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ABSTRACT

Separation of two particles is characterized by a magnitude of the bond energy, which limits
the accumulated energy of the particle interaction. In the case of a solid comprising many
particles, there exist a magnitude of the average bond energy, the failure energy, which limits
the energy that can be accumulated in an infinitesimal material volume under strain. The
energy limiter controls material softening; the softening indicates failure. Thus, by limiting
the stored energy density, we include a description of material failure in the constitutive model.
When the failure energy, that is, the energy limiter, is introduced in the constitutive model, it
can be calibrated in macroscopic experiments. Traditional material models do not have energy
limiters, and they allow for unlimited energy accumulation under the strain increase, which
is unphysical because no material can sustain large enough strains without failure. We review
the applications of the new approach based on the use of the energy limiters to failure of soft
biological tissues and fracture of brittle materials. In addition, we consider new developments
concerning the rate-dependent failure in solids and the drop of viscosity in fluids.
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1. INTRODUCTION

The problem of modeling the failure nucleation and
propagation in solids is still largely open, despite
the enormous progress in computational materials
science and engineering during the past decades.
Existing methods are too restrictive and computa-
tionally involved to be finally accepted as an op-
timal approach to modeling failure. For example,
molecular dynamic simulations are restricted by
length and timescales to such a degree that no real
macroscopic materials and structures can be prac-
tically analyzed. On the other hand, continuum
models that can handle macroscopic length- and
timescales are phenomenological, and their experi-
mental calibration is far from trivial; moreover, they
are sophisticated mathematically and computation-
ally.

The existing continuum models of material fail-
ure can be divided into two groups: surface and
bulk models. The surface models, pioneered by
Barenblatt [1], appear by the name of cohesive zone
models (CZMs) in the modern literature. They
present material surfaces—cohesive zones—where
displacement discontinuities occur. The disconti-
nuities are enhanced with constitutive laws relat-
ing normal and tangential displacement jumps with
the corresponding tractions. There are plenty of
proposals of constitutive equations for the cohe-
sive zones (e.g., [2–6]). All CZMs are constructed
qualitatively as follows: tractions increase, reach a
maximum, and then approach zero with increas-
ing separation. Such a scenario is in harmony with
our intuitive understanding of the rupture process.
Since the work by Needleman [7], CZMs are used
increasingly in finite element simulations of crack
tip plasticity and creep; crazing in polymers; ad-
hesively bonded joints; interface cracks in bimate-
rials; delamination in composites and multilayers;
fast crack propagation in polymers, and so on. Co-
hesive zones can be inside finite elements or along
their boundaries [5, 8, 9]. Crack nucleation, propa-
gation, branching, kinking, and arrest are a natural
outcome of the computations where the discontinu-
ity surfaces are spread over the bulk material. This
is in contrast to the traditional approach of fracture
mechanics, where stress analysis is separated from a
description of the actual process of material failure.
The CZM approach is natural for simulation of frac-
ture at the internal material interfaces in polycrys-

tals, composites, and multilayers. It is less natural
for modeling fracture of the bulk because it leads to
the simultaneous use of two material models for the
same real material: one model describes the bulk,
while the other model describes CZM imbedded in
the bulk. Such a two-model approach is rather arti-
ficial physically. It seems preferable to incorporate a
material failure law directly in the constitutive de-
scription of the bulk. Remarkably, the first mod-
els of bulk failure—damage mechanics—proposed
by Kachanov and Rabotnov [10, 11] for analysis of
the gradual failure accumulation and propagation
in creep and fatigue appeared almost simultane-
ously with the cohesive zone approach. The need to
describe the failure accumulation, that is, evolution
of the material microstructure, explains why dam-
age mechanics is very similar to plasticity theories,
including (1) the internal damage variable (inelastic
strain), (2) the critical threshold condition (yield sur-
face), and (3) the damage evolution equation (flow
rule). The subsequent development of the formal-
ism of damage mechanics [12–15] left its physical
origin well behind the mathematical and computa-
tional techniques and, eventually, led to the use of
damage mechanics for the description of any bulk
failure. Theoretically, the approach of damage me-
chanics is very flexible and allows reflecting phys-
ical processes, triggering macroscopic damage at
small length scales. Practically, the experimental
calibration of damage theories is hardly accessible
because to measure the damage parameter directly
is easier said than done. Moreover, the experimen-
tal calibration should include both the damage evo-
lution equation and criticality condition.

A physically motivated multiscale alternative to
damage mechanics in the cases of failure related
with the bond rupture has been considered by Gao
and Klein [16, 17], who showed how to mix the
atomic/particulate and continuum descriptions to
simulate material failure. They applied the Cauchy-
Born rule, linking micro- and macroscales to em-
pirical potentials, which include a possibility of the
full atomic separation. The continuum-atomistic
link led to the formulation of the macroscopic
strain energy potentials, allowing for stress-strain
softening and strain localization. The continuum-
atomistic method is effective at small length scales,
where purely atomistic analysis becomes computa-
tionally intensive. Unfortunately, a direct use of the
continuum-atomistic method in macroscopic failure
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problems is not very feasible because its computer
implementation includes a numerically involved
procedure of the averaging of the interatomic po-
tentials over a representative volume.

To bypass the computational intensity of the
continuum-atomistic method, while preserving its
sound physical basis, the approach of energy lim-
iters was proposed by Volokh [18–20]. The basic
idea of the approach is to formulate expressions of
the stored energy density, which include the energy
limiter(s) – the failure energy. Such limiters induce
strain softening, which is a material failure descrip-
tion, in the constitutive law. The energy limiter ap-
proach is computationally simple yet physically ap-
pealing, and we review and develop it in the present
work.

2. MULTISCALE LINK: ENERGY LIMITERS

In this section, we show how the critical concept of
the macroscopic stored energy limiter can be qual-
itatively derived from the microscopic considera-
tions of the particle bonding.

