) for a carotid artery of a
rabbit. We complete the softening hyperelastic model with
material constants controlling failure of the media and the
adventitia accordingly: fM ¼ cM, x1M ¼ 1.5, n1M ¼ 10 and
fA ¼ cA, x1A ¼ 1.7, n1A ¼ 10. Besides, we assume s ¼ 1
and o ¼ 0, there is no axial stretch and residual stress.

The pressure–displacement curve #1 in Fig. 6 presents
the media failure for the ground state described above. In
this case the softening is allowed for both matrix and fibers.
The media without softening is presented by curve #2. The
case where the matrix does not soften while the fibers do is
presented by curve #3 and the case where the fibers do not
soften while the matrix does is presented by curve #4. It is
readily observed in Fig. 6 that the overall strength is

controlled by the strength of the fibers. Indeed, when the
fibers soften the media softens and when the fibers do not
the media does not.

Further, we examined the effect of a ten times decrease
k1M ¼ 0.236KPa and a ten times increase k1M ¼ 23.6KPa
of the fiber stiffness accordingly. We repeated all previous
calculations for the entirely softening media, the media
without softening, the case where the matrix does not
soften while the fibers do, and the case where the fibers do
not soften while the matrix does. Though some quantita-
tive changes were observed as compared to Fig. 6 the
qualitative conclusion remains the same: the overall

strength is controlled by the strength of the fibers.
Then, we examined the effect of the increase bM ¼ p/4 of

the fiber angle and the increase fM ¼ 10cM of the matrix
failure constant accordingly. We again repeated all
previous calculations for the entirely softening media, the
media without softening, the case where the matrix does
not soften while the fibers do, and the case where the fibers
do not soften while the matrix does. Though some
quantitative changes were again observed as compared to
Fig. 6, the qualitative conclusion remains the same again:
the overall strength is controlled by the strength of the fibers.

At this point our first task, the examination of the
relative contribution of the matrix and fibers to the overall
layer strength, is accomplished. We turn to the second
task—the examination of the relative contribution of the
media and the adventitia to the overall layer strength.
The pressure–displacement curve for the bi-layer arterial

model including the media and the adventitia is presented
in Fig. 7 for the ‘ground state’ of material constants
described above. Evidently, two peaks on the curve
correspond to the failures of the media and adventitia
correspondingly. The distribution of stresses corresponding
to the first peak, where media fails, is shown in Fig. 8, while
the distribution of stresses corresponding to the second
peak, where adventitia fails, is shown in Fig. 9.
Finally, we check how the inclusion of residual stresses,

o ¼ 1601, A ¼ 1.43mm, BM ¼ 1.69mm, B ¼ 1.82mm af-
fects the arterial strength as compared to the defined
‘ground state’—Fig. 7. Evidently, the presence of residual
stresses leads to a dramatic increase of the overall
strength—Fig. 10.

4. Discussion and conclusions

A novel softening hyperelasticity model of the arterial
wall was presented to allow for a description of arterial

ARTICLE IN PRESS

1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

0.5

1

1.5

2

2.5

a / A

cg

42

31

Fig. 6. Pressure–displacement curve for the ‘ground state’ of the inflating

media: matrix and fibers with softening, 1; matrix and fibers without

softening, 2; fibers with and matrix without softening, 3; matrix with and

fibers without softening, 4.

1 2 3 4 5

0

0.25

0.5

0.75

1

1.25

1.5
Failure of media

a / A

c Mg

Failure of adventitia

Fig. 7. Pressure–displacement curve for the ‘ground state’ of the bi-layer

arterial wall model.

0 0.1 0.2 0.3

0

5

10

15
Media

c M

Adventitia

(r - a) / A

�
��� / cM

�zz / cM

�rr / cM

Fig. 8. Distribution of the Cauchy stresses at the point of the media

rupture.

K.Y. Volokh / Journal of Biomechanics 41 (2008) 447–453 451



Author's personal copy

failure. This model includes two layers of media and
adventitia. Every layer comprised the cellular matrix
described by the Neo–Hookean isotropic material with
softening and two families of fibers described by the
exponential stored energy function with softening. The
softening is controlled by one constant for the matrix
material and two constants for the fiber. All these constants
can be calibrated in the uniaxial tension experiments.
Introduction of the new model was motivated by the
necessity to give a more comprehensive failure description
than the local critical stress criterion of strength of
materials on the one hand and to give a simpler approach
to the failure description than damage mechanics on the
other hand.

Failure analysis based on the softening hyperelasticity
approach allows tracking a global load–displacement path
of an artery as shown in Figs. 7 and 10. The critical points
correspond to the onset of instability of the static
deformation path. The instability occurs when the materi-
al, media or adventitia, fails locally, i.e. the molecular
bonds tear, and the local failure develops. The postcritical
evolution corresponding to the decreasing branches on the
load–displacement curve requires, generally, a dynamic
consideration. The dynamic jump between the stable
branches of the intact media and adventitia resembles the

classical snap-through buckling of thin-walled structures.
The use of the softening hyperelasticity for the dynamic
failure propagation, however, is beyond the scope of the
present work.
The proposed model was applied to the problem of the

artery inflation under internal pressure. Numerical simula-
tions led to the following three findings. Firstly, it was
found that the fiber strength dominates the overall arterial
strength. Such a conclusion has immediate experimental
implication: it is necessary to calibrate the mechanical
models of individual fibers in order to predict the global
arterial strength. Of course, the role of the fiber binding
energy may also be important. The latter is the reason why
the experiments with the fiber bundles are of great interest
too. Secondly, it was also found that the media dominates
the overall arterial strength and plays the crucial role in the
load-bearing capacity of arteries. Such a conclusion is in a
good qualitative agreement with the fact that the rupturing
aneurysms lack the media layer (Humphrey and Canham,
2000). Thirdly, it was found that residual stresses can
increase the overall arterial strength significantly. The pre-
existing compression in arteries delays the onset of rupture
like the pre-existing compression in the pre-stressed
concrete delays the crack opening. More experiments are
welcome to clarify this interesting issue.
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