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a b s t r a c t

The onset of crack propagation in rubber is studied computationally by using the softening
hyperelasticity approach. The basic idea underlying the approach is to limit the capability
of a material model to accumulate energy without failure. The latter is done by introducing
a limiter for the strain energy density, which results from atomic/molecular considerations
and can be interpreted as the average bond energy or the failure energy. Including the
energy limiter in a constitutive description of material it is possible to enforce softening
and, consequently, allow tracking the onset of structural instability corresponding to the
onset of material failure. Specifically, initiation of crack propagation is studied in the case
of a thin sheet of a rubber-like solid under the hydrostatic tension. The large deformation
neo-Hookean material model enhanced with the energy limiter is used for finding the crit-
ical tension corresponding to the onset of static instability of the sheet, i.e. the onset of
fracture propagation. The influence of the crack sharpness and length on the critical load
is analyzed. It is found that material is sensitive to the crack sharpness when the shear
modulus is significantly greater than the average bond energy. The sensitivity declines
when the value of the shear modulus approaches the value of the failure energy. Roughly
speaking, softer materials are less sensitive to cracks than more brittle materials where the
brittleness is defined as a ratio of the shear modulus to the failure energy. It is also found
that the critical tension is proportional to the inverse square root of the crack length for
more brittle materials. The latter means that the Griffith theory based on the linearized
elasticity is also applicable to softer materials undergoing large deformations. Unfortu-
nately, the applicability of the Griffith theory is restricted to cracks with equivalent sharp-
ness only.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Large deformations make analysis of cracks in rubber difficult. There were very few studies accounting for large deforma-
tions in rubber-like materials: Knowles and Sternberg (1973, 1983), Knowles (1977, 1981), Herrmann (1989), Geubelle and
Knauss (1994a,b,c), Geubelle (1995). These studies aimed at clarifying the asymptotic structure of the deformation and stress
fields near the crack tip in various hyperelastic materials undergoing finite strains. The cited works showed that the geomet-
rical and material nonlinearities may have a pronounced effect on the fracture predictions in rubber-like solids.

Another line of studying cracks in rubber stemmed from the physical observations of the influence of the rubber viscosity
on crack propagation. The works in this direction have been recently reviewed by Persson et al. (2005). It is interesting that
the works considered in the cited review are based on the linear elastic fracture mechanics (LEFM) and its linear viscoelas-
ticity extension for rubbers – see also Gent (2001). Thus, both the material and geometrical nonlinearities are ignored.
Such ignorance is probably justified when rubber is in the glassy state and it behaves like a hard quasi-brittle material.
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The applicability of the linearized theory to the rubbery state of material is less evident and more restrictive. Inspecting the
list of references provided by Persson et al. (2005), it is easy to observe again that the number of works on cracks in rubber is
very limited. The latter is especially surprising since, as the authors notice, ‘‘the breakdown of tires because of catastrophic
rubber crack propagation results in much higher loss of capital and life than airplane accidents, but there is little awareness
of this, probably because such events are much less spectacular than a major airplane accident”.

To shed more light on initiation of crack propagation in rubber-like materials, we simulate Mode I failure of a cracked
rubber sheet under the hydrostatic tension by using the softening hyperelasticity approach described in Section 2, which
can handle both geometrical and material nonlinearities. Such an approach allows capturing the critical tension on the
cracked plate, which corresponds to the onset of static instability. Thus, our theoretical study is essentially a series of numer-
ical experiments. The numerical experiments are not affected by the problems accompanying the physical experiments and
because of that they can be a valuable source of additional information. We plug the softening hyperelasticity models in
ABAQUS and use very fine meshes to simulate small cracks with the varying sharpness or length in Section 3.