We start with a consideration of the interaction
of two particles by choosing, to be specific, the
Lennard-Jones (LJ) potential:

ϕ(l) = 4ε
σ12

l12
− 4ε

σ6

l6
(2.1)

where l is the distance between particles and ε and
σ are the bond energy and length constants, respec-
tively (Fig. 1).

Let L designate the distance between particles in
a reference state and F be the one-dimensional de-
formation gradient. In the latter case, we have

l = FL (2.2)

Substituting Eq. (2.2) into Eq. (2.1), we have

ϕ(F ) = 4ε
σ12

(FL)12
− 4ε

σ6

(FL)6
(2.3)

Assuming that deformation increases to infinity, we
have

ϕ(F →∞) = 0 (2.4)

On the other hand, we have at the reference state

ϕ0 = ϕ(F = 1) = 4ε
σ12

L12
− 4ε

σ6

L6
(2.5)

In the absence of external loads, the energy of the
interaction tends to minimum, and it is natural to
choose the minimum energy state – equilibrium – at
distance L = 6

√
2σ, where no forces are acting be-

tween the particles. In the latter case, we have

ϕ0 = −ε (2.6)

We notice that energy is negative in the equilib-
rium state according to the classical LJ potential.
The latter is inconvenient in solid mechanics, and
we modify the classical LJ potential by shifting its
reference energy to zero (Fig. 1):

ψ = ϕ + ε (2.7)

We further formalize the described energy shift as
follows:

ψ(F ) = ϕ(F )−ϕ0 (2.8)

ϕ0 = min
L

ϕ(F = 1) (2.9)

Equations (2.8) and (2.9) are essential in the subse-
quent consideration of assemblies of many particles.
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FIGURE 1. Lennard-Jones potential (left) and Cauchy-Born rule (right)
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It is crucial to notice that we cannot increase en-
ergy in an unlimited manner by increasing deforma-
tion. The energy increase is limited:

ψ(F →∞) = −ϕ0 = Φ = constant (2.10)

Now we extend all considerations for the pair of
particles given previously to large assemblies of par-
ticles comprising solid bodies. We consider particles
placed at ri in the 3-D space. Generally, the volu-
metric density of the total potential energy, that is,
the strain energy, can be written with an account of
two-particle interactions, as follows:

ϕ̄ =
1

2V

∑

i,j

ϕ(rij) (2.11)

where rij = |rij | = |ri − rj | and V is the volume
occupied by the system.

According to the Cauchy-Born rule [21, 22]; orig-
inally applied to the crystal elasticity, the current rij

and initial (reference) Rij = Ri −Rj relative posi-
tions of two particles can be related by linear map-
ping.

rij = FRij (2.12)

where F = ∂x/∂X is the deformation gradient of
a generic continuum particle of body Ω occupying
position X at the reference state and position x(X)
at the current state of deformation (Fig. 1).

Substituting Eq. (2.12) into Eq. (2.11) yields

ϕ̄ =
1

2V

∑

i,j

ϕ(rij) =
1

2V

∑

i,j

ϕ(rij(C)) (2.13)

where C = FT F is the right Cauchy-Green tensor.
Direct application of Eq. (2.13) to the analysis

of material behavior can be difficult because of the
large amount of particles. Gao and Klein [16, 17]
considered the following statistical averaging pro-
cedure:

〈ϕ(l)〉 =
1
V0

∫

V ∗0

ϕ(l)DV dV (2.14)

l = rij = L
√

ξ ·Cξ = L |Fξ| (2.15)

where L = Rij = |Ri −Rj | is the reference bond
length; ξ = (Ri−Rj)/L is the reference bond direc-
tion; V0 is the reference representative volume; ϕ(l)
is the bond potential (LJ); DV is the volumetric bond
density function; and V ∗

0 is the integration volume
defined by the range of influence of ϕ. The reader

is advised to consult [23] for examples of the bond
density functions.

Now the average strain energy takes the form

〈ϕ(C)〉= 1
V0

∫

V ∗0

4ε

[
σ12

L12‖C‖12−
σ6

L6‖C‖6
]
DV dV (2.16)

where
‖C‖ =

√
ξ ·Cξ (2.17)

Analogously to the case of the pair interaction
considered in the previous subsection (Eqs. (2.8) and
(2.9)), we define the shifted strain energy, which is
zero at the equilibrium reference state, as

ψ(C) = 〈ϕ(C)〉 − 〈ϕ〉0 (2.18)

〈ϕ〉0 = min
L
〈ϕ(C = 1)〉 (2.19)

Analogously to Eq. (2.10), we can define the aver-
age bond energy or the failure energy by setting an
unlimited increase of deformation:

Φ = ψ(‖C‖ → ∞) = −〈ϕ〉0 = constant (2.20)

Thus the average bond energy sets a limit for the en-
ergy accumulation. This conclusion generally does
not depend on the choice of the particle potential,
and it is valid for any interaction that includes a pos-
sible particle separation (the bond energy).

Contrary to the preceding conclusion, traditional
hyperelastic models of materials do not include the
energy limiter. The stored energy of hyperelastic
materials is defined as

ψ = W (2.21)

Here W is used for the strain energy of the intact
material, which can be characterized as follows:

‖C‖ → ∞⇒ ψ = W →∞ (2.22)

where ‖...‖ is a tensorial norm.
In other words, the increasing strain increases the

accumulated energy in an unlimited manner. Evi-
dently, the consideration of only intact materials is
restrictive and unphysical. The energy increase of a
real material should be limited, as was shown pre-
viously:

‖C‖ → ∞⇒ ψ → Φ = constant (2.23)
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where the average bond energy, Φ = constant, can
be called the material failure energy.

