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SOFTENING HYPERVISCOELASTICITY FOR MODELING RATE-DEPENDENT
MATERIAL FAILURE

KONSTANTIN VOLOKH AND PAVEL TRAPPER

New models of viscoelastic solids at small and finite deformations are proposed that describe material
failure by enforcing the energy limiter — the average bond energy. Basically, the bond energy defines
the energy that is necessary to separate two attracting particles. In the case of a solid composed of many
particles there exists a magnitude of the average bond energy that is necessary to separate particles in a
small material volume. The average bond energy can be calculated if a statistical distribution of the bond
density is known for a particular material. Alternatively, the average bond energy can be determined in
macroscopic experiments if the energy limiter is introduced in a material constitutive model. Traditional
viscoelastic models of materials do not have energy limiters and, consequently, they allow for unlimited
energy accumulation under the strain increase. The latter is unphysical, of course, because no material
can sustain large enough deformations without failure. The average bond energy is the energy limiter
that controls material softening, which indicates failure. Thus, by limiting the stored energy we include
a description of material failure in the constitutive model. Viscoelasticity including energy limiters can
be called softening hyperviscoelasticity. We present two softening hyperviscoelasticity models for small
and finite deformations. In all cases the elastic and viscoelastic responses are described by potentials
with limiters, which control material softening. The models are studied in the case of simple shear and
uniaxial tension. The results of the calculations show that softening hyperviscoelasticity can be used for
analysis of rate-dependent failure of materials.

1. Introduction

Existing continuum mechanics approaches for modeling material failure can be divided in two groups:
surface and bulk models. The surface models, pioneered by Barenblatt [1959], are called cohesive zone
models (CZMs) in the modern literature. They present material surfaces — cohesive zones — where dis-
placement discontinuities occur. The discontinuities are enhanced with constitutive laws relating normal
and tangential displacement jumps with the corresponding tractions. There are plenty of proposals of
constitutive equations for cohesive zones [Dugdale 1960; Rice and Wang 1989; Tvergaard and Hutchin-
son 1992; Xu and Needleman 1994; Camacho and Ortiz 1996]. All CZMs are constructed qualitatively
as follows: tractions increase, reach a maximum, and then approach zero with increasing separation.
Such a scenario is in harmony with our intuitive understanding of the rupture process. Since the work
by Needleman [1987] CZMs are used increasingly in finite element simulations of many phenomena,
such as crack tip plasticity and creep, crazing in polymers, adhesively bonded joints, interface cracks in
bimaterials, delamination in composites and multilayers, and fast crack propagation in polymers. Cohe-
sive zones can be inside finite elements or along their boundaries [Xu and Needleman 1994; Belytschko
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et al. 2001; De Borst 2001]. Crack nucleation, propagation, branching, kinking, and arrest are natural
outcomes of the computations where the discontinuity surfaces are spread over the bulk material. This
is in contrast to the traditional approach of fracture mechanics where stress analysis is separated from
a description of the actual process of material failure. The CZM approach is natural for simulation of
fracture at the internal material interfaces in polycrystals, composites, and multilayers. It is less natural
for modeling bulk fracture because it leads to the simultaneous use of two material models for the same
real material: one model describes the bulk while the other model describes a CZM imbedded in the bulk.
Such a two-model approach is rather artificial physically. It seems preferable to incorporate a material
failure law directly in the constitutive description of the bulk.

Remarkably, the first models of bulk failure — damage mechanics — proposed by Kachanov [1958]
and Rabotnov [1963] for analysis of the gradual failure accumulation and propagation in creep and
fatigue appeared almost simultaneously with the cohesive zone approach. The need to describe the failure
accumulation, that is, evolution of the material microstructure, explains why damage mechanics is very
similar to plasticity theories including the internal damage variable (inelastic strain), the critical threshold
condition (yield surface), and the damage evolution equation (flow rule). The subsequent development of
the formalism of damage mechanics [Kachanov 1986; Krajcinovic 1996; Skrzypek and Ganczarski 1999;
Lemaitre and Desmorat 2005] left its physical origin well behind the mathematical and computational
techniques and, eventually, led to the use of damage mechanics for the description of any bulk failure.
Theoretically, the approach of damage mechanics is very flexible and allows reflecting physical processes
triggering macroscopic damage at small length scales. Practically, the experimental calibration of damage
theories is not trivial because it is difficult to measure the damage parameter directly. The experimental
calibration should be implicit and include both the damage evolution equation and criticality condition.

