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Abstract

Fracture toughness of brittle materials is calibrated in experiments where a sample with a preexisting crack/notch is

loaded up to a critical point of the onset of static instability. Experiments with ceramics, for example, exhibit a pronounced

dependence of the toughness on the sharpness of the crack/notch: the sharper is the crack the lower is the toughness. These

experimental results are not entirely compatible with the original Griffith theory of brittle fracture where the crack

sharpness is of minor importance.1

To explain the experimental observations qualitatively we simulate tension of a thin plate with a small crack of a finite

and varying sharpness. In simulations, we introduce the average bond energy as a limiter for the stored energy of the

Hookean solid. The energy limiter induces softening, indicating material failure. Thus, elasticity with softening allows

capturing the critical point of the onset of static instability of the cracked plate, which corresponds to the onset of

the failure propagation at the tip of the crack. In numerical simulations we find, in agreement with experiments, that the

magnitude of the fracture toughness cannot be determined uniquely because it depends on the sharpness of the crack: the

sharper is the crack, the lower is the toughness.

Based on the obtained results, we argue that a stable magnitude of the toughness of brittle materials can only be reached

when a characteristic size of the crack tip is comparable with a characteristic length of the material microstructure, e.g.

grain size, atomic distance, etc. In other words, the toughness can be calibrated only under conditions where the hypothesis

of continuum fails.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Toughness calibration is tough. The problem is that the experimental results soundly depend on the
sharpness of a real notch/crack: Bertolotti (1973), Myers and Hillberry (1977), Munz et al. (1980), Wang et al.
(1992), Tsuji et al. (1999), Gogotsi (2003), and Yosibash et al. (2004). These experimental results are not
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entirely compatible with the original Griffith theory of brittle fracture where the crack sharpness is of no
influence. Indeed, considering a plane with a central elliptic crack under the remote hydrostatic tension and
using the energy balance Griffith (1921) derived the following formula for the critical tension2:

pcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mGIc

ð1þ kÞpc coshð2a0Þ

s
. (1)

Here the ‘crack length’, 2c, is formally related with the ellipse semi-axes along the crack, a, and orthogonal to
the crack, b, by formula c2 ¼ a2�b2. It is assumed that the ellipse is crack-like, i.e. acb, and consequently,
cEa. The shear modulus is m ¼ E/2(1+n) where the Young modulus and Poisson ratio are E and n
accordingly. The constant of the stress/strain state is k ¼ 3�4n in the case of plane strain and k ¼ (3�n)/(1+n)
in the case of plane stress. The critical (Mode I) energy release rate, GIc, equals twice the Griffith surface
tension, g: GIc ¼ 2g. Finally, a0 is the elliptic coordinate of the crack. We notice that the crack sharpness is
included in the critical force through the hyperbolic cosine, which is related with the crack axes as follows:

coshð2a0Þ ¼
a2 þ b2

a2 � b2
� 1, (2)

where the approximate equality is a consequence of the crack geometry, i.e. abb.
Substituting Eq. (2) in Eq. (1) we have finally:

pcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mGIc

ð1þ kÞpa

s
. (3)

It is crucial to note that the Griffith critical load is practically unaffected by the sharpness of the crack tip
because of Eq. (2).

Analogously to Griffith, the modern theory of Linear Elastic Fracture Mechanics (LEFM) ignores the real
crack sharpness yet in a more sophisticated way—it considers ‘mathematical’ cracks with zero width and tip
singularity: Broberg (1999), Hellan (1984), Hertzberg (1989), Kanninen and Popelaar (1973). According to
LEFM, the critical tension in a plate with central crack of length 2a is given by:

pcr ¼
K Icffiffiffiffiffiffi
pa
p , (4)

where K Ic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mGIc=ð1þ kÞ

p
is the Mode I fracture toughness or the critical stress intensity factor (SIF).