Equation (2.23) presents the fundamental idea of
introducing a limiter of the stored energy in the
elasticity theory. Such a limiter induces material
softening, indicating material failure, automatically.
The choice of the limited stored energy expression
should generally be material- or problem-specific.
Nonetheless, a somewhat general (“try first”) for-
mula [20] can be introduced to enrich the already
existing models of intact materials with the failure
description

ψ(W ) = Φ− Φexp
[
−W

Φ

]
(2.24)

where ψ(W = 0) = 0 and ψ(W = ∞) = Φ.
Equation (2.24) obeys condition ‖C‖ → ∞ ⇒

ψ(W (C)) → Φ, and in the case of the intact material
behavior, W ¿ Φ, we have ψ(W ) ≈ W preserving
the features of the intact material.

We strongly emphasize, however, that although
Eq. (2.24) is somewhat general, it should not be
considered as a panacea; rather, the introduction of
the energy limiters should be material- or problem-
specific. Various ways of introducing the energy
limiters are considered later.
Remark 2.1. The so-called Cauchy-Born rule linking
micro- and macroscales was originally formulated
for crystal elasticity, and it is widely used in modern
continuum-atomistic methods. The Cauchy-Born
rule is essentially an assumption of affinity of defor-
mation of the physical particles within the represen-
tative small volumes of material. The applicability
of the affinity hypothesis implies the applicability of
the classical (local) continuum mechanics descrip-
tion of material. The continuum description of ma-
terial proved itself for most materials at large length
scales. It may fail, however, at small length scales,
where, for example, the atomic relaxation cannot be
ignored. The latter cases are out of our considera-
tion, and we always assume that the local deforma-
tion is approximately affine.
Remark 2.2. It is important to realize that not all
bonds between the material particles are of equal
importance in Eq. (2.14). Only bonds presenting the
weakest links control failure. In this sense, it is prob-
ably better to call the energy limiter the failure en-
ergy, rather than the average bond energy.

3. FAILURE OF SOFT BIOLOGICAL TISSUES

We consider applications of energy limiters to anal-
ysis of failure of soft biological tissues.

The first example clarifying the meaning of the
method and the ways of experimental calibra-
tion involves the material of the abdominal aortic
aneurism (AAA). AAA is a focal dilation of the in-
frarenal aorta found in ≈ 2% of the elderly popu-
lation, with ≈ 150, 000 new cases diagnosed each
year – and the occurrence is increasing. In many
cases, AAA gradually expands until rupture, caus-
ing a mortality rate of 90%. Volokh and Vorp [24]
proposed the following analytical model of the in-
compressible AAA material accounting for failure:

ψ(I1)=Φ−Φexp
[
−α1

Φ
(I1−3)−α2

Φ
(I1−3)2

]
(3.1)

where I1 = tr C, α1 and α2 are the elasticity con-
stants of the material, and Φ is the failure energy.

The constitutive law for the Cauchy stress, σ, is
obtained from Eq. (3.1), as follows:

σ = −p1 + 2ψ1B (3.2)

where B = FFT is the left Cauchy-Green tensor; p is
the Lagrange multiplier enforcing the incompress-
ibility condition, and

ψ1≡ ∂ψ

∂I1
=[α1+2α2(I1−3)] exp

[
−α1

Φ
(I1−3)

−α2

Φ
(I1 − 3)2

] (3.3)

The uniaxial tension test results are shown in
Fig. 2, where Eq. (3.1) is calibrated with the follow-
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FIGURE 2. Theory versus experiment for the uniaxial
tension test of abdominal aortic aneurism (AAA) [24]
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ing constants: α1 = 10.3 N/cm2, α2 = 18.0 N/cm2

and Φ = 40.2 N/cm2.
The maximum point on the curve in Fig. 2 cor-

responds to the onset of static instability (failure).
The intact material model of AAA corresponding
to Eq. (3.1) is W (I1) = α1(I1 − 3) + α2(I1 − 3)2,
which does not include a failure description. It was
experimentally validated in [25]. Though the au-
thors presented experimental data on postfailure,
their model was only fit to the prefailure data. We
refer to [24] for further details of the use of energy
limiters for the prediction of AAA rupture and turn
to the next example.

The objective of the second example was to
clarify the effect of residual strains on the over-
all strength of arteries [26]. Residual stresses and
strains are accumulated during growth in arteries
and, generally, in soft biological tissues, and they
present one of the most intriguing features of the
mechanics of living soft materials [27–29]. Fung [30]
suggested the following deformation law to account
for residual strains in the artery, which is consid-
ered as an infinite incompressible cylinder inflating
in the radial direction:

r =

√
R2 −A2

γ s
+ a2, θ = γΘ, z = sZ (3.4)

where a point occupying position (R, Θ, Z) in
the reference configuration is moving to position
(r,θ, z) in the current configuration; s is the axial
stretch; γ = 2π/(2π−ω), where ω is the artery open-
ing angle in the reference configuration (Fig. 3); and

Current stateReference state

w

blood

FIGURE 3. Residual stresses in arteries with the open-
ing angle ω in the reference state

A and a are the internal artery radii before and after
deformation, respectively.

Fung [31] used the following exponential stored
energy function and constitutive law to analyze the
artery inflation:

W =
c

2
(eQ − 1)

Q =c1E
2
RR+c2E

2
ΘΘ+c3E

2
ZZ+2c4ERREΘΘ

+2c5EZZEΘΘ + 2c6ERREZZ

(3.5)

σ = −p1 + F
∂W

∂E
FT (3.6)

where the components of the Green strain, E = (C−
1)/2, have been used and material constants were
experimentally calibrated for a carotid artery: c1 =
0.0089, c2 = 0.9925, c3 = 0.4180, c4 = 0.0193, c5 =
0.0749, and c6 = 0.0295.