A physically motivated alternative to damage mechanics in the cases of failure related with the bond
rupture has been considered recently by Gao and Klein [1998] and Klein and Gao [1998] who showed
how to mix the atomic/molecular and continuum descriptions in order to simulate material failure. They
applied the Cauchy–Born rule linking micro and macro scales to empirical potentials, which include
a possibility of the full atomic separation. The continuum-atomistic link led to the formulation of the
macroscopic strain energy potentials allowing for the stress/strain softening and strain localization. The
continuum-atomistic method is very effective at small length scales where purely atomistic analysis
becomes computationally intensive. Unfortunately, a direct use of the continuum-atomistic method in
macroscopic failure problems is not very feasible because its computer implementation includes a nu-
merically involved procedure of the averaging of the interatomic potentials over a representative volume.

In order to bypass the computational intensity of the continuum-atomistic method while preserving
its sound physical basis the softening hyperelasticity approach was proposed by Volokh [2004; 2007a;
2007b]. The basic idea of the approach was to formulate an expression of the stored macroscopic en-
ergy, which would include the energy limiter — the average bond energy. Such a limiter automatically
induces strain softening, that is, a material failure description, in the constitutive law. The softening
hyperelasticity approach is computationally simple yet physically appealing. The approach proved itself
in a number of problems varying from failure of brittle materials to rubbers and soft biological tissues
[Volokh 2007a; 2007b; 2008a; 2008b; Trapper and Volokh 2008; Volokh and Trapper 2008; Volokh
and Vorp 2008]. Besides Gei et al. [2004] used a variant of softening hyperelasticity for modeling
plastic softening. One should be careful, however, with doing that because material failure during plastic
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deformation is essentially due to microstructural changes rather than the bond rupture and the approach
of energy limiters may not be applicable in this case on physical grounds.

It should be noted that softening hyperelasticity has been used for the prediction of the global mate-
rial/structural instability in all mentioned works. To extend the approach to problems of dynamic failure
propagation it is necessary to include rate-dependence in the constitutive description. In other words,
the softening hyperelasticity should be extended to the softening hyperviscoelasticity, which is the main
goal of the present work. Including viscosity in the constitutive framework is important physically. It
is also important computationally because viscosity naturally regularizes the potentially ill conditioned
problems related to tracking the propagation of dynamic failure.

The outline of the paper is as follows. Section 2 introduces the idea of the energy limiters providing a
physical multiscale link for the phenomenological quantity of the average bond energy. Sections 3 and
4 present the softening hyperviscoelasticity theories for small and finite deformations respectively. A
general discussion of the new theories is present in Section 5.

2. Energy limiters

To motivate the introduction of energy limiters and softening hyperelasticity we briefly describe the
continuum-atomistic link. A more detailed exposition of the issue can be found in [Volokh and Trapper
2008; Trapper and Volokh 2008], for example.

Interaction of two particles (atoms, molecules, et cetera) can be described as

ψ(F)= ϕ(F)−ϕ0, ϕ0 = minL ϕ(F = 1). (2-1)

Here ψ is the particle interaction potential; F is the one-dimensional deformation gradient mapping the
distance between particles from the reference, L , to the current, l, state: l = F L . To be specific we
choose the Lennard-Jones potential, for example, ϕ(l) = 4ε((σ/ l)12

− (σ/ l)6), where ε and σ are the
bond energy and length constants accordingly. By direct computation we can find the energy limiter or
the failure energy, 8. Indeed, increasing deformation we cannot increase the energy unlimitedly:

ψ(F → ∞)= −ϕ0 =8= constant . (2-2)

Analogously to the case of the pair interaction it is possible to consider particle assemblies. Applying
the assumption of applicability of continuum mechanics to the description of such assemblies, meaning
using the Cauchy–Born rule, it is possible to derive a stored energy function analogously to (2-1),

ψ(C)= 〈ϕ(C)〉 − 〈ϕ〉0, 〈ϕ〉0 = minL〈ϕ(C = 1)〉.

