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Abstract

We present here a coupled mathematical model of growth and failure of the abdominal aortic aneurysm (AAA). The failure portion of

the model is based on the constitutive theory of softening hyperelasticity where the classical hyperelastic law is enhanced with a new

constant indicating the maximum energy that an infinitesimal material volume can accumulate without failure. The new constant

controls material failure and it can be interpreted as the average energy of molecular bonds from the microstructural standpoint. The

constitutive model is compared to the data from uniaxial tension tests providing an excellent fit to the experiment. The AAA failure

model is coupled with a phenomenological theory of soft tissue growth. The unified theory includes both momentum and mass balance

laws coupled with the help of the constitutive equations. The microstructural alterations in the production of elastin and remodeling of

collagen are reflected in the changing macroscopic parameters characterizing tissue stiffness, strength and density. The coupled theory is

used to simulate growth and rupture of an idealized spherical AAA. The results of the simulation showing possible AAA ruptures in

growth are reasonable qualitatively while the quantitative calibration of the model will require further clinical observations and in vitro

tests. The presented model is the first where growth and rupture are coupled.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The condition of a focal dilation of the infrarenal
aorta—abdominal aortic aneurysm (AAA)—is found in
E2% of the elderly population, with E150,000 new cases
diagnosed each year, and the occurrence is increasing
(Bengtsson et al., 1996; Ouriel et al., 1992). In many cases
AAA gradually expands until rupture causing a mortality
rate of 90%. The AAA rupture is considered the 13th most
common case of death in the US (Patel et al., 1995). Since
the AAA treatment is expensive and bears considerable
morbidity and mortality risks it is vital to predict when the
risk of rupture justifies repair. Such a prediction should be
based on a biomechanical model of growth and rupture of
the aneurysm.

Very few models of aneurysmal growth have been
developed: Humphrey and Canham (2000); Watton et al.

(2004); Baek et al. (2006); and some empirical criteria of
the aneurysm rupture were proposed: Elger et al. (1996); Li
and Kleinstreuer (2005). Though the models incorporate
growth descriptions, none of them couples growth with
rupture in the theoretical setting. The latter is important in
order to provide an objective criterion of the material
failure, which is a part of the model formulation and not an
external condition imposed on the stress/strain field.
Besides, the insertion of the failure description makes the
model more physical because no real material can sustain
large enough strains—it should fail. Existing models of soft
tissues including AAA do not describe failure. According
to the traditional models, the material is always intact
independently of the amount of the accumulated energy
or strain. The latter is unphysical, of course. The coupling
of growth and rupture is the primary goal of the present
work.
Our description of rupture is based on the idea that a

small (infinitesimal) material volume possesses a limited
capacity of accumulating energy under increasing strain.
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Volokh (2007) shows that the average energy of the atomic/
molecular bonds sets the failure energy limit, which is a
material constant. This new failure constant controls
softening in the constitutive law. An application of the
average bond energy to analysis of the overall strength of
an intact arterial wall can be found in Volokh (2008). In the
present work, we introduce the AAA model in the form of
isotropic and incompressible Neo-Hookean type material
with softening. All material constants are calibrated in the
uniaxial tension (UT) test for an AAA sample. The
calibrated rupture model is further enhanced with a
description of growth (Volokh, 2004, 2006b), which
incorporates the law of mass balance/evolution with a
source term related with the tissue remodeling and an
additional term in the stored energy expression related with
the material expansion under the mass supply. The
proposed coupled model is used to simulate the evolution
and rupture of an idealized spherical AAA. The results of
the simulation encourage further development and calibra-
tion of the model, concerning growth, when more data is
collected.

2. AAA rupture model

2.1. AAA model with softening

We consider the classical formulation of nonlinear
elasticity according to which a generic material particle of
body O occupying position X in the reference configuration
moves to position x(X) in the current configuration. The
deformation of the particle is defined by the tensor of
deformation gradient, F=qx/qX. The equilibrium equa-
tion, div r=0 in O, and boundary conditions x ¼ x̄ on qOx

or rn ¼ t̄ on qOt, should be obeyed, where ‘div’ operator is
with respect to the current position, x; r is the Cauchy
stress tensor; t is the traction per unit area of the current
surface with the unit outward normal n; and the barred
quantities are prescribed.