We find that the critical tension imposed on the rubber sheet is sensitive to the crack sharpness when the shear modulus
is significantly greater than the average bond energy. The sensitivity declines when the shear modulus approaches the value
of the value of the average bond energy. Roughly speaking, softer materials are less sensitive to cracks than more brittle
materials where the brittleness is defined as a ratio of the shear modulus to the average bond energy. It is also found that
the critical tension is proportional to the inverse square root of the crack length for more brittle materials. The latter means
that the Griffith theory based on the linearized elasticity is also applicable to soft materials undergoing large deformations.
Unfortunately, the applicability of the Griffith theory is restricted to cracks with the same sharpness only. We discuss results
of our simulations and compare them to the predictions of LEFM in Section 4. The discussion focuses on the influence of the
crack sharpness, i.e. the tip curvature, and the crack length on the onset of fracture in rubber.

2. Softening hyperelasticity

2.1. Continuum models of failure

The existing continuum mechanics approaches for modeling material failure can be divided in two groups: surface and
bulk models. The surface models, pioneered by Barenblatt (1959), appear by name of cohesive zone models (CZMs) in the
modern literature. They present material surfaces – cohesive zones – where displacement discontinuities occur. The discon-
tinuities are enhanced with constitutive laws relating normal and tangential displacement jumps with the corresponding
tractions. There is a plenty of proposals of constitutive equations for the cohesive zones: Dugdale (1960), Rice and Wang
(1989), Tvergaard and Hutchinson (1992), Xu and Needleman (1994), Camacho and Ortiz (1996), for example. All CZM
are constructed qualitatively as follows: tractions increase, reach a maximum, and then approach zero with increasing
separation. Such a scenario is in harmony with our intuitive understanding of the rupture process. Since the work by
Needleman (1987) CZM are used increasingly in finite element simulations of crack tip plasticity and creep; crazing in poly-
mers; adhesively bonded joints; interface cracks in bimaterials; delamination in composites and multilayers; fast crack prop-
agation in polymers, etc. Cohesive zones can be inside finite elements or along their boundaries (De Borst, 2001; Xu and
Needleman, 1994; Belytschko et al., 2001). Crack nucleation, propagation, branching, kinking, and arrest are a natural out-
come of the computations where the discontinuity surfaces are spread over the bulk material. This is in contrast to the tra-
ditional approach of fracture mechanics where stress analysis is separated from a description of the actual process of
material failure. The CZM approach is natural for simulation of fracture at the internal material interfaces in polycrystals,
composites, and multilayers. It is less natural for modeling fracture of the bulk because it leads to the simultaneous use
of two material models for the same real material: one model describes the bulk while the other model describes CZM
imbedded in the bulk. Such two-model approach is rather artificial physically. It seems preferable to incorporate a material
failure law directly in the constitutive description of the bulk.

Remarkably, the first models of bulk failure – damage mechanics – proposed by Kachanov (1958) and Rabotnov (1963) for
analysis of the gradual failure accumulation and propagation in creep and fatigue appeared almost simultaneously with the
cohesive zone approach. The need to describe the failure accumulation, i.e. evolution of the material microstructure, explains
why damage mechanics is very similar to plasticity theories including (a) the internal damage variable (inelastic strain), (b)
the critical threshold condition (yield surface), and (c) the damage evolution equation (flow rule). The subsequent develop-
ment of the formalism of damage mechanics (Kachanov, 1986; Krajcinovic, 1996; Skrzypek and Ganczarski, 1999; Lemaitre
and Desmorat, 2005) left its physical origin well behind the mathematical and computational techniques and, eventually, led
to the use of damage mechanics for the description of any bulk failure. Theoretically, the approach of damage mechanics is
very flexible and allows reflecting physical processes triggering macroscopic damage at small length scales. Practically, the
experimental calibration of damage theories is not trivial because it is difficult to measure the damage parameter directly.
The experimental calibration should be implicit and include both the damage evolution equation and criticality condition.