Here C = FTF is the right Cauchy–Green deformation tensor and F = ∂x/∂X is the deformation
gradient of a generic material macroparticle of body � occupying position X at the reference state and
position x(X) at the current state of deformation. The average means

〈ϕ(C)〉 = V −1
0

∫
V ∗

0

4ε
((

σ

L‖C‖

)12
−

( σ

L‖C‖

)6
)

DV dV,
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in the case of the Lennard-Jones potential, where the tensorial norm designates stretch in a bond direction,
DV is the volumetric bond density function, V ∗

0 is the integration volume defined by the range of influence
of ϕ, and V0 is the reference representative volume.

Analogously to (2-2), we can find the energy limiter, 8, increasing the deformation unlimitedly as

8= ψ
(
‖C‖ → ∞

)
= −〈ϕ〉0 = constant .

Thus, the average bond energy sets a limit for the energy accumulation. This conclusion generally
does not depend on the choice of the particle potential and is valid for any interaction that includes a
possible particle separation.

Contrary to the conclusion above traditional hyperelastic models of materials do not include the energy
limiter. The stored energy of hyperelastic materials is defined as ψ = W. Here W is used for the strain
energy of the intact material, which can be characterized as ‖C‖ → ∞ ⇒ ψ = W → ∞, where ‖ · · · ‖

is a tensorial norm.
In other words, the increasing strain increases the accumulated energy unlimitedly. Evidently, the

consideration of only intact materials is restrictive and unphysical. The energy increase of a real material
should be limited, as shown above:

‖C‖ → ∞ ⇒ ψ →8= constant, (2-3)

where the average bond energy, 8= constant, can be called the material failure energy.
Equation (2-3) presents the fundamental idea of introducing a limiter of the stored energy in the

elasticity theory. Such a limiter induces material softening, indicating material failure, automatically.
The choice of the limited stored energy expression should generally be material-specific. Nonetheless, a
somewhat universal formula [Volokh 2007b] can be introduced to enrich the already existing models of
intact materials with the failure description

ψ(W )=8−8 exp
(
−W
8

)
, (2-4)

where ψ(W = 0)= 0 and ψ(W = ∞)=8.
Formula (2-4) obeys the condition ‖C‖ → ∞ ⇒ ψ(W (C))→8 and, in the case of the intact material

behavior, W �8, we have ψ(W )≈ W preserving the features of the intact material.
Taking (2-4) into account, the constitutive equation can be written in the general form

σ = 2J−1 F
∂ψ

∂C
FT

= 2J−1 F
∂W
∂C

FT exp
(
−W
8

)
, (2-5)

where σ is the Cauchy stress tensor, J = det F, and the exponential multiplier enforces material softening.
Constitutive equation (2-5) is especially effective for incompressible soft materials undergoing finite
deformations. We strongly emphasize again, however, that the best form of the energy function is not
universal and should be material/problem-specific.

In what follows we will extend the idea of the energy limiter to viscous deformations and examine
the role of the rate-dependence in the description of material failure.
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3. Softening hyperviscoelasticity at small deformations

We use a rheological model of the standard solid shown in Figure 1 as a prototype for the integral
formulation of the constitutive law.

 
 
 
 
 
 
 
 

 

f
E

KE

Figure 1. Rheological model of the standard solid.

3.1. Constitutive law. Following Simo and Hughes [1998] we define the hyperviscoelastic constitutive
law in the form

σ (t)=
∂ψ̂ (ε)

∂ε
1 +

∫ t

−∞

m(t − τ)
∂

∂τ

(
dev

∂ψ
(
e(τ )

)
∂e

)
dτ, (3-1)

where
ε = tr ε, e = dev ε ≡ ε −

1
3ε1,

and ε is a linearized strain, that is, the symmetric part of the displacement gradient.
The relaxation function is defined in the form

m(t − τ)= β∞ +β exp
(
−

t − τ

θ

)
, β∞ =

E∞

E∞ + E
, β =

E
E∞ + E

, θ =
η

E
,

where β∞ and β are dimensionless relative moduli and θ is the relaxation time (see Figure 1).
The elastic potential is decomposed into the volumetric and distortional parts accordingly as

ψ(ε)= ψ̂ (ε)+ψ(e), (3-2)

and the hyperelastic constitutive law is derived as

σ =
∂ψ

∂ε
=
∂ψ̂

∂ε
1 + dev

∂ψ

∂e
. (3-3)

We define the separate potentials with softening that have not been considered in the literature yet,

ψ̂ (ε)=81 −81

(
1 +

√
K
81
ε

)
exp

(
−

√
K
81
ε

)
, ψ(e)=82 −82 exp

(
−
µ

82
e : e

)
, (3-4)

where K and µ are the bulk and shear moduli of the isotropic Hookean solid and 81 and 82 are the
failure energies for volumetric and distortional deformations. By introducing different failure constants
we increase the flexibility of the phenomenological description of material failure.