We assume that the material is incompressible, detF=1.
Such an assumption is often used for analysis of soft
biological tissue because its response to hydrostatic
pressure is much stronger than to shearing. It seems,
however, that the applicability of the incompressibility
assumption essentially depends on the specific loading and
deformation of the material under consideration (Volokh,
2006a).

We further assume that the material is hyperelastic and
can be described by a stored energy function. Traditionally,
the stored energy of hyperelastic materials is defined as
c ¼W, where W is used for the strain energy of the intact

material, i.e. the material that does not undergo failure.
Such a material is characterized as follows: ||C||-
N)c ¼W-N, where ||y|| is a tensorial norm and
C ¼ FTF is the right Cauchy–Green deformation tensor.
Simply speaking, an increasing strain increases the
accumulated energy unlimitedly. Evidently, the considera-
tion of materials that do not undergo failure is restrictive

and no real material can sustain large enough strains. The
energy increase of a real material should be limited, ||C||-
N)c-f ¼ constant, where f can be called the material

failure energy. Among a variety of possibilities to formulate
the strain energy obeying this condition our desire is to
enrich the already existing models, which describe intact
behavior of materials reasonably well, with the failure
condition. Such a desire can be formalized as follows:
||C||-N)c(W(C))-f. A possible solution to the
problem is: c(W) ¼ f�fexp(�W/f), where c(W ¼ 0)
¼ 0 and c(W ¼N) ¼ f. In the case of the intact material
behavior, W5f, we have c(W)EW preserving the features
of the intact material. The critical failure energy, f, is not a
purely phenomenological material constant—it has a
physical meaning of the average bond energy and can be
calculated for real materials based on the knowledge of
their atomic or micro-particle structure as follows:
f ¼ 1=V 0

R
V�0
�DV dV , where V0 is the reference represen-

tative volume; e is a bond energy; DV is the volumetric
bond density function; and V�0 is the integration volume
defined by the range of influence of the bonds (Volokh,
2007).
Following the described approach we define the con-

stitutive model via the following expression for the stored
energy

cðI1Þ ¼ f� f exp �
a
f
ðI1 � 3Þ �

b
f
ðI1 � 3Þ2

� �
, (1)

where I1 ¼ trB ¼ trC is the first principal invariant of the
left B ¼ FFT or the right C ¼ FTF Cauchy–Green defor-
mation tensor; a and b are the elasticity constants of the
material; and f is an average bond energy, which is
another material constant controlling its softening.
It is assumed that AAA is isotropic. The assumption is

approximate, of course, because the biaxial tension tests
demonstrate some deviation from it: Vorp (2007). Inter-
estingly, the intracranial aneurysm lacks the media layer
with a pronounced anisotropy while the adventitia layer
has a number of sub-layers of differently oriented collagen
fibers and it can also be assumed isotropic (Humphrey and
Canham, 2000).
The AAA model corresponding to (1) is: W(I1) ¼

a(I1�3)+b(I1�3)
2, which does not include a failure

description. It was experimentally validated by Raghavan
and Vorp (2000). Though the authors presented experi-
mental data on post-failure their model was only fit to the
pre-failure data.
In the present work, we use a set of the experimental

data of Raghavan et al. (1996) for validation of the failure
model. The data was obtained in uniaxial tests with thin
strips of AAA excised from the anterior surface during
surgical repair. A representative set of the data is shown
with dots in Fig. 1.
Based on (1), the constitutive law for isotropic incom-

pressible AAA tissue takes the form

r ¼ �s1þ 2c1B, (2)
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where s is the Lagrange multiplier enforcing the incom-
pressibility condition; 1 is the identity tensor and

c1 �
qc
qI1
¼ ðaþ 2bðI1 � 3ÞÞ exp

�aðI1 � 3Þ � bðI1 � 3Þ2

f

� �
.

