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a b s t r a c t

Experiments [T. Mullin, R.R. Kerswell (Eds.), Laminar Turbulent Transition and Finite
Amplitude Solutions, Proceedings of the UITAM Symposium, Springer, Bristol, UK, Dodr-
echt, 2005.] show that transition to turbulence can start at Reynolds numbers lower than
it is predicted by the linear stability analysis – the subcritical transition to turbulence. To
give a possible qualitative explanation of these observations we suggest that the onset of
subcritical instability can be related to failure of the fluid viscosity: friction between fluid
layers drops with the increase of the velocity gradient. To describe the drop of friction the-
oretically we relax the assumption of the stability of the fluid material and introduce a con-
stant of the fluid strength. Particularly, we enhance the Navier–Stokes model with a failure
description by introducing the fluid strength in the constitutive equation for the viscous
stress. The classical model is obtained from the enhanced one when the strength goes to
infinity. We use the modified Navier–Stokes model to analyze the Couette flow between
two parallel plates and find that the lateral perturbations can destabilize the flow and
the critical Reynolds number is proportional to the fluid strength. The latter means that
the classical Navier–Stokes model of a stable material with the infinite strength does not
capture the subcritical transition to turbulence while the modified model does.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Experiments [5,1,6] show that transition to turbulence can start at Reynolds numbers lower than it is predicted by the
linear stability analysis [8] – the subcritical transition to turbulence. To give a possible qualitative explanation of these
observations we suggest that the onset of subcritical instability can be related to failure of the fluid viscosity: friction be-
tween fluid layers drops with the increase of the velocity gradient. To describe the drop of friction theoretically we relax
the assumption of the stability of the fluid material and introduce a constant of the fluid strength. Particularly, we enhance
the Navier–Stokes model with a failure description by introducing the fluid strength in the constitutive equation for the vis-
cous stress. The classical model is obtained from the enhanced one when the strength goes to infinity.

We use the modified Navier–Stokes model to analyze the Couette flow between two parallel plates and find that the lat-
eral perturbations can destabilize the flow and the critical Reynolds number is proportional to the fluid strength. The latter
means that the classical Navier–Stokes model of a stable material with the infinite strength does not capture the subcritical
transition to turbulence while the modified model does.

2. Constitutive law for viscous stress

Momentum balance has the following form in the absence of body forces

q
ov
ot
þ qðv � rÞv ¼ div r; ð1Þ
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where q is a constant mass density; v is a particle velocity; t is time; and r is the stress tensor.
In the case of incompressible fluid the stress can be specified as follows:

r ¼ �p1þ s; ð2Þ
div v ¼ 0; ð3Þ

where p is the Lagrange multiplier enforcing the incompressibility condition (3); 1 is the second-order identity tensor; and s
is the so-called viscous stress.

Traditionally, the constitutive model for the viscous stress in Newtonian fluids is set as follows:

s ¼ 2gD; ð4Þ

where g > 0 is a viscosity coefficient and

D ¼ 1
2
ðrv þrvTÞ ð5Þ

is a symmetric part of the velocity gradient.
Substituting (2), (4), (5) in (1) we have the Navier–Stokes equations, which should be completed with boundary/initial

conditions for velocities in order to set an initial-boundary-value problem (IBVP).
Instead of (4), however, we will use the following constitutive model enforcing failure of viscous/frictional bonds

s ¼ 2gD exp � e2

/2

� �
; ð6Þ

e2 ¼ D : D B trðDDTÞ; ð7Þ

where e P 0 is a scalar measure of the velocity gradient – the ‘equivalent’ velocity gradient and / > 0 is a constant of fluid
strength, i.e. the maximum velocity gradient that preserves friction between the adjacent fluid layers.

There are two main modes for (6)

s ¼ 2gD when e� /; ð8Þ
s ¼ 0 when e� /: ð9Þ

The first mode, (8), corresponds to the classical Navier–Stokes viscosity with the full internal friction while the second mode,
(6.9), corresponds to the loss of viscosity or internal friction. These two modes reflect upon Landau’s remark that ‘‘. . . for the
large eddies which are the basis of any turbulent flow, the viscosity is unimportant” [3], Section 33: ‘‘Fully developed
turbulence”.

In the case of the shear flow, D = D12(e1 � e2 + e2 � e1) and s = s12(e1 � e2 + e2 � e1), the constitutive law can be presented
graphically – Fig. 1 – for example.

At points D12=/ ¼ �1=2 the viscous strength is reached: smax=g/ ¼ � expð�1=2Þ. After these points the decline of viscosity
starts. The classical Navier–Stokes theory is obtained from the modified constitutive law when the fluid strength goes to
infinity: / ! 1.