Substituting (3-4) in (3-3) we have

σ = K̃ ε1 + 2µ̃e, K̃ = K exp
(

−

√
K
81
ε

)
, µ̃= µ exp

(
−
µ

82
e : e

)
. (3-5)
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Linearization of these equations leads to the classical linear elasticity with K̃ = K and µ̃= µ.
The motivation for the specific forms of the softening hyperelastic potentials (3-4) comes from the

consideration of two simple deformations.
Firstly, in the case of hydrostatic tension (3-5)1 takes the form

σ = σ11 = σ22 = σ33 = K ε exp
(

−

√
K
81
ε

)
,

and its graph is shown in Figure 2, left.
Evidently, the hydrostatic compression does not lead to material failure while the hydrostatic tension

does. The maximum point on the tension branch of the curve corresponds to the onset of static instability
when the material failure starts propagating.

Secondly, in the case of pure shear, e12, (3-5)1 takes the form

σ12 = 2µe12 exp
(
−
µ

82
e2

12

)
,

and its graph is shown in Figure 2, right.
Evidently, the skew-symmetry of the failure response is desirable and expected.

3.2. Simple shear. In this subsection we examine rate-dependent response of the model described above
in the case of simple shear

σ12(t)= 2µ
∫ t

0

[
β∞ +β exp

(
−

t − τ

θ

)] ∂

∂τ

[
e12 exp

(
−
µ

82
e2

12

)]
dτ , (3-6)

where there is no stressing until t = 0.
Further simplifications are due to the assumption of the constant stretch/strain rate as γ̇ = constant .

The latter assumption leads to the simple formulae for time

t =
e12

γ̇
, τ =

ξ12

γ̇
,

σ

K
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Figure 2. Left: Hydrostatic tension σ/K . Right: Simple shear σ12/µ.
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Figure 3. Simple shear for various strain rates.

where ξ12 = e12(τ ) and, consequently, (3-6) takes the form

σ12(t)= 2µ
∫ e12

0

[
β∞ +β exp

(
−

e12 − ξ12

θγ̇

)] ∂

∂ξ12

[
ξ12 exp

(
−
µ

82
ξ 2

12

)]
dξ12. (3-7)

Stress-strain curves defined by (3-7) are present in Figure 3 for different strain rates.
Evidently, material stiffness and strength — the curve maximum — increase with the increasing defor-

mation rate for a given relaxation time. This conclusion is expected intuitively. Moreover, the stable
(prior to failure) branches of the response curves are limited by the curve corresponding to γ̇ θ → 0 from
the bottom and γ̇ θ → ∞ from the top. Physically the limit cases correspond to the very slow quasistatic
response and the fastest instantaneous response of the material accordingly. Interestingly, the range of
the strength variation depends on the relative contribution of the elastic springs in the rheological model
shown in Figure 1. The greater the contribution of the spring corresponding to the dashpot, E , the larger
the strength range.