A physically motivated alternative to damage mechanics in the cases of failure related with the bond rupture has been
considered recently by Gao and Klein (1998), Klein and Gao (1998) who showed how to mix the atomic/molecular and con-
tinuum descriptions in order to simulate material failure. They applied the Cauchy–Born rule linking micro- and macro-
scales to empirical potentials, which include a possibility of the full atomic separation. The continuum–atomistic link led
to the formulation of the macroscopic strain energy potentials allowing for the stress/strain softening and strain localization.
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The continuum–atomistic method is very effective at small length scales where purely atomistic analysis becomes compu-
tationally intensive. Unfortunately, a direct use of the continuum–atomistic method in macroscopic failure problems is not
very feasible because its computer implementation includes a numerically involved procedure of the averaging of the inter-
atomic potentials over a representative volume.

In order to bypass the computational intensity of the continuum–atomistic method while preserving its sound physical
basis the softening hyperelasticity approach was proposed by Volokh (2004, 2007). The basic idea of the approach was to
formulate an expression of the stored macroscopic energy, which would include the energy limiter – the average bond
energy or the failure energy. Such a limiter automatically induces strain softening, that is a material failure description,
in the constitutive law. The softening hyperelasticity approach is computationally simple yet physically appealing and we
describe it below.

2.2. Energy limiter

Let us start with the interaction of two particles (atoms, molecules, etc.) and let us choose, to be specific, the Lennard–
Jones potential, u, for the description of the particle interaction

uðlÞ ¼ 4eððr=lÞ12 � ðr=lÞ6Þ; ð1Þ

where l is the distance between particles e and r are the bond energy and length constants accordingly – Fig. 1.
Let L designate the distance between particles in a reference state and F be the one-dimensional deformation gradient. In

the latter case we have

l ¼ FL: ð2Þ

Substituting (2) in (1) we have

uðFÞ ¼ 4eððr=FLÞ12 � ðr=FLÞ6Þ: ð3Þ

Assuming that deformation increases to infinity we have

uðF !1Þ ¼ 0: ð4Þ

On the other hand, we have at the reference state

u0 ¼ uðF ¼ 1Þ ¼ 4eððr=LÞ12 � ðr=LÞ6Þ: ð5Þ

In the absence of external loads the energy of the interaction tends to minimum and it is natural to choose the minimum
energy state – equilibrium – at distance L ¼

ffiffiffi
26
p

r where no forces are acting between the particles. In the latter case, we have

u0 ¼ �e: ð6Þ

We notice that energy is negative in the equilibrium state according to the classical Lennard–Jones (LJ) potential. The
latter is inconvenient in solid mechanics and we modify the classical LJ potential by shifting its reference energy to zero
(Fig. 1)

w ¼ uþ e: ð7Þ

We further formalize the described energy shift as follows:

wðFÞ ¼ uðFÞ �u0; ð8Þ
u0 ¼min

L
uðF ¼ 1Þ: ð9Þ
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Fig. 1. Lennard–Jones potential.
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Eqs. (8) and (9) are important in the subsequent consideration of assemblies of many particles.
It is important to emphasize that we cannot increase energy unlimitedly by increasing deformation. The energy increase

is limited

wðF !1Þ ¼ �u0 ¼ U ¼ constant: ð10Þ

Now we extend all considerations for a pair of particles given above to large assemblies of particles comprising solid
bodies. Consider particles placed at ri in the 3D space. Generally, the volumetric density of the total potential energy, i.e.
the strain energy, can be written with account of two-particle interactions as follows:

1
2V

X
i;j

uðrijÞ; ð11Þ

where rij ¼ jrijj ¼ jri � rjj and V is the volume occupied by the system.
According to the Cauchy–Born rule (Weiner, 1983; Tadmor et al., 1996), originally applied to the crystal elasticity, the

current rij and initial (reference) Rij ¼ Ri � Rj relative positions of the same two particles can be related by the deformation
gradient:

rij ¼ FRij; ð12Þ

where F ¼ ox=oX is the deformation gradient of a generic material macro-particle of body X occupying position X at the ref-
erence state and position x(X) at the current state of deformation – Fig. 2.