(3)

In the case of uniaxial tension the deformation can be
described as follows

x1 ¼ lX 1; x2 ¼ l�1=2X 2; x3 ¼ l�1=2X 3, (4)

I1 ¼ l2 þ
2

l
, (5)

s11 ¼ 2ðl2 � l�1Þc1

¼ 2ðaþ 2ðI1 � 3ÞbÞðl2 � l�1Þ

� exp
�aðI1 � 3Þ � bðI1 � 3Þ2

f

� �
. (6)

The theoretical curve shown in Fig. 1 has been fitted
to the experimental results by minimizing the square
residuals between the experimental and analytical values
of stresses described by (6). The minimization procedure
suggested the following best fits for the material constants:
a ¼ 10.3N/cm2; b ¼ 18.0N/cm2; and f ¼ 40.2N/cm2.

2.2. Inflation of spherical AAA

Consider the symmetric inflation of a thin sphere in
which the deformation can be presented in terms of the
principal stretches as follows

l1 ¼ l2 ¼ r
R
¼ l

l3 ¼ h
H
¼ l�2;

(7)

where r, R and h, H are the current and referential radii
and thicknesses of the sphere accordingly and the last
equality in (7) is due to the incompressibility condition.

The corresponding principal values of the Cauchy stress
are assumed in the form

s1 ¼ s2 ¼ s

s3 ¼ 0
. (8)

The constitutive law (2) can then be written as follows

s ¼ 2c1ðl
2
� l�4Þ, (9)

where (8)2 has been used for finding the Lagrange
multiplier.
To relate stretches to the internal pressure, p, we

consider equilibrium of a half sphere

2prhs ¼ pr2p, (10)

Accounting for Eqs. (7)–(9) this equation takes the final
form

pðlÞ ¼
4H

lR
ð1� l�6Þc1, (11)

where c1 is defined in (3) and the first principal invariant is

I1 ¼ 2l2 þ l�4. (12)

Combining (3), (11), and (12) leads to a pressure–stretch
curve, which is presented in Fig. 2, where the stable part is
shown by the bold line and the peak pressure designates
the onset of rupture. The dashed line corresponds to the
unstable equilibrium of the failed AAA and it generally
should be analyzed within the framework of elastody-
namics concerning the failure propagation, which is
beyond the scope of the present work.

3. Growth and remodeling

In order to include growth and remodeling in a
mathematical description of the AAA evolution it is
necessary to couple equations of the mass and momentum
balance. The full-scale coupling should generally require
the account of mass diffusion. However, we simplify
the general model assuming that AAA is very thin and
the mass supply is volumetric and homogeneous. Thus, we
ignore the diffusion of mass. Under the mentioned
assumption the mass balance equation reduces to the
following evolution equation

d

dt

rðtÞ
r0

� �
¼ a1

tr rðtÞ
tr r0

� 1

� �
þ a2

� �
rðtÞ
r0

, (13)
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Fig. 1. Theory versus experiment for the uniaxial tension test.
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Fig. 2. Inflation and rupture of AAA balloon: bold and dashed lines

designate stable and unstable branches of the curve accordingly. There is

no rupture for the infinite average bond energy, f ¼N.
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rð0Þ
r0
¼ 1 (14)

where r is the referential mass density; r0 ¼ r(0) is the
initial mass density; a1 is a constant of epigenetic growth—
remodeling—and a2 is a constant of the genetic growth;
and r0 ¼ r(t ¼ 0) is the Cauchy stress tensor at the onset of
growth, t ¼ 0.

Experiments have shown that AAA enlargement is
accompanied by stiffening of the material on one hand,1

and decreasing strength on the other hand: Lanne et al.
(1992); MacSweeney et al. (1992); He and Roach (1994);
Vorp et al. (1996a, b); Raghavan et al. (1996); Sonesson
et al. (1997); Vorp et al. (2001); Di Martino et al. (2006);
Vorp and Vande Geest (2005); Vande Geest et al. (2006).
We mirror these material transformations by the following
simple relationships

aðtÞ
a0
¼

bðtÞ
b0
¼ 1þ b1

rðtÞ
r0
� 1

� �b2

, (15)

fðtÞ
f0

¼
a0
aðtÞ

� �b3

, (16)

where a0 ¼ a(0), b0 ¼ b(0), and f0 ¼ f(0) are initial values
of the material parameters at the onset of growth and b1,
b2, and b3 are the material constants.