4. Softening hyperviscoelasticity at finite deformations

The integral hyperviscoelasticity formulation for small deformations considered in the previous section
can be equivalently reformulated in the differential form [Simo and Hughes 1998]. Unfortunately, in
the case of finite deformation the integral and differential formulations are not necessarily equivalent
in general. There are plenty of integral formulations of nonlinear viscoelasticity. We should mention,
however, that the foundations of the theory have been set by Green and Rivlin [1957; 1960] and Green
et al. [1959]. Further developments are reviewed in [Lockett 1972; Carreau et al. 1997; Hoo Fatt and
Ouyang 2007], for example. There are also numerous differential formulations of nonlinear viscoelas-
ticity based on the introduction of internal variables and their evolution equations. The most popular
scheme includes the multiplicative decomposition of the deformation gradient into elastic and inelastic
parts [Lubliner 1985; Lion 1996; Govindjee and Reese 1997; 1998; Bergstrom and Boyce 1998; Huber
and Tsakmakis 2000; Amin et al. 2006; Hoo Fatt and Ouyang 2008]. Despite its popularity the scheme
including the multiplicative decomposition of the deformation gradient is not entirely perfect: the inter-
mediate elastically-relaxed configuration cannot be determined uniquely. Indeed, it is always possible to
superimpose a local rotation on such a configuration without violating the multiplicative decomposition.
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The nonuniqueness of the multiplicative decomposition is often eliminated by a specific and explicit
choice of the deformation or by the use of certain computational schemes, which regularize the problem
implicitly. Unfortunately, the artificial regularizations cannot improve the general formulation. Since
the elastically-relaxed configuration is not unique one may question the necessity to define it. Instead
of looking for a specific elastically-relaxed configuration it is possible to look only for a family of such
configurations enjoying the same metric. In the latter case there is no need in the use of the nonunique
multiplicative decomposition of the deformation gradient and it is enough to track the evolution of the
metric tensor of possible elastically-relaxed configurations. Such a line of thought was pioneered by
Eckart [1948] and further developed in [Leonov 1976; Rubin 1994; Rubin and Bodner 2002]. It is worth
mentioning that the refusal to look for a unique elastically-relaxed configuration is justified by the fact
that such a configuration is incompatible and, consequently, unobservable physically.

4.1. Constitutive law. We will use the rheological model shown in Figure 1 as a prototype for the non-
linear model too. The springs should be thought of as nonlinear in this case. We extend (3-1) to finite
deformations directly following Simo and Hughes [1998]:

τ (t)= J
∂ψ̂ (ε)

∂ε
1 +

∫ t

−∞

m(t − τ)
∂

∂τ

(
dev

[
2F(τ )

∂ψ
(
C(τ )

)
∂C

FT (τ )

])
dτ,

where τ = Jσ is the so-called Kirchhoff stress tensor and

ε = J = det F, F = J−1/3 F(det F = 1), C = FT F. (4-1)

The stored energy is also decomposed analogously to (3-2) as ψ(C)= ψ̂ (ε)+ψ(C), and the hypere-
lastic constitutive law is derived as

τ = J
∂ψ̂

∂ε
1 + dev

[
2F

∂ψ

∂C
FT
]
.

We mention that the idea to extend the volumetric-distortional decomposition of small strains to the
case of large strains based on the volume-preserving deformation gradient, (4-1)2, is due to Flory [1961].

Though the formulation above is the most general the majority of soft materials undergoing finite
deformations are incompressible. The latter means that the analytical formulation can be simplified as

ε = J = det F = 1, (4-2)

F = F, C = C, ψ(C)= ψ(C), σ = τ = −p1 + dev
[
2F

∂ψ

∂C
FT
]
, (4-3)

and

σ (t)= τ (t)= −p1 +

∫ t

−∞

m(t − τ)
∂

∂τ

(
dev

[
2F(τ )

∂ψ
(
C(τ )

)
∂C

FT (τ )

])
dτ, (4-4)

where the indefinite Lagrange multiplier, p, is used to enforce the incompressibility condition (4-2).
We further use a stored energy with softening that was calibrated for analysis of the material of the

abdominal aortic aneurysm [Volokh and Vorp 2008]

ψ(I1)=8−8 exp
[
−
α1

8
(I1 − 3)−

α2

8
(I1 − 3)2

]
, (4-5)
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Figure 4. Theory versus experiment for the uniaxial tension test [Volokh and Vorp 2008].

where I1 = tr C , α1 and α2 are the elasticity constants of the material, and 8 is the failure energy, which
is another material constant controlling its softening.

The uniaxial tension test results are shown in Figure 4, where model (4-5) was fitted with the following
constants: α1 = 10.3 N/cm2, α2 = 18.0 N/cm2, and 8= 40.2 N/cm2.

Substituting (4-5) in (4-4) we have

σ (t)= −p1 +

∫ t

−∞

m(t − τ)
∂

∂τ

(
dev

[
2ψ1(τ )B(τ )

])
dτ,

where B = F FT and

ψ1 ≡
∂ψ

∂ I1
=
[
α1 + 2α2(I1 − 3)

]
exp

[
−
α1

8
(I1 − 3)−

α2

8
(I1 − 3)2

]
.