Substituting (12) in (11) yields

1
2V

X
i;j

uðrijÞ ¼
1

2V

X
i;j

uðrijðCÞÞ; ð13Þ

where C ¼ FTF is the right Cauchy–Green deformation tensor.
Direct application of (13) to analysis of material behavior can be difficult because of the large amount of particles. Gao and

Klein (1998) and Klein and Gao (1998) considered the following statistical averaging procedure:

huðlÞi ¼ 1
V0

Z
V�0

uðlÞDV dV ; ð14Þ

l ¼ rij ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffi
n � Cn

p
¼ LjFnj; ð15Þ

where L ¼ Rij ¼ jRi � Rjj is the reference bond length; n ¼ ðRi � RjÞ=L is the reference bond direction; V0 is the reference rep-
resentative volume; u (l) is the bond potential (LJ); DV is the volumetric bond density function; and V�0 is the integration vol-
ume defined by the range of influence of u.

Now the average strain energy takes the form

huðCÞi ¼ 1
V0

Z
V�0

4eððr=LkCkÞ12 � ðr=LkCkÞ6ÞDV dV ; ð16Þ

where

kCk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n � Cn

p
: ð17Þ

Before deformation After deformation

ijrijR

X
x

F
∂
∂=

ijij FRr =

X
)(Xx

Fig. 2. Cauchy–Born rule.
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Analogously to the case of the pair interaction considered in Section 2.1 – Eqs. (8) and (9) – we define the shifted strain en-
ergy, which is zero at the equilibrium reference state

wðCÞ ¼ huðCÞi � hui0; ð18Þ
hui0 ¼min

L
huðC ¼ 1Þi: ð19Þ

Analogously to (10), we can define the average bond energy by setting the unlimited increase of deformation

U ¼ wðkCk ! 1Þ ¼ �hui0 ¼ constant: ð20Þ

Thus, the average bond energy sets a limit for the energy accumulation. This conclusion generally does not depend on the
choice of the particle potential and it is valid for any interaction that includes a possible particle separation – the bond
energy.

Contrary to the conclusion above traditional hyperelastic models of materials do not include the energy limiter. The
stored energy of hyperelastic materials is defined as

w ¼W: ð21Þ

Here, W is used for the strain energy of the intact material, which can be characterized as follows:

kCk ! 1) w ¼W !1; ð22Þ

where k. . .k is a tensorial norm.
In other words, the increasing strain increases the accumulated energy unlimitedly. Evidently, the consideration of only

intact materials is restrictive and unphysical. The energy increase of a real material should be limited as it is shown above:

kCk ! 1) w! U ¼ constant; ð23Þ

where the average bond energy, U ¼ constant, can be called the material failure energy.
Eq. (23) presents the fundamental idea of introducing a limiter of the stored energy in the elasticity theory. Such a limiter

induces material softening, indicating material failure, automatically. The choice of the limited stored energy expression should
generally be material-specific. Nonetheless, a somewhat universal formula (Volokh, 2007) can be introduced to enrich the al-
ready existing models of intact materials with the failure description

wðWÞ ¼ U�U expð�W=UÞ: ð24Þ

where wðW ¼ 0Þ ¼ 0 and wðW ¼ 1Þ ¼ U.
Formula (24) obeys condition kCk ! 1) wðWðCÞÞ ! U and, in the case of the intact material behavior, W � U, we have

wðWÞ �W preserving the features of the intact material.
The constitutive equation can be written in the general form accounting for (24)

r ¼ 2J�1F
ow
oC

FT ¼ 2J�1F
oW
oC

FT exp �W
U

� �
; ð25Þ

where r is the Cauchy stress tensor; J ¼ det F; and the exponential multiplier enforces material softening. Constitutive equa-
tion (25) is especially effective for incompressible soft materials undergoing finite deformations. We strongly emphasize
again that the best form of the energy function can be material/problem-specific.

