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a b s t r a c t

Medical doctors consider a surgery option for the expanding abdominal aortic aneurysm (AAA) when its

maximum diameter reaches 5.5 cm. This simple geometrical criterion may possibly underestimate the

risks of rupture of small aneurysms as well as overestimate the risks of rupture of large aneurysms.

Biomechanical criteria of the AAA failure are desired. Various local criteria of the AAA failure are used in

the literature though their experimental validation is needed. In the present work, we use the

experimentally calibrated AAA model, which includes a failure description, to examine various popular

criteria of the local failure. Particularly, we analyze various states of the biaxial tension of the AAA

material and evaluate the following criteria of the local failure: (1) the maximum principal stretch;

(2) the maximum principal stress; (3) the maximum shear stress; (4) von Mises stress; and (5) the

strain energy. The results show that the strain energy is almost constant for the failure states induced

by the loads varying from the uniaxial to the equal biaxial tension. The von Mises stress exhibits a wider

range of scattering as compared to the strain energy. The maximum stresses and stretches vary

significantly with the variation of loads from the uniaxial to the equal biaxial tension.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Bengtsson et al. (1996) and Ouriel et al. (1992) suggest that
AAA is found in two percent of the elderly population with more
than 150,000 new cases diagnosed each year. The gradually
expanding aneurysm ruptures causing death in about 90% of
cases. It is the thirteenth most common cause of death in the
United States according to Patel et al. (1995). Since the treatment
of AAA is expensive and risky, it is very important to predict when
the danger of rupture justifies surgery.

Medical doctors consider a surgery option for the expanding
abdominal aortic aneurysm (AAA) when its maximum diameter
reaches 5.5 cm. This simple geometrical criterion may possibly
underestimate the risks of rupture of small aneurysms as well as
overestimate the risks of rupture of large aneurysms. Biomecha-
nical criteria of the AAA failure are desired. Various local criteria of
the AAA failure are used in the literature though their experimental
validation is needed: Elger et al. (1996), Watton et al. (2004), Li and
Kleinstreuer (2005), Raghavan and Vorp (2000), Vorp (2007). In the
present work, we use the experimentally calibrated AAA model,
which includes a failure description, to examine various popular
criteria of the local failure. Particularly, we analyze various states of
the biaxial tension of the AAA material and evaluate the following
criteria of the local failure: (1) the maximum principal stretch; (2)
the maximum principal stress; (3) the maximum shear stress; (4)

von Mises stress; and (5) the strain energy. The results show that
the strain energy is almost constant for the failure states induced
by the loads varying from the uniaxial to the equal biaxial tension.
The von Mises stress exhibits a wider range of scattering as
compared to the strain energy. The maximum stresses and
stretches vary significantly with the variation of loads from the
uniaxial to the equal biaxial tension.

2. Methods

Volokh and Vorp (2008) proposed a new constitutive theory of AAA assuming

that its material is homogeneous, isotropic, and incompressible. They set the strain

energy density in the form

c¼F 1�exp �
a1

F
ðtrC�3Þ�

a2

F
ðtrC�3Þ2

h in o
ð1Þ

where C¼FTF is the right Cauchy–Green tensor; F is the deformation gradient; a1

and a2 are the elastic constants (shear moduli) of the material; and F is a failure

constant—the energy of the molecule separation within a representative volume.

Strain energy (1) was calibrated in the uniaxial tension test (Volokh and Vorp,

2008)

a1 ¼ 10:3N=cm2;a2 ¼ 18:0N=cm2;F¼ 40:2N=cm2 : ð2Þ

Typically, AAA experiences a biaxial stress–strain state in vivo. To mimic it we

consider a biaxial deformation in plane (x1,x2) by using principal stretches, li, and

stresses, si,

si ¼ li
@c
@li
�p, ðno sum over iÞ: ð3Þ

Ignoring the out-of-plane stress, it is possible to find the Lagrange multiplier,

p, and the final expression for the Cauchy principal stress

s1 ¼ l1
@c
@l1
�l3

@c
@l3

, s2 ¼ l2
@c
@l2
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, l3 ¼
1
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: ð4Þ
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It is convenient to introduce the biaxiality ratio, n, as follows: l1¼l, l2¼ln,

l3¼l�(n+ 1). Thus, we have the uniaxial tension for n¼�0.5; the equal biaxial

tension for n¼1.0; and the pure shear for n¼0.0.