Now, the evolving stored energy with account of growth
takes the form

cðtÞ ¼ fðtÞ
rðtÞ
r0

1� exp �
aðtÞ
fðtÞ
ðI1ðtÞ � 3Þ �

bðtÞ
fðtÞ
ðI1ðtÞ � 3Þ2

��

þ
ZðrðtÞ � r0Þ

fðtÞ
ðI1ðtÞ � 3Þ

��
, (17)

where Z ¼ constant is a growth modulus in the case of
isotropic growth. Basically, the growth modulus is a
product of an elastic modulus and the coefficient of the
growth expansion—analogously to the coefficient of
the thermal expansion in thermoelsticity. The discussion
of the growth modulus and the analogy of growth with the
thermal expansion can be found in Volokh (2004, 2006b).

It is of fundamental importance to realize that the
process of growth (hours–months) occurs at a different
time scale as compared to the process of deformation under
mechanical loads (fractions of seconds). The latter means
that there is no need, in our opinion, to directly couple
both processes by introducing, for example, intermediate
incompatible configurations of pure growth as it is often
done in the literature.2 Particularly, we assume that AAA
can be described by the stored energy function (17) with the
evolving material constants. The evolution of the material

constants, (15) and (16), is controlled by the mass flow, (13)
and (14), which is affected by the current stress state.
The pressure–stretch formula (11) should be adjusted

accordingly

pðlðtÞÞ ¼
4H

lðtÞR
ð1� lðtÞ�6Þc1ðtÞ, (18)

where

c1 ¼
rðtÞ
r0
faðtÞ � ZðrðtÞ � r0Þ þ 2bðtÞðI1ðtÞ � 3Þg

� exp �
aðtÞ
fðtÞ
ðI1ðtÞ � 3Þ �

bðtÞ
fðtÞ
ðI1ðtÞ � 3Þ2

�

þ
ZðrðtÞ � r0Þ

fðtÞ
ðI1ðtÞ � 3Þ

�
. (19)

Fig. 3 presents various pressure–stretch curves for the
evolving mass density with account of (15)–(19) and
b1=100; b2=1; b3=3; Z=1300N cm/kg; a0=10.3N/cm2;
b0=18.0N/cm2; and f0=40.2N/cm2.
Considering the specific problem of the growing AAA

we have to solve the initial-value problem (13) and (14)
under the imposed constraint (18).
The evolution Eq. (13) can be further transformed by

introducing the dimensionless time, t̄ ¼ t=t�, where t* is a
characteristic time. In this case we have the following
constrained initial-value problem:

d

dt̄

rðt̄Þ
r0

� �
¼ ā1

tr rðt̄Þ
tr r0

� 1

� �
þ ā2

� �
rðt̄Þ
r0

;
rð0Þ
r0
¼ 1,

(20)

p ¼
4H

lðt̄ÞR
ð1� lðt̄Þ�6Þc1ðt̄Þ ¼ constant; (21)

where āi ¼ ait
� and the material parameters are changing

in accordance with (15) and (16).
Finally, we should notice that the proposed model of

growth is phenomenological and it accounts for the
microstructural changes, such as the elastin degradation
or collagen remodeling, through the changes of the
macroscopic parameters, such as stiffness, strength, mass
density, etc. We avoid a distinction between various
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1We should note, however, that results of Long et al. (2004) suggest that

beyond the diameter 5 cm AAA can become compliant again.
2The multiplicative decomposition of the tensor of deformation gradient

is often used to describe the pointwise configuration of ‘pure growth’. The

physical meaning of the decomposition and the intermediate growth

configuration needs further clarification.
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constituents because it can significantly complicate the
model, which would be undesirable at the initial stages of
the theory development.