In the case of a strain-free reference state with
ω = 0◦ and the internal and external reference radii
A = 0.71 mm and B = 1.10 mm, respectively, the
pressure radius and stress distribution curves are
calculated and presented in Fig. 4. The stresses,
σ̄ij = σij/c, are presented for dimensionless pres-
sure ḡ = g/c = 0.5, which corresponds to pressure
g = 13.47 KPa for the shear modulus c = 26.95 KPa.

In the case of a prestrained state with ω = 160◦

and the internal and external reference radii A =
1.43 mm and B = 1.82 mm, respectively, the pres-
sure radius and stress distribution curves are pre-
sented in Fig. 5. The stresses are presented for di-
mensionless pressure ḡ = 0.5, which corresponds
to pressure g = 13.47 KPa for the shear modulus
c = 26.95 KPa.

We note that the pressure increase always cor-
responds to the radius increase; that is, the artery
deformation is always stable and no failure is ob-
served. The latter is unphysical, of course, and a
failure description should be included in the con-
stitutive setting and observed on the pressure ra-
dius curve as an onset of instability. Such account
of the artery failure can be done by using energy
limiters [26]. In the latter case, it is possible to re-
place Eqs. (3.5) and (3.6) of the intact artery with the
following model of artery with failure:

ψ = Φ− Φ exp
[
−W

Φ

]
(3.7)
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FIGURE 4. Pressure radius (left) and true stress (right) curves for artery without prestrain
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FIGURE 5. Pressure radius (left) and true stress (right) curves for artery with prestrain

σ = −p1 + F
∂ψ

∂E
FT (3.8)

where W has been defined in Eq. (3.5).
We repeat the analyses shown in Figs. 4 and 5 by

using Eqs. (3.7)–(3.8) for Φ̄ = Φ/c = 1 and present
the results in Fig. 6.

We note that failure appears on the pressure ra-
dius curve as a limit point where static instability
occurs. Though the decreasing branch of the curve
is shown for the sake of consistency, it should be
clearly realized that it is not statically stable, and
the dynamic failure propagation should be gener-
ally monitored after the limit point. It can be no-
ticed that residual strain can increase the overall ar-
terial strength significantly. The preexisting com-
pressive strains in arteries delay the onset of rupture
like the preexisting compression in the prestressed
concrete delays the crack opening. It is also inter-
esting that the prestrain makes the distribution of
the hoop stresses more uniform. In a sense, the pre-
strain optimizes the stress distribution in a loaded
artery.

Proceeding with the artery analysis, we turn to
the third example, illustrating the capability of the
energy limiters to handle more sophisticated mate-
rial models. Particularly, we consider the arterial
wall to be a fiber-reinforced composite including the
inner layer of media and the outer layer of adventi-
tia. Every layer is described by the following consti-
tutive law:

σ = −p1+2ψ1B+2ς1m1⊗m1 +2ς2m2⊗m2 (3.9)

ψ1 =
c

2
exp

[
− c

2Φ
(I1 − 3)

]
(3.10)

ςi =k1(Ji−1) exp
[
k2(Ji−1)2−k2

(Ji−1)2ni

(ξ2
i−1)2ni

]
(3.11)

where the second term on the right-hand side of
Eq. (3.9) describes the media/adventitia matrix with
I1 = trB = trC, while the third and the fourth terms
on the right-hand side of Eq. (3.9) describe two fami-
lies of collagen fibers with vectors mi = FMi desig-
nating “pushed-forward” initial fiber directions Mi

(|Mi| = 1) and Ji = mi ·mi. Constants of intact ma-
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FIGURE 6. Pressure radius (left) and true stress (right) curves for Φ̄ = Φ/c = 1 without and with prestrain accounting
for material failure

terials (c and ki) are completed with constants de-
scribing failure (Φ, ξi, ni).

The stress-stretch curves for matrix and fibers
with and without failure are presented in Fig. 7 for
the case of uniaxial tension.

Applying the constitutive law of Eqs. (3.9)–(3.11)
to the considered example of the arterial inflation,
it is possible to calculate the pressure radius curve
shown in Fig. 8 for the following parameters of the
media: cM = 3.0 [KPa], k1M = 2.36 [KPa], k2M =
0.84, A = 1.43 [mm], BM = 1.69 [mm], βM = π/6,

ΦM = cM , ξ1M = 1.5, n1M = 10; likewise, for
adventitia, cA = 0.3 [KPa], k1A = 0.56 [KPa],
k2A = 0.7112, AA = BM , B = 1.82 [mm], βA = π/3,
ΦA = cA, ξ1A = 1.7, and n1A = 10, where βM(A) is
the angle between the fibers and the circumferential
direction of the artery. In addition, we assume that
s = 1 and ω = 160◦.

It is also interesting that by varying the parame-
ters of failure, it is possible to get deeper insight into
the role of matrix and fibers in the overall strength
of arteries. The studies in [32] suggested the follow-
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FIGURE 7. Matrix and fibers with and without softening in the case of uniaxial tension
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ing conclusions: First, it was found that the fiber
strength dominates the overall arterial strength; sec-
ond, it was also found that the medium dominates
the overall arterial strength and plays a crucial role
in the load-bearing capacity of arteries; third, it was
again found that residual strains can increase over-
all arterial strength significantly.

4. BRITTLE FRACTURE WITH ENERGY
LIMITERS

In this section, we turn to another field of applica-
tion of energy limiters, concerned with the fracture
of brittle and quasibrittle materials.

Application of energy limiters to the analysis of
the onset of the crack propagation [33, 34] was mo-
tivated by the following disagreement between the-
ory and experiment: It was experimentally found
that calibration of the material toughness in ceram-
ics was significantly affected by the sharpness (tip
radius) of a real crack. These experimental results
were not entirely compatible with the original Grif-
fith [35] theory of brittle fracture, where the crack
sharpness was of minor influence. To shed more
light on this disagreement between the experimen-
tal importance of the crack sharpness and its the-
oretical ignorance, we studied the Griffith prob-
lem computationally by using energy limiters for
Hookean solids [33].