3. Results

We analyze the AAA failure in the state of plane stress
with varying biaxility, n, for the introduced material model (1).
Critical stretches and stresses corresponding to the onset of
static instability—failure—are presented in Figs. 1 and 2
accordingly.

Remarkably, the magnitudes of the critical stretches and
stresses decrease when the stretch state drifts from the uniaxial
tension to the equal biaxial tension. The latter means that the
popular failure criteria of the maximum principal stretch or stress
are arguable. Indeed, the critical values of the stretch and the
stress are usually calibrated in uniaxial tests while Figs. 1 and 2
show that the development of the equal biaxiality of deformation
will lead to the failure states with significantly lower magnitudes
of the critical stretches and stresses than the ones calibrated in
experiments.

Another popular criterion is the maximum shear stress. Its
variation in the critical cases of the plane stress is depicted in
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Fig. 1. Critical failure stretches.
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Fig. 2. Critical failure stresses (N/cm2).
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Fig. 3. Critical shear stress, t¼(s1�s2)/2, (N/cm2).
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Fig. 4. Critical von Mises stress (N/cm2).
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Fig. 3. Evidently, the maximum shear stress is not a good choice
for the failure criterion by the same reasons as the maximum
principal stretches and stresses.

Von Mises true stress, s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðr : r�ðtrrÞ2=3Þ=2

q
, is often used

as a failure criterion in order to account for the spatial variations
of the stress–strain state. The critical failure magnitudes of the
von Mises stress are shown in Fig. 4. The critical values of the von
Mises stress calibrated in uniaxial tests where n¼�0.5 will be
somewhat greater than those in the biaxial tension where n¼1.

Finally, we check the magnitudes of the accumulated strain
energy—Fig. 5. The obtained results favor a constant magnitude of
the strain energy as a failure criterion. It should not be missed
that the critical failure energy, cE22 N/cm2, that appears in Fig. 5
does not coincide with the energy of the full separation,
F¼40.2 N/cm2. The latter means that the material instability
leading to rupture starts before the complete separation of all
molecules within the representative material volume. The critical
failure energy can also be interpreted as the energy corresponding
to the limit point on the stress–strain curve where the failure
starts while the energy of the full separation corresponds to the
point where the stress drops to zero under the increased strain.

4. Discussion

Based on the AAA constitutive model developed in Volokh and
Vorp (2008) we analyzed the following criteria of the local

material failure in the state of plane stress: (1) the maximum
principal stretch; (2) the maximum principal stress; (3) the
maximum shear stress; (4) von Mises stress; and (5) the strain
energy. We found (Figs. 1–5) that the strain energy is almost
constant for the failure states induced by the loads varying from
the uniaxial to the equal biaxial tension. The von Mises stress
exhibits a wider range of scattering as compared to the strain
energy. The maximum stresses and stretches vary significantly
with the variation of loads from the uniaxial to the equal biaxial
tension.

The obtained theoretical results require further experimental
validation in biaxial failure tests. To the best of our knowledge,
such experimental data does not exist yet for AAA material.
Remarkably, however, the experimental data for the biaxial
failure in rubber is available and it favors the conclusions of the
present work: Volokh (submitted for publication). We hope that
our predictions could encourage the experimenters to shed more
light on the issue.

Evidently, AAA material may exhibit anisotropy while the
results presented here rely upon the isotropy assumption. The
development of simple failure criteria for anisotropic materials
will depend on the progress in experimental techniques. None-
theless, various isotropic models can probably be used as limiting
cases for estimating the effect of anisotropy.
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Fig. 5. Critical strain energy (N/cm2)
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