4. Results

We use the numerical procedure ‘NDSolve’ of Mathe-
matica 5.2 (Wolfram, 2003) for solving (20) and (21). This
procedure allows solving a system of differential-algebraic
equations based on the IDA package, which is a part of the
software developed at the Center for Applied Scientific
Computing of Lawrence Livermore National Laboratory.
It solves the system of differential-algebraic equations by
combining the Backward Differential Formula methods
and Newton-type methods. The procedure provides the
converging results as long as there is no failure in AAA
tissue. After the point of rupture no solution of the
constraint (21) exists and the numerical process does not

converge. In other words, the point where the convergence
fails is the point of the AAA rupture.
The points of rupture are starred in Fig. 4 where

the simulations of the AAA evolution are shown for the
constant internal pressure: pR/H ¼ 15N/cm2 and the
following values of the material constants: ā1 ¼ 1;
ā2 ¼ 10; b1 ¼ 100; b2 ¼ 1; b3 ¼ 3; a0 ¼ 10.3N/cm2;
b0 ¼ 18.0N/cm2; and f0 ¼ 40.2N/cm2. Another set of
simulations has been done for varying ā1 ¼ 1; 10; 100 and
Z ¼ 1300N cm/kg and is presented in Fig. 5. The final set
of simulations is given in Fig. 6 for varying b1; ā1 ¼ 10; and
Z ¼ 1300N cm/kg. The considered sets of material para-
meters allow for the essential flexibility in the description of
AAA growth and rupture.
We should emphasize that our choice of the material

constants led to a relatively low stretch values at the point
of rupture. The relatively low rupture stretch shows that a
rational model can predict rupture of small aneurysms in
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contrast to the traditional empirical criteria capturing
rupture of big aneurysms predominantly. Of course,
the considered sets of constants are arbitrarily chosen for
the sake of the illustration of the model capabilities. The
realistic calibration of the model will require experiments
and clinical observations.

5. Discussion

We proposed a mathematical model describing growth
and rupture of the AAA. This model includes equations of
the momentum and mass balance and the constitutive law
is enhanced with the influence of the mass change. The
evolution of the material constants during growth is also
taken into account. Failure is described by inducing the
average bond energy limit, f, in the stored energy function.

Such a limit controls material softening indicating failure.
The initial values of the AAA material constants including
failure (a, b, f) were calibrated in the uniaxial tension test.
The description of AAA growth is based on the assumption
that the mass supply and turnover should be accompanied
by the change of mass density. Such a change is visible in
hard tissues; for example, the cancellous bone has a stiff
microstructure whose evolution in growth is accompanied
by a pronounced density alteration (Cowin, 2001). Soft
tissues do not enjoy a stiff microstructure like bone. The
change of the mass density in soft tissues is less pronounced
and its observation is more complicated. Nonetheless, there
is no physical reason, in our opinion, to expect that the
growth process is fundamentally different in hard and soft
tissues.
Based on the proposed model, we considered growth and

rupture of an idealized spherical AAA. The results of ana-
lysis are reasonable qualitatively though the quantitative
calibration of the model will require further clinical
observations and in vitro tests. The proposed set of
material constants is relatively large: a1; a2; b1; b2; b3;
and Z. The latter was done intentionally because it would
allow for more flexibility in fitting experiments. Ideally, one
should be able to follow up the mass flow and shape and
structure change of the growing AAA until rupture.
Though we believe that noninvasive techniques will allow
such observations in the future, more realistically, calibra-
tion of the model should be implicit and based on the
observation of the evolution of the AAA shape.
Concerning limitations of the present work we should

note first of all that the considered example of AAA is
highly idealized—it is a thin spherical shell under radial
inflation. Our choice was driven by the desire to have
simple (semi-) analytically tractable solutions. More
sophisticated shapes are required for modeling realistic
aneurysms. Such shapes will require the spatial finite
element discretizations (see Baek et al., 2006, for example).
Nonetheless, we should emphasize that the goal of the
present work was not to model a specific AAA, but rather
to develop a mathematical framework suitable for simulat-
ing the aneurysm enlargement and rupture. The latter,
i.e. coupling of growth and rupture, is essentially novel and
has not been considered in the literature previously.
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