2.3. Neo-Hookean material with softening

The neo-Hookean intact material is the simplest model for rubber-like solids, which can be obtained as a limit case for
many more sophisticated theories. The stored energy of the incompressible neo-Hookean solid is defined as follows:

WðI1Þ ¼
a
2
ðI1 � 3Þ: ð26Þ

Here, a is the shear modulus and I1 ¼ trC ¼ trB is the first principal invariant of with softening, where C ¼ FTF and B ¼ FFT

are the right and the left Cauchy–Green deformation tensors accordingly.
We enhance this model with softening following (24) and (25):

w ¼ U�U exp � a
2U
ðI1 � 3Þ

� �
; ð27Þ

r ¼ �p1þ aB exp � a
2U
ðI1 � 3Þ

� �
; ð28Þ

where p is pressure-like Lagrange multiplier enforcing the incompressibility condition

J ¼ detF ¼ 1 ¼ detB: ð29Þ

To clarify the physical meaning of the model, we consider the case of uniaxial tension, which can be used for the model
calibration in tests:
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x1 ¼ kX1; x2 ¼ k�1=2X2; x3 ¼ k�1=2X3; ð30Þ
B ¼ k2e1 � e1 þ k�1ðe2 � e2 þ e3 � e3Þ; ð31Þ

r11 ¼ aðk2 � k�1Þ exp � a
2U
ðk2 þ 2k�1 � 3Þ

� �
; ð32Þ

where k designates the axial stretch.
The stress–stretch curve described by (32) is shown in Fig. 3. The maximum point on the curve with the finite average

bond energy indicates the onset of the material failure/rupture. When the stretch reaches the maximum, no stable solution
of the static problem exists and the failure starts propagating.

We use the softening neo-Hookean material for simulating the onset of fracture in a rubber sheet in the following section.

Remark 2.1. The so-called Cauchy–Born rule linking micro- and macro-scales was originally formulated for crystal elasticity
and it is widely used in modern continuum–atomistic methods. The Cauchy–Born rule is essentially an assumption of affinity
of deformation of the physical particles within the representative small volumes of material. The applicability of the affinity
hypothesis implies the applicability of the classical (local) continuum mechanics description of material. The continuum
description of material proved itself for most materials at large length scales. It may fail, however, at small length scales
where, for example, the atomic relaxation cannot be ignored. The latter cases are out of our consideration and we always
assume that the local deformation is approximately affine.

Remark 2.2. It is important to realize that not all bonds between the material particles are of equal importance in (14). Only
bonds presenting the weakest links define failure. In this sense, it is probably better to call the energy limiter the failure
energy rather than the average bond energy.

Remark 2.3. To illustrate the capability of the proposed approach to describe failure, we present an example of the exper-
imental calibration of the material of the abdominal aortic aneurysm (AAA). AAA is rubber-like and its stored energy with
softening can be written based on (25) as follows (Volokh and Vorp, 2008): wðI1Þ ¼ U�U expð�a1ðI1 � 3Þ=
U� a2ðI1 � 3Þ2=UÞ, where I1 ¼ trC; a1 and a2 are the elasticity constants of the material; and U is the failure energy. The
uniaxial tension test results are shown in Fig. 4, where the model was fitted with the following constants: a1 ¼ 10:3 N/
cm2; a2 ¼ 18:0 N/cm2; U ¼ 40:2 N/cm2.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

0.1

0.2

0.3

0.4

0.5

0.6

α
σ11

λ
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Failure

10/αΦ =

∞=Φ

Fig. 3. Uniaxial tension of the neo-Hookean material with and without softening.
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Fig. 4. Theory versus experiment for the uniaxial tension test of AAA (Volokh and Vorp, 2008).
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3. Finite element analysis

The purpose of the finite element analysis is to simulate transition to failure of a thin rubber sheet with a small crack
under the hydrostatic tension – Fig. 5.

For this purpose, we plug the strain energy function (27) in ABAQUS (2007). We consider the state of the plane stress for a
square sheet of size d ¼ 1600 (units) with varying brittleness, i.e. ratio of the shear modulus to the average bond energy:
a=U ¼ 0:1, 1.0, 10.0, 100.0. To capture the stress/strain concentration at the tip of the crack, we use very fine meshes as illus-
trated in Fig. 6. The number of elements varies in computations to ensure convergence of the results.