Two different models with the energy limiter for
the Hookean solid have been used. The first model
[18, 19] is described by the following constitutive
law:

ψ = Φ− Φ exp
[
− λ

2Φ
(trε)2 − µ

Φ
ε : ε

]
(4.1)

σ =
∂ψ

∂ε
= 2µ̃ε + λ̃(trε)1 (4.2)

µ̃ = µ exp
[
− λ

2Φ
(trε)2 − µ

Φ
ε : ε

]
(4.3)

λ̃ = λ exp
[
− λ

2Φ
(trε)2 − µ

Φ
ε : ε

]
(4.4)

where λ, µ are the Lame constants; ε : ε = tr(εεT ),
ε = (H + HT )/2 is the linear strain; H = ∂u/∂X is
the displacement, u = x −X is the gradient; and 1
is the second-order identity tensor.

The second model is obtained from Eq. (2.24) for
small deformations and leads to the following con-
stitutive law:

ψ=Φ−Φ

(
1+

√
K

Φ
trε

)
exp

[
−

√
K

Φ
trε− µ

Φ
e : e

]
(4.5)

σ =
∂ψ

∂ε
= 2µ̃ ε +

(
K̃ − 2

3
µ̃

)
(trε)1 (4.6)

µ̃=µ

(
1+

√
K

Φ
trε

)
exp

[
−

√
K

Φ
trε− µ

Φ
e : e

]
(4.7)

K̃ = K exp

[
−

√
K

Φ
trε− µ

Φ
e : e

]
(4.8)

where K = λ + 2µ/3 is the bulk modulus and e =
ε− (trε)1/3 is the strain deviator.

Evidently, the Hooke law is derived from
Eqs. (4.2) and (4.6) in the linearized case, where
µ̃ = µ, λ̃ = λ, and K̃ = K. The main physical differ-
ence between Eq. (4.2) and Eq. (4.6) is that the for-
mer allows for failure in hydrostatic compression,
while the latter does not.

The introduced constitutive models of Eqs. (4.2)
and Eq. (4.6) were plugged into ABAQUS finite ele-
ment software, and the hydrostatic (biaxial) tension
of a thin plate with small elliptic and straight cracks
(Fig. 9) under the varying sharpness and length of
the cracks was simulated.

The state of the plane stress for a square plate of
size d = 1600 with elastic constants λ/Φ = 75·104/66
and µ/Φ = 90 ·104/66 was considered, and very fine
meshes were used, as shown, for example, in Fig. 10.
The number of elements varied for various loading
cases.
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FIGURE 9. Elliptic and straight cracks under hydro-
static tension

FIGURE 10. Sample finite element mesh for elliptic
crack

Three series of simulations were performed [33].
First, the elliptic crack with a fixed length of 2a = 80
and varying sharpness, that is, the width half axes
of the elliptic crack, b = 1, 2, 3, 4, 5, 6, 7, 8, was an-
alyzed. Figure 11 presents the normalized critical
tension, where the onset of static instability occurs,
versus varying crack sharpness.

1/40 2/40 3/40 4/40 5/40 6/40 7/40 8/40
2

4

6

8

10

12

14

16

18

SH2

SH1

F

crp

ab /

FIGURE 11. Critical tension for elliptic crack with vary-
ing sharpness and fixed length

It is clearly seen that the critical tension signif-
icantly depends on the sharpness of the elliptic
crack. When the critical tension is known, it is pos-
sible to calculate the material toughness by using

KIc = pcr

√
π a (4.9)

Evidently, the material toughness depends linearly
on the critical tension, and consequently, no unique
toughness can be determined for a crack with a fixed
length. The numerical value of the toughness de-
pends on the sharpness of the crack. It is worth not-
ing that the “smallness” of the crack was checked by
comparing the results of the present computations
to the results of the similar computations with the
enlarged plate.

Qualitatively similar results are also obtained for
the straight crack, which is formed by two parallel
lines joined by half-circles at the edges. Figure 12
shows the critical tension for the case of the straight
crack with varying sharpness, that is, width. Again,
like in the case of the elliptic crack, no unique mag-
nitude of the critical tension and, consequently, ma-
terial toughness can be determined because it de-
pends on the crack sharpness.

In addition to analysis of the influence of the
crack sharpness on the critical tension of a plate, it
was of interest to compare cracks with equivalent
sharpness and varying lengths. Such comparisons
are presented in Fig. 13. The obtained data clearly
show that the crack length affects the critical tension
in agreement with the Griffith theory only in the
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FIGURE 12. Critical tension for straight crack with
varying sharpness and fixed length
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FIGURE 13. Critical tension for straight crack with fixed
yet different sharpness and varying length (Griffith solu-
tion is given for at a/b = 50/2)

case of the cracks with equivalent sharpness. The
latter means that if the Griffith theory was calibrated
for the sharpness corresponding to the middle curve
in Fig. 13, then it could only predict the behavior of
the cracks with the same sharpness, and it would
fail in predicting the behavior of cracks with a dif-
ferent sharpness.

The main practical implication of our results is a
conclusion that generally, material toughness can-
not be uniquely calibrated in experimental tests
because its numerical magnitude significantly de-
pends on the sharpness of the crack or notch used
for the calibration. The crack sharpness controls
the stress-strain concentration, which in turn con-
trols the onset of fracture. It is possible, however, to
decrease the radius of the tip of the crack or notch
to a magnitude where our conclusion based on the
classical continuum considerations is not applica-
ble. Such a magnitude should be related to a char-
acteristic length of the material microstructure, for
example, grain size, atomic distance, and so on.

