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Strain energy increases unlimitedly with the increase of deformation according to traditional hypere-
lastic models of materials. This ‘growth condition’ is evidently unphysical because no real material can
sustain large enough deformations without failure. To introduce failure in hyperelasticity we propose to
replace the strain energy of any intact material, W, with a modified expression: = ®{I"(1/m,0)— I'(1/m,
wm|@™)} /m, where @ is a material constant which sets a limit for the energy that can be accumulated

gl?'svtvi‘;irfs" during deformation, I is the upper incomplete gamma function, and m is a material constant controlling
Energy 1¥miters the sharpness of the transition to fgilure. The new formula for the strain energy ‘is used to model failure
Failure of natural (NR) and styrene-butadiene (SBR) rubbers under plane stress conditions and the results are
Rubber compared to the available experiments and other theories. The comparisons show that the proposed

approach can be efficient for modeling failure in solids. The new theory allows reassessing the local
criteria of material failure.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional hyperelastic models of materials ignore the fact that
no material can sustain large enough deformations without fail-
ure. The theories targeting a constitutive description of bulk failure
were pioneered by Kachanov (1958) and Rabotnov (1963) and they
appear by name of continuum damage mechanics (CDM) in the
modern literature. Originally, CDM was invented to analyze the
gradual failure accumulation and propagation in creep and fatigue.
The need to describe the failure accumulation, i.e. evolution of the
material microstructure, explains why CDM is very similar to plas-
ticity theories including (a) the internal damage variable (inelastic
strain), (b) the critical threshold condition (yield surface), and (c)
the damage evolution equation (flow rule). The subsequent devel-
opment of the formalism of CDM (Lemaitre and Desmorat, 2005)
left its physical origin well behind the mathematical and compu-
tational techniques and, eventually, led to the use of CDM for the
description of any bulk failure (Kachanov, 1994). Unfortunately, it
is impossible to measure the damage parameter directly and the
experimental calibration should be implicit and include both the
damage evolution equation and criticality condition.

A physically motivated alternative to the continuum damage
mechanics in the cases of failure related with the bond rupture
was introduced by Gao and Klein (1998) and Klein and Gao (1998)
who showed how to mix the atomic/molecular and continuum
descriptions in order to simulate material failure. Another multi-
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scale model is due to Dal and Kaliske (2009) who included a possible
rupture of polymer chains into the constitutive description of rub-
bers. Of course, a direct appeal to the material structure is very
attractive. It should not be missed, however, that the transition
from the smaller to larger length scales is always related to an
averaging procedure, which presumes, often implicitly, additional
assumptions concerning the macroscopic behavior of material that
can be revealed in the macroscopic experiments only.! Besides, the
multiscale link is usually computationally involved what limits its
applications.

A very simple alternative to continuum damage mechanics on
the one hand and multiscale methods on the other hand was devel-
oped by Volokh (2004, 2007, 2008). The basic idea of the new
approach was to formulate an expression of the strain energy den-
sity, which would include the energy limiter(s) - the failure energy.
The energy limiter enforces the limit point on the stress-strain
curve separating intact and failure behaviors of bulk material anal-
ogously to the bond energy of atomic interactions. Specifically, the
following universal formula was proposed and examined in Volokh
(2007): Y =®{1 —exp(— W|®)}, where { was the strain energy
with account of failure, W was the strain energy without failure, and
@ was the energy limiter which showed the maximum or separa-
tion energy that an infinitesimal material volume could accumulate
without failure. The above formula is useful for a description of

1 This notion makes us skeptical regarding claims of the ‘rigorous derivation’ of
the continuum constitutive equations from the equations at smaller length scales.
There is no doubt, nonetheless, that the smaller-scale considerations can guide the
search of the continuum theories.
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smooth failure? with a flat limit point on the stress-strain curve,
which corresponds to a gradual process of the bond rupture. In
the case of more abrupt bond ruptures, however, a much sharper
transition to the material instability occurs. To describe such sharp
transition to failure the strain energy formula is further modified
inthe present work: ¥ = @{I'(1/m,0) — I'(1/m,(W/®)™)}/m, where
I is the upper incomplete gamma function and m is a new mate-
rial constant controlling the ‘sharpness’ of the transition to failure.
The new formula for the strain energy is applied to the traditional
Yeoh and Ogden models of intact materials describing deformation
of natural (NR) and styrene-butadiene (SBR) rubbers. The modi-
fied models are examined under plane stress conditions and the
results are compared to the available experiments and other the-
ories. The comparisons show that the proposed formula can be
valuable for modeling failure in rubber-like solids. The new theory
allows reassessing the local criteria of material failure.