Expectedly, Eqs. (3) and (4) coincide.
There is an evident mismatch between the experimental importance of the crack sharpness and its

theoretical ignorance—see also Doremus (1976). To shed more light on this controversy, we study the Griffith
problem theoretically without using the classical fracture theories. Instead, we simulate failure of a cracked
plate by using the softening hyperelasticity approach described in Section 2. Such an approach allows
capturing the critical load on the cracked plate, which corresponds to the onset of static instability. Thus, our
theoretical study is essentially a series of numerical experiments. The numerical experiments are not affected
by the problems accompanying the physical experiments and because of that they can be a valuable source of
additional information.

We plug the softening hyperelasticity models in ABAQUS and use very fine meshes to simulate small cracks
with the varying sharpness or length in Section 3. We find that the crack sharpness affects the onset of plate
failure and, consequently, the fracture toughness in perfect qualitative agreement with the physical
experiments.

We discuss the results of our simulations and the classical theories of brittle fracture in Section 4.
Particularly, we argue that the ignorance of the crack sharpness in the classical fracture theories is related to
the energetic nature of these theories. The latter means that the energy balance, which is an integral equation,
‘smears’ the stress/strain concentration at the tip of the crack making the theory insensitive to the crack
sharpness. The smearing appears explicitly in the original Griffith theory and it is implicit in LEFM. We also
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argue that the measurements of the fracture toughness can converge to stable values only in the cases where
the radius of the crack tip is comparable with a characteristic size of the material microstructure, e.g. grain
size, atomic distance, etc., corresponding, for example, to the Emmerich (2007) parameter la that represents
the minimum characteristic length scale round the point where the fracture begins. In other words, the
toughness can be calibrated only under conditions where the hypothesis of continuum fails. The latter means,
for example, that the measurements of the ceramics toughness with the notch radius significantly larger than
the grain size may be hopeless in advance.

2. Softening hyperelasticity

2.1. Preliminary remarks

The existing continuum mechanics approaches for modeling material failure can be divided in two groups:
surface and bulk models. The surface models, pioneered by Barenblatt (1959), appear by name of cohesive
zone models (CZM) in the modern literature. The cohesive zone is a surface in a bulk material where
displacement discontinuities occur. Thus, continuum is enhanced with discontinuities. The latter requires an
additional constitutive description. Equations relating normal and tangential displacement jumps across the
cohesive surfaces with the proper tractions define a specific CZM. There is a plenty of proposals of the
‘cohesive’ constitutive equations, for example, Dugdale (1960), Rice and Wang (1989), Tvergaard and
Hutchinson (1992), Xu and Needleman (1994), and Camacho and Ortiz (1996). All these models are
constructed qualitatively as follows: tractions increase, reach a maximum, and then approach zero with
increasing separation. This scenario is in harmony with our intuitive understanding of the rupture process.
Needleman (1987) lifted the CZMs to computational practice. Since then CZMs are used increasingly in finite
element simulations of crack tip plasticity and creep, crazing in polymers, adhesively bonded joints, interface
cracks in bimaterials, delamination in composites and multilayers, fast crack propagation in polymers, etc.
Cohesive zones can be inside finite elements or along their boundaries (de Borst, 2001; Xu and Needleman,
1994; Belytschko et al., 2001). Crack nucleation, propagation, branching, kinking, and arrest are a natural
outcome of the computations where the discontinuity surfaces are spread over the bulk material. This is in
contrast to the traditional approach of fracture mechanics where stress analysis is separated from a description
of the actual process of material failure. The CZM approach is natural for simulation of fracture at the
internal material interfaces in polycrystals, composites, and multilayers. It is less natural for modeling fracture
of the bulk because it leads to the simultaneous use of two material models for the same real material: one
model describes the bulk while the other model describes the cohesive zones imbedded in the bulk. Such two-
model approach is rather artificial physically. It seems preferable to incorporate a material failure law directly
in the constitutive description of the bulk.