It should be noted that the interpretation of our
results must be cautious. Though Griffith theory
ignores the actual sharpness of the real physical
cracks, the theory still has a predictive power in
the following asymptotic sense: If a true material
toughness can be found in experiments, then the
Griffith theory can be used to predict the worst sce-
nario of the onset of the crack propagation in the
case when the radius of the crack tip is zero. Of

course, the tip radius of real cracks is never zero,
and consequently, the critical loads for real cracks
are higher than the critical loads for idealized math-
ematical cracks predicted by Griffith. In this sense,
the error induced by the classical theories gener-
ates the safety factor, which is good for engineering.
In other words, we can say that the Griffith theory
gives the lower bound for the critical loads.

The analysis described previously for Mode I
cracks has been performed for Mode II cracks by
P. Trapper and K. Y. Volokh (to appear in Engineer-
ing Fracture Mechanics). Results for Mode II cracks
led to the same conclusions as described previously
for Mode I cracks.

Moreover, similar computations were performed
in [34] for Mode I cracks in rubber where the Neo-
Hookean material model had been used:

ψ = Φ− Φexp
[
− α

2Φ
(I1 − 3)

]
(4.10)

σ = −p1 + αB exp
[
− α

2Φ
(I1 − 3)

]
(4.11)

where α and Φ are the shear modulus and the failure
energy, respectively.

It was observed in computations based on
Eqs. (4.10) and (4.11) that lower magnitudes of the
critical tension were driven by (1) sharper cracks,
(2) lengthier cracks, and (3) lower brittleness, that is,
the ratio of the shear modulus to the failure energy.
Factors 1 and 2 directly echo the classical theories of
brittle fracture [33]. Factor 3 is more specific to soft
materials undergoing large deformations. Simula-
tions of the straight cracks show that the critical ten-
sion depends approximately inversely on the square
root of the crack length in full harmony with the
Griffith theory. Unfortunately, that is true only for
the equivalent cracks, that is, cracks with the same
tips. Observations of the role of the material brittle-
ness strongly suggest that the decrease of the shear
modulus as compared to the failure energy leads to
a decline of the material sensitivity to a cracklike
flow. This means, specifically, that the dependence
of the critical load on the crack length and sharpness
is less pronounced in softer materials than in more
brittle ones. The latter happens because softer ma-
terials can undergo large deformations, suppress-
ing the stress-strain concentration. In other words,
softer materials absorb the high stresses and strains
at the tip of the crack due to large deformations. To
avoid confusion, however, we strongly emphasize
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that though softer materials are less sensitive to the
crack length and sharpness, they tear under lower
critical loads than more brittle materials do. The lat-
ter point should not be overlooked.
Remark 4.1. Modeling fracture we assumed that the
crack starts with a massive bond rupture in the pro-
cess zone at the tip of the crack. This event is volu-
metric, and the use of the softening hyperelasticity
is reasonable, unless the localized deformation and
failure occur at the length scale of the material struc-
ture (grains, atomic spacing, etc.). In the latter case,
the size of the finite elements cannot be decreased
beyond the characteristic length of material. This
limitation would introduce the characteristic length
in analysis implicitly.

5. RATE-DEPENDENT FAILURE WITH ENERGY
LIMITERS1

In this section, we examine applications of energy
limiters to rate-dependent material behavior of the
standard solid (Fig. 14).

In the case of small deformations, we define the
viscoelastic constitutive law in the form

σ(t)=
∂ψ̂(ε)

∂ε
1+

t∫

−∞
m(t−τ)

∂

∂τ

[
dev

∂ψ̄(e(τ))
∂e

]
dτ (5.1)

where ε = trε; e = dev ε ≡ ε − (ε/3)1 and ε is the
symmetric part of the displacement gradient.

The relaxation function is defined in the form

m (t− τ) = β∞ + β exp
(−(t− τ)

θ

)
(5.2)

where β∞ = E∞/(E∞ + E) and β = E/(E∞ + E)
are dimensionless relative moduli and θ = η/E is
the relaxation time.

The elastic potential is decomposed into the vol-
umetric and distortional parts, accordingly:

ψ(ε) = ψ̂(ε) + ψ̄(e) (5.3)

ψ̂(ε) = Φ1−Φ1

(
1 +

√
K

Φ1
ε

)
exp

[
−

√
K

Φ1
ε

]
(5.4)

ψ̄(e) = Φ2 − Φ2 exp
[
− µ

Φ2
e : e

]
(5.5)

1 This and the next section include only a brief review of
the results, which will be published separately elsewhere

¥E

hE

FIGURE 14. Rheological model of the standard solid

where K and µ are the bulk and shear moduli of the
isotropic Hookean solid and Φ1 and Φ2 are the fail-
ure energies for volumetric and distortional defor-
mations. By introducing different failure constants,
we increase the flexibility of the phenomenological
description of material failure.

The rate-dependent response of the model de-
scribed previously in the case of simple shear is

σ12(t)= 2µ

t∫

0

[
β∞ + β exp

(
− t− τ

θ

)]

× ∂

∂τ

[
e12 exp

(
− µ

Φ2
e2
12

)]
dτ

(5.6)

where there is no stressing until t = 0.
Further simplifications are due to the assumption

of the constant stretch-strain rate γ̇ = const. The
latter assumption leads to the following simple for-
mulae for time: t = e12/γ̇, τ = ξ12/γ̇, where
ξ12 = e12(τ), and consequently, Eq. (5.6) takes the
form

σ12(t)= 2µ

e12∫

0

[
β∞+β exp

(
−e12−ξ12

θγ̇

)]

× ∂

∂ξ12

[
ξ12 exp

(
− µ

Φ2
ξ2

12

)]
dξ12

(5.7)

Stress-strain curves defined by Eq. (5.7) are pre-
sented in Fig. 15 for different strain rates.