We calculate the critical load of the onset of static structural (global) instability by using the ABAQUS procedure for the
equilibrium path tracing. The critical load corresponds to the maximum tension that the rubber sheet can bear before the
crack propagation starts.

We start with simulations of the crack with fixed length of 2a ¼ 80 (units) and varying sharpness: b ¼ 0:5, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, 4.0 (units). Table 1 presents the normalized critical tension for eight cases of the crack sharpness.

Every case is simulated with two different meshes to check the convergence. The results are very similar in both cases and
their average is presented in Fig. 7 graphically.

It is clearly seen that the critical tension significantly depends on the crack sharpness for more brittle rubbers. Such
dependence declines when rubbers get softer.

In addition to analysis of the influence of the crack sharpness on the critical tension in the rubber sheet, it is of interest to
compare cracks with the equivalent sharpness and varying length and brittleness – Fig. 8.

The obtained data show that the critical tension depends on the crack length. Moreover, it turns out that the critical ten-
sion is inversely proportional to the square root of the crack length resembling the famous Griffith (1921) finding and the
following formula of LEFM:

pcr ¼
K Icffiffiffiffiffiffi
pa
p ; ð33Þ

where K Ic is the fracture toughness.

2a
2b

p

p

pp

d

d

Fig. 5. Crack in a rubber sheet under hydrostatic tension.

Fig. 6. Sample finite element mesh.
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To make comparison between our calculations and the classical theory of brittle fracture described by (33), we calibrated
the fracture toughness for a=b ¼ 40=2 and drew the graphs of Griffith/LEFM solutions in Fig. 8. Evidently, the more brittle
rubbers are described reasonably well by the classical theory of brittle fracture for equivalent cracks, i.e. cracks with the
same sharpness, b = constant, as the one calibrated in experiments. Unfortunately, the calibration of the fracture toughness
is not unique and it depends on the crack sharpness as it is seen in Fig. 8. In the case of softer materials – bottom of Fig. 8 –
LEFM does not work well.

Softer materials are less sensitive to the crack sharpness because they undergo large deformations at the tip of the crack.
To illustrate this point, we superimpose and compare finite element meshes at the beginning of loading and at the critical
load – Fig. 9.

Evidently, huge deformations can develop around the crack for softer materials. As a result of that the failure can occur
before the tension reaches the critical value predicted by LEFM as shown on the bottom of Fig. 8.

4. Discussion

In the present work, we studied the influence of large deformations on the initiation of crack propagation in rubber-like
materials. Specifically, we considered a sheet of the neo-Hookean incompressible material with a central crack under hydro-
static tension. The critical tension of the fracture initiation occurs when material fails at the tip of the crack. The failure is
driven by the strain softening induced in the material constitutive model with the help of the energy limiter – the average
bond energy. The neo-Hookean model enhanced with the failure description was plugged in ABAQUS and crack simulations

0.5/40 1/40 1.5/40 2/40 2.5/40 3/40 3.5/40 4/40
0

0.5

1

1.5

2

2.5

3

Φ
crp

ab /

100/ =α

10/ =α Φ

Φ

Φ

Φ 1/ =α

1.0/ =α

Fig. 7. Normalized critical tension, pcr=U, for crack with varying sharpness and rubber sheet with varying brittleness, a/U.

Table 1
Normalized critical tension, pcr=U, for crack with varying sharpness and rubber sheet with varying brittleness, a/U (second numbers designate the number of
finite elements)

b/a a/U

0.1 1 10 100

0.5/40 33 � 10�3 33 � 10�3 10 � 10�2 10 � 10�2 35 � 10�2 35 � 10�2 10 � 10�1 10 � 10�1

1296 1738 1296 1738 1296 1738 1296 1738
1.0/40 44 � 10�3 45 � 10�3 15 � 10�2 16 � 10�2 47 � 10�2 47 � 10�2 15 � 10�1 15 � 10�1

1764 3624 1764 3624 1764 3624 1764 3624
1.5/40 52 � 10�3 53 � 10�3 18 � 10�2 19 � 10�2 56 � 10�2 57 � 10�2 17 � 10�1 18 � 10�1