Remarkably, the first models of bulk failure—damage mechanics—proposed by Kachanov (1958) and
Rabotnov (1963) for analysis of the gradual failure accumulation and propagation in creep and fatigue

appeared almost simultaneously with the cohesive zone approach. The need to describe the failure
accumulation, i.e. evolution of the material microstructure, explains why damage mechanics is very similar to
plasticity theories including (a) the internal damage variable (inelastic strain), (b) the critical threshold
condition (yield surface), and (c) the damage evolution equation (flow rule). The subsequent development of
the formalism of damage mechanics (Kachanov, 1986; Krajcinovic, 1996; Skrzypek and Ganczarski, 1999;
Lemaitre and Desmorat, 2005) left its physical origin well behind the mathematical and computational
techniques and eventually led to the use of damage mechanics for the description of any bulk failure.
Theoretically, the approach of damage mechanics is very flexible and allows reflecting the physical processes
triggering macroscopic damage at small length scales. Practically, the experimental calibration of damage
theories is far from trivial because it is difficult to measure the damage parameter directly. The experimental
calibration should be implicit and include both the damage evolution equation and criticality condition.

A physically motivated alternative to damage mechanics in the cases of failure related with the bond rupture
has been considered by Gao and Klein (1998), Klein and Gao (1998), and, more recently, by Volokh and Gao
(2005), who showed how to mix the atomic/molecular and continuum descriptions in order to simulate
material failure. They applied the Cauchy-Born rule linking micro- and macro-scales to empirical potentials,
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which include a possibility of the full atomic separation. The continuum–atomistic link led to the formulation
of the macroscopic strain energy potentials allowing for the stress/strain softening and strain localization. The
continuum–atomistic method is very effective at small length scales where purely atomistic analysis becomes
computationally intensive. This approach found applications in bio- and nano-mechanics concerning the
problems of bone fracture (Gao et al., 2003; Ji and Gao, 2004) and strength of carbon nanotubes (Zhang et al.,
2004; Volokh and Ramesh, 2006). Unfortunately, a direct use of the continuum–atomistic method in
macroscopic failure problems is not very feasible because its computer implementation includes a numerically
involved procedure of the averaging of the interatomic potentials over a representative volume.

In order to bypass the computational intensity of the continuum–atomistic method while preserving its
sound physical basis, the softening hyperelasticity approach was proposed by Volokh (2004, 2007a, b). The
basic idea of the approach is to formulate an expression of the stored macroscopic energy, which includes the
energy limiter—the average bond energy.3 Such a limiter introduces the strain softening, i.e. the material
failure description, in constitutive equations of continuum mechanics automatically. The softening
hyperelasticity approach is computationally simple yet physically appealing and its application to the
simulation of the onset of the crack propagation in brittle solids is considered in the present work. It is
interesting that the existence of an energy limiter has been observed by Rittel et al. (2006) in experiments on
adiabatic shear failure.

2.2. Energy limiter for a pair of particles

Let us start with the interaction of two particles (atoms, molecules, etc.) and let us choose, to be specific, the
Lennard-Jones potential, j, for the description of the particle interaction:

jðlÞ ¼ 4�
s
l

� �12
�

s
l

� �6� �
, (5)

where l is the distance between particles, e and s are the bond energy and length constants, respectively (Fig. 1).
Let L designate the distance between particles in a reference state and F is the one-dimensional deformation

gradient. In the latter case we have:

l ¼ FL. (6)

Substituting Eq. (6) in Eq. (7) we have:

jðF Þ ¼ 4�
s

FL

� �12
�

s
FL

� �6� �
. (7)
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Fig. 1. Lennard-Jones potential.

3In the case of continuum–atomistic methods, the energy limiter is already embedded in the description of individual bonds.
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Assuming that deformation increases to infinity we have:

jðF !1Þ ¼ 0. (8)

On the other hand, we have at the reference state:

j0 ¼ jðF ¼ 1Þ ¼ 4�
s
L

� �12
�

s
L

� �6� �
. (9)

In the absence of external loads the energy of the interaction tends to minimum and it is natural to choose
the minimum energy state—equilibrium—at distance L ¼

ffiffiffi
26
p

s where no forces are acting between the
particles. In the latter case, we have:

j0 ¼ ��. (10)