4.2. Uniaxial tension. In the case of the uniaxial tension we have the following simplifications within
the Cartesian coordinate framework {k1, k2, k3}:

F = λk1 ⊗ k1 + λ−1/2(k2 ⊗ k2 + k3 ⊗ k3), B = λ2k1 ⊗ k1 + λ−1(k2 ⊗ k2 + k3 ⊗ k3),

where λ is the axial stretch.
The nontrivial stress components accordingly take the forms

σ11(t)= −p +
4
3

∫ t

−∞

m(t − τ)
∂

∂τ

(
ψ1(τ )

[
λ2(τ )− λ−1(τ )

])
dτ, (4-6)

σ22(t)= σ33(t)= −p −
2
3

∫ t

−∞

m(t − τ)
∂

∂τ

(
2ψ1(τ )

[
λ2(τ )− λ−1(τ )

])
dτ. (4-7)

Since σ22(t)= σ33(t)= 0 we can find the Lagrange multiplier from (4-7) and substitute it in (4-6) getting
the final formula

σ11(t)= 2
∫ t

0
m(t − τ)

∂

∂τ

(
ψ1(τ )

[
λ2(τ )− λ−1(τ )

])
dτ, (4-8)

where ξ = λ(τ) and the lower integration boundary has been shifted assuming no stressing before time
t = 0.

Further simplifications are due to the assumption of the constant stretch/strain rate

ξ̇ = λ̇= γ̇ = constant .
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Figure 5. Uniaxial tension for various strain rates.

The latter assumption leads to the simple formulae

t =
λ− 1
γ̇

, τ =
ξ − 1
γ̇

,

for the times; consequently, (4-8) takes the form

σ11(t)= 2
∫ λ

1

[
β∞ +β exp

(
−
λ− ξ

γ̇ θ

)] ∂
∂ξ

[
ψ1(ξ)(ξ

2
− ξ−1)

]
dξ. (4-9)

Computations based on (4-9) are shown in Figure 5 for various stretch rates. We also scaled the material
constants α1 → α1/β∞, α2 → α2/β∞, and 8→8/β∞ in order to preserve the form of the quasistatic
curve, γ̇ θ → 0, shown in Figure 5.

As in the case of small deformations, material stiffness and strength increase with the increasing
deformation rate for a given relaxation time. The stable (prior to failure) branches of the response curves
are limited by the curve corresponding to γ̇ θ → 0 from the bottom and γ̇ θ → ∞ from the top. The
range of the strength variation depends on the relative contribution of the elastic springs in the rheological
model shown in Figure 1. The greater the contribution of the spring corresponding to the dashpot the
larger the strength range. There is a complete analogy between the cases of small and finite deformations
as expected.

5. Discussion

A new approach for modeling rate-dependent failure of materials has been proposed. Its basic idea is
the introduction of energy limiters in the constitutive description of materials. Such limiters control
softening providing a failure account. The energy limiters were introduced in the models of isotropic
Hookean solids, which are suitable for a description of quasibrittle failure in ceramics, concrete, glass, or
even metals at high-velocity dynamic processes where the plastic deformation can be ignored. Besides,
the energy limiters were considered for soft materials at finite deformations. It should be clearly realized
that the proposed approach is suitable for materials whose failure is due to the bond rupture and cannot
be used for materials that fail due to large plastic deformations. If failure is accompanied by a gradual
accumulation of inelastic deformations then the approach of damage mechanics is probably more relevant
and should be used.
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Though we used essentially different material models in the considered examples of small and finite
deformations the qualitative results are very similar. Particularly, we observed that the increasing rate
of deformations leads to the increase of both stiffness and strength of the material. Such a conclusion
corresponds well to the experimental observations. Moreover, while the existing viscoelasticity theories
can describe the phenomenon of material stiffening under increasing deformation rate it is for the first
time that the presented approach clearly predicts the increase of the material strength (and not only
stiffening) with the increase of the deformation rate.

Concerning the limitations of the presented computations it should be emphasized that the considered
examples include only proportional loading and there are no returning deformation waves. Such waves
may lead to the material healing within the hyperelastic framework, which should be suppressed. To
avoid the material healing in the finite element computations it is possible, for example, to reduce the
values of the material parameters by orders of magnitude in the elements, which reached the critical
failure energy or arrived at zero stresses. This circle of questions is beyond the scope of the present note
where only a principal possibility of inducing a failure description in nonlinear viscoelasticity has been
considered. Nonetheless, the finite element implementation of the proposed method is important and
will be considered in a separate work.
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