1366 2694 1366 2694 1366 2694 1366 2694
2.0/40 56 � 10�3 57 � 10�3 20 � 10�2 21 � 10�2 64 � 10�2 65 � 10�2 20 � 10�1 20 � 10�1

1382 2546 1382 2546 1382 2546 1382 2546
2.5/40 61 � 10�3 62 � 10�3 22 � 10�2 23 � 10�2 72 � 10�2 73 � 10�2 22 � 10�1 23 � 10�1

1338 2268 1338 2268 1338 2268 1338 2268
3.0/40 64 � 10�3 65 � 10�3 24 � 10�2 25 � 10�2 77 � 10�2 79 � 10�2 24 � 10�1 25 � 10�1

2262 4040 2262 4040 1326 2262 2262 4040
3.5/40 67 � 10�3 68 � 10�3 26 � 10�2 27 � 10�2 83 � 10�2 84 � 10�2 25 � 10�1 26 � 10�1

1274 2298 1274 2298 1274 2298 1274 2298
4.0/40 69 � 10�3 70 � 10�3 27 � 10�2 28 � 10�2 88 � 10�2 89 � 10�2 26 � 10�1 27 � 10�1

1274 2368 1274 2368 1274 2368 1274 2368
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were performed on very fine meshes to examine the influence of the crack length, sharpness, and the material brittleness on
the onset of fracture. It was observed that lower magnitudes of the critical tension were driven by

(i) sharper cracks;
(ii) lengthier cracks;

(iii) lower brittleness, i.e. the ratio of the shear modulus to the average bond energy.

10 20 30 40 50 60 70 80
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12
b=1
b=2
b=3
Griffith

Φ
crp

a

1.0/ =Φα

10 20 30 40 50 60 70 80
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
b=1
b=2
b=3
Griffith

Φ
crp

a

0.1/ =Φα

10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
b=1
b=2
b=3
Griffith

Φ
crp

0.100/ =Φα

a

Fig. 8. Critical tension for cracks with varying lengths, sharpness, and brittleness; Griffith – prediction based on Eq. (33) for K Ic is calibrated at a=b ¼ 40=2.
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Factors (i) and (ii) directly echo the classical theories of brittle fracture – see also Volokh and Trapper (2008). Factor (iii) is
more specific of soft materials undergoing large deformations.

Our observations on the role of the crack sharpness are in agreement with the well-known Inglis (1913) finding that the
stress at the tip of an elliptic crack strongly depends on its sharpness. Assuming that the stress at the tip controls material
strength, it is possible to expect that the crack sharpness affects the onset of material failure. Such a scenario was considered
by Inglis using linear elasticity. Recently, Emmerich (2007) revisited Inglis results by mixing continuum and atomistic argu-
ments and arriving at similar conclusions. It is interesting to note that the Griffith theory and LEFM are ignorant of the crack
sharpness because they are based on the energy balance considerations, which are integral and because of that they ‘smear’
the real stress/strain concentration at the tip of a real crack (Volokh and Trapper, 2008).

Our observations on the role of the crack length are in a partial agreement with LEFM. Our simulations of the straight
cracks show that the critical tension depends approximately inversely on the square root of the crack length in full harmony
with the Griffith finding. Unfortunately, that is true only for the equivalent cracks, i.e. cracks with the same tips.

Our observations on the role of the material brittleness strongly suggest that the decrease of the shear modulus as com-
pared to the average bond energy leads to a decline of the material sensitivity to a crack-like flow. This means, specifically,
that the dependence of the critical load on the crack length and sharpness is less pronounced in softer materials than in more
brittle ones. The latter happens because softer materials can undergo large deformations ‘suppressing’ the stress/strain con-
centration. In other words, softer materials ‘absorb’ the high stresses/strains at the tip of the crack due to large deformations.
To avoid confusions, however, we strongly emphasize that though softer materials are less sensitive to the crack length and
sharpness they tear under lower critical loads than more brittle materials. The latter point should not be overlooked by a
reader.
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