We notice that energy is negative in the equilibrium state according to the classical Lennard-Jones potential.
The latter is inconvenient (in problems of solid mechanics) and we modify the classical LJ potential by shifting
its reference energy to zero (Fig. 1)

c ¼ jþ �. (11)

We further formalize the described energy shift as follows:

cðF Þ ¼ jðF Þ � j0, (12)

j0 ¼ min
L

jðF ¼ 1Þ. (13)

Eqs. (12) and (13) are important in the subsequent consideration of assemblies of many particles.
It is important to emphasize that we cannot increase energy unlimitedly by increasing deformation. The

energy increase is limited:

cðF !1Þ ¼ �j0 ¼ F ¼ constant. (14)

2.3. Energy limiter for assembly of particles

Now we extend all considerations for a pair of particles given in the previous subsection to large particle
assemblies comprising solid bodies. Consider particles placed at ri in the 3D space. Generally, the volumetric
density of the total potential energy, i.e. the strain energy, can be written with account of two-particle
interactions as follows:

1

2V

X
i;j

jðrijÞ, (15)

where rij ¼ jrijj ¼ jri � rjj and V is the volume occupied by the system.
According to the Cauchy-Born rule (Weiner, 1983; Tadmor et al., 1996), originally applied to the crystal

elasticity, the current rij and initial (reference) Rij ¼ Ri�Rj relative positions of the same two particles can be
related by the deformation gradient:

rij ¼ FRij , (16)

where F ¼ qx=qX is the deformation gradient of a generic material macro-particle of body O occupying
position X at the reference state and position x(X) at the current state of deformation (Fig. 2).

Substituting Eq. (16) in Eq. (15) yields:

1

2V

X
i;j

jðrijÞ ¼
1

2V

X
i;j

jðrijðCÞÞ, (17)

where C ¼ FTF is the right Cauchy-Green deformation tensor.
Direct application of Eq. (17) to analysis of material behavior can be difficult because of the large amount of

particles. Gao and Klein (1998) and Klein and Gao (1998, 2000) considered the following statistical averaging
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procedure:

hjðlÞi ¼
1

V0

Z
Vn

0

jðlÞDV dV , (18)

l ¼ rij ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffi
n � Cn

p
¼ LjFnj, (19)

where L ¼ Rij ¼ jRi � Rjj is the reference bond length; n ¼ ðRi � RjÞ=L is the reference bond direction; V0 is
the reference representative volume; j(l) is the bond potential (Lennard-Jones); DV is the volumetric bond
density function; and Vn

0 is the integration volume defined by the range of influence of j.
Now the average strain energy takes the form:

hjðCÞi ¼
1

V 0

Z
Vn

0

4�
s

LjjCjj

� �12

�
s

LjjCjj

� �6
 !

DV dV , (20)

where

jjCjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n � Cn

p
. (21)

Analogously to the case of the pair interaction considered in the previous subsection—Eqs. (12) and (13)—
we define the shifted strain energy, which is zero at the equilibrium reference state:

cðCÞ ¼ hjðCÞi � hji0, (22)

hji0 ¼ min
L
hjðC ¼ 1Þi. (23)

Analogously to Eq. (14), we can define the average bond energy by setting the unlimited increase of
deformation:

F ¼ cðjjCjj ! 1Þ ¼ �hji0 ¼ constant: (24)

Thus, the average bond energy sets a limit for the energy accumulation. This conclusion generally does not
depend on the choice of the particle potential and it is valid for any interaction that includes a possible particle
separation—the bond energy.

2.4. Energy limiter for a solid

Contrary to the conclusion above, traditional hyperelastic models of materials do not include the energy
limiter. The stored energy of hyperelastic materials is defined as:

c ¼W . (25)
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Here, W is used for the strain energy of the intact material, which can be characterized as follows:

jjCjj ! 1) c ¼W !1, (26)

where jjCjj is a tensorial norm.
In other words, the increasing strain increases the accumulated energy unlimitedly. Evidently, the

consideration of only intact materials is restrictive and unphysical. The energy increase of a real material
should be limited as it was shown above:

Ck k ! 1) c! F ¼ constant, (27)

where the average bond energy, F ¼ constant, can be called the material failure energy.
Eq. (27) presents the fundamental idea of introducing a limiter of the stored energy in the elasticity theory.