We use the rheological model shown in Fig. 14
as a prototype for the nonlinear model, too. The
springs should be considered nonlinear in this case.
We directly extend Eq. (5.1) to finite deformations
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FIGURE 15. Simple shear for various strain rates

τ(t) = J
∂ψ̂(ε)

∂ε
1 +

t∫

−∞
m(t− τ)

∂

∂τ

×
[

dev
[

2F̄(τ)
∂ψ̄(C̄(τ))

∂C̄
F̄T (τ)

]]
dτ

(5.8)

where τ = J σ is the so-called Kirchhoff stress ten-
sor, ε = J = detF, F̄ = J−1/3F(det F̄ = 1), and
C̄ = F̄T F̄.

The stored energy is also decomposed analo-
gously to Eq. (5.2):

ψ(C) = ψ̂(ε) + ψ̄(C̄) (5.9)

Though the preceding formulation is the most gen-
eral, the majority of soft materials undergoing finite
deformations are incompressible. The latter means
that the analytical formulation can be simplified as
follows: ε = J = detF = 1, F̄ = F; C̄ = C;
ψ(C) = ψ̄(C̄) and

σ(t)= τ(t) = −p1 +

t∫

−∞
m(t− τ)

∂

∂τ

×
{

dev
[
2F(τ)

∂ψ(C(τ))
∂C

FT (τ)
]}

dτ

(5.10)

where the indefinite Lagrange multiplier, p, is used
to enforce the incompressibility condition.

We further use a stored energy with softening
that was calibrated for analysis of the material of
AAA (Eq. (3.1)). Analogously to the previous ex-
ample of small deformations, we can calculate the
viscoelastic response in uniaxial tension (Fig. 16).

Evidently, the material stiffness and strength—
the curve maximum—increase with the increasing
deformation rate for a given relaxation time in cases
of both small (Fig. 15) and large (Fig. 16) strains.
This conclusion is expected intuitively. Moreover,
the stable (prior to failure) branches of the response
curves are limited by the curve corresponding to
γ̇θ → 0 from the bottom and γ̇θ → ∞ from the top.
Physically, the limit cases correspond to the very
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FIGURE 16. Uniaxial tension of viscoelastic AAA material for various strain rates
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slow quasistatic response and the fastest instanta-
neous response of the material accordingly. Interest-
ingly, the range of the strength variation depends on
the relative contribution of the elastic springs in the
rheological model shown in Fig. 14. The greater is
the contribution of the spring corresponding to the
dashpot, the larger is the strength range.

Though we used essentially different material
models in the considered examples of small and fi-
nite deformations, the qualitative results are very
similar. Particularly, we observed that the increas-
ing rate of deformations leads to the increase in both
stiffness and strength of the material. Such a con-
clusion corresponds well with the experimental ob-
servations. Moreover, while the existing viscoelas-
ticity theories can describe the phenomenon of the
material stiffening under the increasing deforma-
tion rate, the presented approach, probably for the
first time, clearly predicts the increase of the mate-
rial strength (and not only stiffening) with the in-
crease of the deformation rate.

6. FLUIDS WITH FINITE STRENGTH

In this section, we use constitutive equations with
softening to interpret experiments with water [36]
that exhibit transition to turbulence at Reynolds
numbers lower than predicted by the linear stability
analysis (the subcritical transition to turbulence). To
explain these observations qualitatively, we suggest
that the onset of subcritical instability is related to
the decline of viscosity of water: Friction between
fluid layers fails with the increase of the velocity
gradient. Simply speaking, the faster a fluid layer
travels with respect to the adjacent layer (after some
limit), the lower is the friction between them. To
describe the decline of friction theoretically, we re-
lax the assumption of the stability of the fluid mate-
rial and introduce a constant of the fluid strength.
Particularly, we enhance the Navier-Stokes model
with a failure description by introducing the fluid
strength in the constitutive equation for the viscous
stress. The classical model is obtained from the en-
hanced one when the strength goes to infinity.

Momentum balance has the following form in the
absence of body forces:

ρ
∂v
∂t

+ ρv · ∇v = divσ (6.1)

where ρ is a constant mass density, v is a particle ve-
locity, t is time, and ∇ and div are the gradient and
divergence operators with respect to spatial coordi-
nates.

In the case of incompressible fluid, the Cauchy
stress can be specified as follows:

σ = −p1 + τ (6.2)

div v = 0 (6.3)

where p is the Lagrange multiplier enforcing the in-
compressibility Eq. (6.3); and τ is the so-called vis-
cous stress.

Traditionally, the constitutive model for the vis-
cous stress in Newtonian fluids is set as follows
[37, 38]:

τ = 2ηD (6.4)

where η > 0 is a viscosity coefficient and

D =
1
2
(∇v +∇vT ) (6.5)

is a symmetric part of the velocity gradient.
Instead of Eq. (6.4), however, we will use the fol-

lowing constitutive model, enforcing failure or vis-
cous and frictional bonds:

τ = 2ηD exp
[
− ε2

Φ2

]
(6.6)

ε2 = D : D (6.7)

where ε ≥ 0 is a scalar measure of the velocity gra-
dient (the equivalent velocity gradient) and Φ > 0
is a constant of fluid strength, that is, the maximum
velocity gradient that preserves friction between the
adjacent fluid layers.

There are two main modes for Eq. (6.6):

τ = 2ηD when ε ¿ Φ (6.8)

τ = 0 when ε À Φ (6.9)

The first mode, Eq. (6.8), corresponds to the classical
Navier-Stokes viscosity with the full internal fric-
tion, while the second mode, Eq. (6.9), corresponds
to the loss of viscosity or internal friction. These two
modes reflect on Landau’s remark that “for the large
eddies which are the basis of any turbulent flow, the
viscosity is unimportant” ([37], Section 33).

In the case of the shear flow, D = D12(e1 ⊗ e2 +
e2⊗e1) and τ = τ12(e1⊗e2+e2⊗e1), the constitutive
law can be presented graphically (Fig. 17).
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At points D12/Φ = ±1/2, the viscous strength
is reached: τmax/ηΦ = ± exp(−1/2). After these
points, the decline of viscosity starts. The classical
Navier-Stokes theory is obtained from the modified
constitutive law when the fluid strength goes to in-
finity: Φ →∞.