2. Elasticity with energy limiters

To motivate the introduction of energy limiters we briefly
describe the atomistic-continuum link. Let us consider interaction
of two atoms/molecules/particles. The reference distance between
them corresponds to zero interaction force and zero stored energy.
The interaction passes three stages with the increase of the dis-
tance. At the first stage the force increases proportionally to the
increasing distance: the linear stage. At the second stage the
force-distance relationship deviates from the linear proportional-
ity: the nonlinear stage. At the third stage the force drops with the
increasing distance: the separation or failure stage.

In the case of solids composed of many particles two first stages
of the particle interaction are described by the linear and non-
linear theories of elasticity correspondingly where the changing
distance between particles is averaged by a continuum strain mea-
sure and the energy of the particle interaction is averaged by a strain
energy function. Surprisingly, the third, failure, stage of the parti-
cle interaction is beyond the scope of elasticity theories. However,
the failure description can still be introduced in elasticity by anal-
ogy with the failure description in the particle interaction. Indeed,
the force of the pair interaction decreases with the increase of the
interaction distance because the energy that can be stored dur-
ing separation is limited by the constant of the bond energy. If the
energy limiter exists for the pair interaction then it should exist in
the multiple interactions. The latter means that we should limit the
magnitude of the strain energy in order to describe material failure
within the framework of elasticity. A review of some works where
elasticity with energy limiters was applied to various problems can
be found in Volokh (2008).

Though the choice of the strain energy expression including the
energy limiters should generally be material/problem-specific, a
general or “try first” formula was introduced in Volokh (2007) to
enrich the already existing models of intact materials with a fail-
ure description: Y(W(C))=®{1 —exp(— W(C)/®P)}, where C=F'F
is the right Cauchy-Green tensor and F=0y/dx is the deforma-
tion gradient for a generic material particle occupying position
x at the reference state and position y(x) at the current state
of deformation. An example of the experimental calibration of
energy limiters can be found in Volokh and Vorp (2008) for the
case of the material of Abdominal Aortic Aneurysm (AAA). AAA
is rubber-like and its strain energy can be written in the form:
Y=®{1—exp(—ai(l; —3)/P —ay(l; —3)?/P)}, where I; =trC; oy
and o, are the elasticity constants of the material; and @ is the
energy limiter. The results of the uniaxial tension test are shown

2 The gradual failure is characteristic of some soft biological tissues, for example.
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Fig. 1. Theory versus experiment for uniaxial tension of AAA material. o; and X are
the axial Cauchy stress and stretch accordingly.

in Fig. 1, where the model was fitted with the following constants:
a1 =10.3N/cm?; o =18.0N/cm?; @ =40.2 N/cm?.

It is worth noting that energy limiters set failure energy per unit
volume contrary to the approach of fracture mechanics, which sets
fracture or ‘tearing’ (Rivlin and Thomas, 1953) energy per unit area.

Remark The approach of softening hyperelasticity, which is pro-
posed in this paper, includes neither the energy dissipation nor
the path dependence in its formulation. However, the dissipation
and path dependence are important phenomena, especially in pro-
cesses where the unloading occurs. In order to ensure that the
unloading does not lead to the healing of the failed material, the
failed finite elements have to be removed from the mesh.3

3. New failure potential

It is evident from Fig. 1 and other examples reviewed in Volokh
(2008) that formula = @{1 — exp( — W/®)} is useful for a descrip-
tion of smooth failure with a flat limit point on the stress—strain
curve which corresponds to a gradual process of the bond rupture.
In the case of more abrupt bond ruptures, however, a much sharper
transition to the material instability occurs. To describe such sharp
transition to failure we propose the following universal formula for
the strain energy density

-2 () (34}

Here the upper incomplete gamma function is used.
[o¢)

I'(s,x)= /tS*1 exp(—t)dt. (2)
X

Differentiating the modified strain energy with respect to the
right Cauchy-Green tensor we get the following constitutive equa-
tion for the Cauchy stress