Such a limiter induces material softening, indicating material failure, automatically. The choice of the limited
stored energy expression should generally be material-specific. Nonetheless, a somewhat universal formula
(Volokh, 2007b) can be introduced to enrich the already existing models of intact materials with the failure
description:

cðW Þ ¼ F� F exp �
W

F

� �
. (28)

where cðW ¼ 0Þ ¼ 0 and cðW ¼ 1Þ ¼ F.
Formula (28) obeys condition jjCjj ! 1) cðW ðCÞÞ ! F and, in the case of the intact material behavior,

W5F, we have cðW Þ �W preserving the features of the intact material.
The constitutive equation can be written in the general form accounting for (Eq. (28)):

r ¼ 2J�1F
qc
qC

FT ¼ 2J�1F
qW

qC
FT exp �

W

F

� �
, (29)

where r is the Cauchy stress tensor; J ¼ detF; and the exponential multiplier enforces material softening.
Constitutive Eq. (29) is especially effective for incompressible soft materials undergoing finite deformations.

2.5. Hookean solid with failure

In the case of linear Hookean solid, which is of interest in the present study, we have for Eqs. (28) and (29)
accordingly:

c ¼ F� F exp �
l
2F
ðtreÞ2 �

m
F

e : e

� �
, (30)

r ¼
qc
qe
¼ ð2meþ lðtr�Þ1Þ exp �

l
2F
ðtreÞ2 �

m
F

e : e

� �
, (31)

where e:e ¼ tr(eeT); l and m are the Lame material constants and

e ¼
1

2
HþHT
� �

(32)

is the linear strain; 1 is the second-order identity tensor and H ¼ qu=qX is the displacement, u ¼ x� X,
gradient.

Though Eq. (29) presents a universal formula to introduce the average bond energy in consideration, it is by
no means unique. It is possible, for example, to introduce the energy limiter for the linear isotropic Hookean
solid in the following way (Volokh 2004, 2007a):

c ¼ F� F 1þ

ffiffiffiffi
K

F

r
tre

 !
exp �

ffiffiffiffi
K

F

r
tre�

m
F
e : e

 !
, (33)

r ¼
qc
qe
¼ 2 ~meþ ~K �

2 ~m
3

� �
ðtreÞ1, (34)
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where

e ¼ e�
1

3
ðtreÞ1, (35)

~m ¼ m 1þ

ffiffiffiffi
K

F

r
tre

 !
exp �

ffiffiffiffi
K

F

r
tre�

m
F
e : e

 !
, (36)

~K ¼ K exp �

ffiffiffiffi
K

F

r
tre�

m
F
e : e

 !
, (37)

where K ¼ lþ 2m=3 is the bulk modulus.
We emphasize again that the best form of the energy function can be material/problem-specific. It is

important, however, that all possible forms should limit the energy increase. In what follows, we will use both
Eqs. (30) and (33).

3. Finite element simulations

The purpose of the finite element analysis is to simulate the hydrostatic tension of a thin plate with the small

elliptic and straight cracks—Fig. 3—under the varying sharpness and length of the cracks.
For this purpose, we use the ABAQUS software where the stored energy functions (30) and (33) are plugged

in. Henceforth, we call the material model based on Eq. (33) Softening Hyperelasticity 1—SH1—and on
Eq. (30) Softening Hyperelasticity 2—SH2. We consider the state of the plane stress for a square plate of size
d ¼ 1600 (units) with elastic constants l=F ¼ 75� 104=66 and m=F ¼ 90� 104=66. We use very fine meshes of
triangles and quadrilaterals as shown in Fig. 4. The number of elements varies for various loading cases. We
consider three series of simulations in the subsequent subsections.