To examine the linear stability of the flow, we su-
perimpose small motions on the existing ones and
designate the perturbations with tildes. Varying
Eqs. (6.1)–(6.3) and (6.6), we have, accordingly,

ρ
∂ṽ
∂t

+ ρ(v · ∇)ṽ + ρ(ṽ · ∇)v = divσ̃ (6.10)

σ̃ = −p̃1 + τ̃, divṽ = 0 (6.11)

τ̃ = 2η

(
D̃− 2D

D : D̃
Φ2

)
exp

[
−D : D

Φ2

]
(6.12)

The addition of the initial and boundary conditions
of zero velocity perturbations completes the lin-
earized Initial Boundary Value Problem (IBVP).

Let us consider stability of the Plane Couette flow
(see also [39, 40] for a review). We assume that there
is no pressure gradient and that the velocity field
has the form v = v1(x2) e1, where e1 is a unit base
vector (Fig. 18). In this case, we have

D = D12(e1 ⊗ e2 + e2 ⊗ e1), D12 =
∂v1

∂x2
(6.13)

ε2 = 2
(

∂v1

∂x2

)2

(6.14)

τ = τ12(e1 ⊗ e2 + e2 ⊗ e1)

τ12 = 2η
∂v1

∂x2
exp

[
− ε2

Φ2

] (6.15)
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FIGURE 17. Viscous stress versus deformation rate in
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FIGURE 18. Flow between parallel plates

and the reduced momentum balance Eq. (6.1) takes
the form

∂τ12

∂x2
= 0 (6.16)

Substituting Eq. (6.15) into Eq. (6.16) and adding
boundary conditions v1(0) = 0 and v1(h) = v, we
find the following solution for velocity and stress
fields:

v1 =
vx2

h
, σ11 = σ22 = σ33 = −p

σ12 = σ21 =
η v

h
exp

[
− 2v2

h2Φ2

] (6.17)

Let us study the linear stability of the obtained
solution. We assume that p̃ = 0 and ṽ = ṽ1(x2) e1.
Then we have

D̃ =
∂ṽ1

∂x2
(e1 ⊗ e2 + e2 ⊗ e1) (6.18)

σ̃ = τ̃ = β
∂ṽ1

∂x2
(e1 ⊗ e2 + e2 ⊗ e1) (6.19)

β = 2η

(
1− 4v2

Φ2 h2

)
exp

[
− 2 v2

Φ2 h2

]
(6.20)

The momentum balance Eq. (6.10) reduces to

ρ
∂ṽ1

∂t
= β

∂2ṽ1

∂x2
2

(6.21)

We further assume the following modes of the per-
turbed motion:

ṽ1(x2, t) = constant · eωt sin(2πnx2/h)
n = 1, 2...

(6.22)

where boundary conditions are obeyed (ṽ1(x2 =
1, h) = 0) and ω is a real constant.
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Substituting Eqs. (6.20) and (6.22) into Eq. (6.21),
we find

ω = −8ηπ2n2

ρh2

(
1− 4 v2

Φ2 h2

)
exp

[
− 2 v2

Φ2 h2

]
(6.23)

The Couette flow is stable when ω is negative, and
it loses stability when ω = 0. The latter condition
gives the critical velocity

vc =
hΦ
2

(6.24)

and the critical Reynolds number

Rc =
hρvc

η
=

ρh2Φ
2η

(6.25)

It is interesting that in the case of the classical
Navier-Stokes model, where the fluid strength is in-
finite, Φ →∞, the flow is always stable with respect
to the lateral perturbations (see also [41]), while in
the case where strength is finite, the flow can lose
stability, initiating the transition to turbulence.

Thus we found that the flow could lose its sta-
bility under the lateral velocity perturbations in the
case where the fluid strength was finite. Our the-
oretical conclusions are in good qualitative agree-
ment with the experimental observations on the
onset of the subcritical transition to turbulence re-
viewed recently in [36]. It is especially interest-
ing that the localized turbulence patterns were ob-
served in experiments, which could be theoretically
interpreted as a local loss of internal friction due to
the fluctuations in the fluid strength.

7. CONCLUSIONS

In the present work, we considered novel methods
for modeling material failure based on the introduc-
tion of energy limiters and/or softening in the con-
stitutive description of solids and fluids.

The proposed methods are dramatically simpler
than the existing methods of continuum damage
mechanics, for example, which are traditionally
used for modeling bulk failure (Table 1). The com-
parison given in Table 1 does not need comment,
except for the following: It is necessary to be cau-
tious in using the energy limiters in dynamic prob-
lems for solids where a returning wave of deforma-
tion can lead to the restoration (or healing) of the

TABLE 1. Comparison of continuum damage mechanics
and the methods of energy limiters

Damage
internal
variables

Damage
thresh-
old
condi-
tion

Damage
evo-
lution
equation

Damage
mechan-
ics

Yes Yes Yes

Energy
limiters

No No No

failed material. To prevent such healing, it is nec-
essary to drop the failed elements from the finite
element meshes providing the full energy dissipa-
tion. In the case of fluids, the healing is natural and
should not be avoided.

We strongly emphasize, however, that the pro-
posed approach is not a universal substitute for con-
tinuum damage mechanics. Materials exhibiting es-
sential structural changes during deformation, for
example, plasticity, creep, or fatigue, are beyond
the scope of the methods of energy limiters,2 which
do not describe the structural changes in materials
except for complete failure as a result of the bond
rupture. The latter means, for example, that the
Mullins effect in rubber, which is related to loading-
unloading cycles and exhibiting material softening
due to the partial structural changes or damage, is
not accounted for in the present formulation with
the energy limiters.
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