It is worth emphasizing that the viscosity thinning [4] takes place in the vicinity of the limit point when the fluid strength
is approaching. This phenomenon is completely minor and it is more a result of our analytical exponential expression for the
constitutive law rather than a physical phenomenon. The crucial and novel idea is the limit point in Fig. 1 which presents the
viscosity failure or the fluid strength where the frictional bonds start rupturing.

In order to examine the linear stability of the flow we superimpose small motions on the existing ones and designate the
perturbations with tildes. Varying Eqs. (1)–(3) and (6) we have accordingly

Fig. 1. Viscous stress versus deformation rate in the case of shear flow with finite and infinite strength.
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q
oev
ot
þ qðv � rÞev þ qðev � rÞv ¼ div er; ð10Þ

er ¼ �ep1þ es; divev ¼ 0; ð11Þ

es ¼ 2g eD � 2
/2 DðD : eDÞ� �

exp � 1
/2 D : D

� �
: ð12Þ

The addition of the initial/boundary conditions of zero velocity perturbations completes the linearized IBVP.
Finalizing the general theoretical setting we notice that the classical Navier–Stokes theory is obtained from the above

equations when the fluid strength goes to infinity: / ?1.

3. Plane Couette flow

Let us consider stability of the Plane Couettte flow – see also Drazin [2] and Schmid and Henningson [8] for review. We
assume that there is no pressure gradient and the velocity field has form: v = v1 (x2)e1, where e1 is a unit base vector (Fig. 2).
In this case we have

D ¼ ov1

ox2
ðe1 � e2 þ e2 � e1Þ; ð13Þ

e2 ¼ 2
ov1

ox2

� �2

; ð14Þ

s ¼ s12ðe1 � e2 þ e2 � e1Þ; s12 ¼ 2g
ov1

ox2
exp � 2

/2

ov1

ox2

� �2
" #

ð15Þ

and the reduced momentum balance (1) takes form

os12

ox2
¼ 0: ð16Þ

Substituting (15) in (16) and adding boundary conditions v1(0) = 0 and v1(h) = v we find the following solution for velocity
and stress fields:

v1 ¼ vx2=h; ð17Þ

r11 ¼ r22 ¼ r33 ¼ �p; r12 ¼ r21 ¼
gv
h

exp � 2v2

h2/2

" #
: ð18Þ

Let us study the linear stability of the obtained solution. We assume that ep ¼ 0 and ~v ¼ ~v1ðx2Þe1. Then we have

eD ¼ oev 1

ox2
ðe1 � e2 þ e2 � e1Þ; ð19Þ

er ¼ es ¼ b
oev 1

ox2
ðe1 � e2 þ e2 � e1Þ; ð20Þ

b ¼ 2g 1� 4v2

/2h2

 !
exp � 2v2

/2h2

" #
: ð21Þ

The momentum balance (10) reduces to

q
oev 1

ot
¼ b

o2ev 1

ox2
2

: ð22Þ

Fig. 2. Flow between parallel plates.
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We further assume the following modes of the perturbed motion

~v1ðx2; tÞ ¼ constant � ext sin 2
pn
h

x2

� �
; n ¼ 1;2 . . . ; ð23Þ

where boundary conditions are obeyed: ev 1ðx2 ¼ 1;hÞ ¼ 0; and x is a real constant.
Substituting (21) and (23) in (22) we find

x ¼ �8gp2n2

qh2 1� 4v2

/2h2

 !
exp � 2v2

/2h2

" #
: ð24Þ

The Couette flow is stable when x is negative and it loses stability when x = 0. The latter condition gives the critical velocity

vc ¼
h/
2

ð25Þ

and the critical Reynolds number

Rc ¼
hqvc

g
¼ qh2/

2g
: ð26Þ

It is interesting that in the case of the classical Navier–Stokes model where the fluid strength is infinite, / ?1, the flow is
always stable with respect to the lateral perturbations – see also Romanov [7], while in the case where strength is finite the
flow can lose stability initiating the transition to turbulence.

4. Conclusion

In the present work we proposed a new possible explanation of the subcritical transition to turbulence. We assumed that
the flow instability was triggered by the material instability of the fluid – the loss of internal friction. To describe it theoret-
ically we induced a new constant of the fluid strength in the constitutive description of the fluid. The strength means the
maximum ‘equivalent’ velocity gradient responsible for the viscosity/friction drop. We used the Navier–Stokes fluid model
enhanced with the failure description for analysis of the plane Couette flow between two parallel plates. We found that the
flow could lose its stability under the lateral velocity perturbations in the case where the fluid strength was finite. Our the-
oretical conclusions are in a good qualitative agreement with the experimental observations on the onset of the subcritical
transition to turbulence reviewed recently in Mullin and Kerswell [5]. It is especially interesting that the localized turbulence
patterns were observed in experiments, which could be theoretically interpreted as a local loss of internal friction due to the
fluctuations in the fluid strength.
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