3.1. Elliptic crack with varying sharpness

We start with the elliptic crack simulation with fixed length of 2a ¼ 80 (units) and varying sharpness, i.e. the
‘width’ half axes of the elliptic crack: b ¼ 1, 2, 3, 4, 5, 6, 7, 8 (units). Table 1 presents the normalized critical
tension for eight cases of the crack sharpness.

Every case is simulated eight times by using various finite elements with different meshes and hyperelastic
models. The results are very similar in all cases and their average is presented in Fig. 5a graphically.
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It is clearly seen that the critical tension significantly depends on the sharpness of the elliptic crack. When
the critical tension is known we can calculate the material toughness by using Eq. (4):

K Ic ¼ pcr

ffiffiffiffiffiffi
pa
p

. (38)

The results of the calculations of the material toughness are presented in Fig. 5b. Evidently, no unique
toughness can be determined for a crack with the fixed length. The numerical value of the toughness depends
on the sharpness of the crack.

It is worth emphasizing that the ‘‘smallness’’ of the crack was checked by comparing the results of the
present computations to the results of the similar computations with the enlarged plate. No significant
difference in results has been found and we do not duplicate them here.

ARTICLE IN PRESS

Fig. 4. Meshes of triangles (a) and quadrilaterals (b).

Table 1

Normalized critical tension, pcr=F, for elliptic crack with varying sharpness, and fixed length

b/a SH2 SH1

CPS3 CPS4 CPS8 CPS3

1/40 2.2 (2228) 2.3 (6802) 2.3 (1251) 2.2 (3141) 2.2 (1251) 2.2 (3141) 2.0 (2228) 2.1 (6802)

2/40 4.3 (9454) 4.3 (16794) 4.3 (4305) 4.4 (9131) 4.2 (4305) 4.2 (9131) 3.8 (9454) 3.8 (16794)

3/40 6.5 (6482) 6.6 (18266) 6.6 (2626) 6.4 (8103) 6.4 (2626) 6.4 (8103) 5.6 (6482) 5.6 (18266)

4/40 8.6 (5558) 8.6 (15234) 8.7 (2532) 8.7 (6808) 8.5 (2532) 8.5 (6808) 7.5 (5558) 7.5 (15234)

5/40 10.7 (4118) 10.8 (13330) 10.9 (1963) 10.9 (5820) 10.7 (1963) 10.7 (5820) 9.5 (4118) 9.6 (13330)

6/40 12.8 (4696) 12.7 (12916) 12.9 (2285) 12.9 (5672) 12.7 (2285) 12.7 (5672) 11.3 (4696) 11.3 (12916)

7/40 14.8 (3892) 14.8 (12798) 15.1 (1886) 14.9 (5677) 14.7 (1886) 14.7 (5677) 13.2 (3892) 13.2 (12798)

8/40 16.9 (4420) 16.9 (13502) 17.2 (2124) 17.1 (6025) 16.9 (2124) 16.9 (6025) 15.0 (4420) 15.0 (13502)

SH1, softening hyperelasticity model described by Eq. (33); SH2, softening hyperelasticity model described by Eq. (30); CPS3, CPS4,

CPS8, ABAQUS triangle and quadrilateral elements; parentheses designate the total number of finite elements for the half plate.
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3.2. Straight crack with varying sharpness

The results similar to those presented in the previous subsection are also obtained for the straight
crack, which is formed by two parallel lines joined by half-circles at the edges. Table 2 and Fig. 6 show
the critical tensions and the material toughness for the case of the straight crack with the varying sharpness,
i.e. width.

Again, like in the case of the elliptic crack, no unique magnitude of the material toughness can be
determined because it depends on the crack sharpness.

3.3. Straight crack with varying length

In addition to the analysis of the influence of the crack sharpness on the critical tension of a plate, it is of
interest to compare cracks with the equivalent sharpness and varying lengths. Such comparisons are presented
in Table 3 and Fig. 7. The obtained data clearly show that the crack length affects the critical tension in
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Table 2

Normalized critical tension, pcr=F, for straight crack with varying sharpness and fixed length

b/a SH2 (CPS3) SH1 (CPS3)

0.5/40 8.8 (1296) 9.0 (1738) 8.4 (1296) 8.6 (1738)

1/40 12.7 (1764) 12.7 (3624) 12.0 (1764) 12.0 (3624)

1.5/40 15.6 (1366) 15.7 (2694) 14.4 (1366) 14.5 (2694)

2/40 18.0 (1382) 18.1 (2546) 16.2 (1382) 16.3 (2546)

2.5/40 20.1 (1338) 20.4 (2268) 18.0 (1338) 18.3 (2268)

3/40 22.0 (1326) 22.2 (2262) 19.7 (1326) 19.9 (2262)

3.5/40 23.7 (1274) 23.8 (2298) 21.2 (1274) 21.3 (2298)

4/40 25.3 (1274) 25.5 (2368) 22.6 (1274) 22.8 (2368)

SH1, softening hyperelasticity model described by Eq. (33); SH2, softening hyperelasticity model described by Eq. (30); CPS3, ABAQUS

triangle element; parentheses designate the total number of finite elements for the half plate.
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agreement with the Griffith theory and LEFM only in the case of the cracks with the equivalent sharpness.
The latter means that if the Griffith theory and LEFM were calibrated for the sharpness corresponding to the
middle curve in Fig. 7 then they could only predict the behavior of the cracks with the same sharpness and they
would fail predicting the behavior of cracks with a different sharpness.

4. Discussion

The present work was motivated by a controversy between the observations of the influence of the crack
sharpness on the toughness in experiments and the ignorance of the crack sharpness in the classical theories of
brittle fracture. To gain new insight in the controversy, we numerically simulated the onset of the crack
propagation in thin plates under the hydrostatic tension. The critical tension, when fracture starts, occurs when
material fails at the tip of the crack. The failure is driven by the strain softening induced in the material
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Table 3

Normalized critical tension, pcr=F, for straight crack with constant yet different sharpness and varying length

a/b SH2 (CPS3) a/b SH2 (CPS3) a/b SH2 (CPS3)

10/1 25.3 (1480) 25.5 (3156) 10/2 35.1 (1050) 35.0 (2042)

20/1 18.0 (1352) 18.0 (3068) 20/2 25.3 (1136) 25.6 (2114) 20/3 31.5 (2110) 31.7 (3698)

30/1 14.7 (1640) 14.7 (3430) 30/2 20.8 (1318) 21.0 (2356) 30/3 25.3 (2308) 25.6 (3772)

40/1 12.7 (1764) 12.7 (3624) 40/2 18.0 (1382) 18.1 (2546) 40/3 22.0 (2262) 22.1 (4040)

50/1 11.4 (1720 11.6 (2840) 50/2 16.0 (1592) 16.1 (2804) 50/3 19.9 (2610) 20.0 (4180)

60/1 10.4 (1978) 10.4 (4024) 60/2 14.6 (1687) 14.7 (2980) 60/3 18.0 (2962) 18.1 (4600)

70/1 9.5 (2190) 9.6 (4334) 70/2 13.5 (1894) 13.7 (3260) 70/3 16.8 (3052) 16.9 (4906)

80/1 8.9 (2232) 9.0 (4420) 80/2 12.6 (1960) 12.7 (3514) 80/3 15.7 (3480) 15.8 (5180)

90/1 8.4 (2448) 8.5 (4694) 90/2 11.8 (2164) 12.0 (3992) 90/3 14.7 (3248) 14.8 (5256)

100/1 7.9 (2622) 8.0 (4848) 100/2 11.2 (2262) 11.3 (3970) 100/3 13.9 (3426) 13.9 (5508)

SH2, softening hyperelasticity model described by Eq. (30); CPS3, ABAQUS triangle element; parentheses designate the total number of

finite elements for the half plate.
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Fig. 7. Critical stress for straight crack with fixed yet different sharpness and varying length. SH2—softening hyperelasticity model

described by Eq. (30). Griffith—prediction based on Eq. (4) for KIc calibrated at a=b ¼ 50=2.
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constitutive model with the help of the energy limiter—the average bond energy. The material (Hookean) model
enhanced with the failure description was plugged in ABAQUS and crack simulations were performed on very
fine meshes to examine the influence of the crack sharpness on the onset of fracture. Small elliptic and straight
cracks were considered with constant length and varying width, i.e. the tip curvature or the crack sharpness. It
was observed that sharper cracks led to lower magnitudes of the critical tension. The latter, in turn, led to the
lower magnitudes of the critical SIFs—material toughness—in harmony with the experimental observations.

Our observations are in agreement with the well-known Inglis (1913) finding that the stress at the tip of an
elliptic crack strongly depends on its sharpness. Assuming that the stress at the tip controls material strength,
it is possible to expect that the crack sharpness affects the onset of material failure. Such a scenario was
considered by Inglis using linear elasticity. Comparing the approach of Inglis with the softening hyperelasticity
approach used in the present work, we should emphasize the difference between them. Inglis uses local—
strength of materials—criteria of failure which are separated from the constitutive description of material. No
global experiment on the calibration of the fracture toughness can be reproduced within the simplistic
framework of strength of materials. The softening hyperelasticity approach is different. It allows tracking the
global failure/instability of the structure with cracks due to the inclusion of the strain softening in the
constitutive description of material. Thus, softening hyperelasticity allows reproducing the real physical
experiments where the global instability/failure is observed. We should also note that Emmerich (2007)
revisited Inglis results by mixing continuum and atomistic arguments and arriving at similar conclusions. The
Emmerich (2007) work includes interesting discussions and an extensive list of references, which complements
the references of the present work.

Why are the Griffith theory and LEFM ignorant of the crack sharpness? Such ignorance can be explained
by the notion that the classical theories of brittle fracture are based on the energy balance considerations,
which are integral and because of that they ‘smear’ the real stress/strain concentration at the tip of a real crack.
The latter is explicit in the Griffith work where the energy balance is the basis of the theory. The energy nature
of LEFM appears in disguise. Indeed, the critical SIF that indicate the onset of fracture are the coefficients in
the local asymptotic expansions of stress fields. At first glance, they are not formally related to any energy
consideration. However, the SIFs are ‘‘truly esoteric quantities’’ (Hutchinson, 2002) unless they are physically
interpreted within the energetic framework of Griffith and the link is established between the critical SIF and
the critical energy release rate. Thus, the fracture criteria of LEFM are essentially energetic though they
appear in a form related to the local stress. It is remarkable that though the classical theories of brittle fracture
ignore the crack sharpness they are capable of describing the influence of the crack length on the critical load
very well in the case where the crack sharpness is constant. Our simulations of the straight cracks show that
the critical tension depends inversely on the square root of the crack length in full harmony with the Griffith
finding. Unfortunately, that is true only for the equivalent cracks, i.e. cracks with the same tips.

The main practical implication of our results is a conclusion that generally material toughness cannot be
uniquely calibrated in experimental tests because its numerical magnitude significantly depends on the
sharpness of the crack/notch used for the calibration. The crack sharpness controls the stress/strain
concentration, which in turn controls the onset of fracture. It is possible, however, to decrease the radius of the
tip of the crack/notch to a magnitude where our conclusion based on the classical continuum considerations is
not applicable. Such a magnitude should be related with a characteristic length of the material microstructure,
e.g. grain size, atomic distance, etc., corresponding, for example, to the Emmerich (2007) parameter la that
represents the minimum characteristic length scale round the point where the fracture begins. Concerning the
latter remark, it is interesting to quote Munz and Fett (1999) who notice that the convergence of the measured
fracture toughness starts with a notch radius smaller than a critical value: ‘‘For a fine-grained ceramic a very
narrow notch is necessary. In all cases it has to be ensured that the saw cut is narrow enough’’. In our opinion,
the ‘narrow enough’ is defined by the grain size. The said is applicable to any sort of brittle materials.
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