1.0V
_ 150V 1
o = 2(detF) FBCF , (3)
or
_ 1. 0W _p wm
o = 2(detF) FTF exp (fﬁ) . (4)
Deriving (4) we used the chain rule and the following result
oW wm
W exp (—@) s (5)

3 Itis interesting to note that the models of continuum damage mechanics, which
include the energy dissipation in their theoretical formulation still need the deletion
of finite elements during simulation.
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which comes from the derivative of the upper incomplete gamma
function.

al'(s, x)
ox

The new material parameter m controls the sharpness of the
transition to material instability on the stress strain curve. Increas-
ing m it is possible to simulate the catastrophic rupture of the
internal bonds. Finally, we should mention that the limiting value
of the failure energy is @1°(1/m, 0)/m and it reduces to @ for m=1.

= —x"Texp(—x). (6)

4. Examples

To reveal the features of the proposed generalized strain energy
we examine a few plane stress problems in this section.

We consider biaxial deformations in plane (x7,x2) of a thin rub-
ber sheet by using principal stretches and stresses for an isotropic
incompressible hyperelastic material

Y
P
Ignoring the normal stress in the out-of-plane direction it is pos-

sible to find the Lagrange multiplier, p, and final expressions for the
principal stresses in the plane of the sheet

0 = A (no sum overi). (7)

_ oy _ o _ o B o
01—)%% )\337)»3’ 02—)\2% )\‘3E5 (8)
where
1
A3 = m 9)

It is convenient to introduce a biaxiality ratio, n, as follows
Ap=A, Ap=A" A3=A"("*1)_ In this case, we have uniaxial tension
for n=-0.5; equal biaxial tension for n=1.0; pure shear for n=0.0.

Two materials are examined: a filled natural rubber (NR) vulcan-
izate (which is crystallizable) and a filled styrene-butadiene rubber
(SBR) vulcanizate.

Hamdi et al. (2006) tested both materials and calibrated the
Yeoh (1990) model for NR

3
k
Wik = Cio(A3 +13+23 -3), (10)
k=1

where Cyg =0.298 MPa, Co0 = 0.014 MPa, C30 = 0.00016 MPa, and the
Ogden (1972) model for SBR

2
Wosg = D ZE( + 2k 254 -3) (1)
K
k=1

where 1 =0.638 MPa, o1 =3.03, o =—0.025 MPa, o =2.35.

Besides, Hamdi et al. (2006) found the following values of the
critical stretches corresponding to the sample failure in uniaxial
tension: Ang=7.12, Asgg =6.88. Based on this rupture data we fit
material failure parameters @ and m for various possibilities of
the transition to failure as shown in Figs. 2 and 3. Particularly, we
introduce the following modified Yeoh models (Fig. 2) with varying
parameter m=1, 10, 50

_ ¢NRH‘! 1 ] WI,\?R
wNRm— m F(E,O> -r m’ ¢&1Rm ’ (12)
where ¢NR1 =74.4MPa, ¢NR10 =82.0 MPa, and (DNRSO =69.63 MPa.

Analogously, we introduce the modified Ogden models (Fig. 3)
with varying m=1, 10, 50

D 1 1w
YsBrm = % {F(m’o) -r (m’ (pmSBR )} (13)
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Fig. 2. Cauchy stress (MPa) versus stretch in uniaxial tension. Dashed line desig-
nates intact Yeoh model. Solid lines designate Yeoh model with energy limiters for
varying m.

where Dspr1 =108.65 MPa,
¢SBR50 =78.71 MPa.

It is remarkable that models with large parameter m depart
from the stress-strain curve of the intact material much later than
models with small m.

We emphasize that though failure parameters @ and m control
the onset of failure and the decay of the stress-strain curve corre-
spondingly they are not completely independent and they should
be fitted simultaneously like any material parameters.

We analyze failure of thin sheets of NR and SBR in plane stress
states with varying biaxiality, n, for the introduced material models
with failure (12) and (13). Critical stretches corresponding to the
onset of static instability - failure - are presented in Fig. 4.

The results obtained for various magnitudes of m coincide. In the
case of stresses shown in Fig. 5 the situation is different. Stresses are
significantly smaller for m =1 as compared to the cases of m=10and
m=50which are close to each other. Remarkably, the magnitudes of
the critical stretches and stresses decrease when the stretch state
drifts from the uniaxial tension to the equal biaxial tension. The
latter means that failure criteria of maximum principal stretch or
stress are debatable from the presented theory standpoint: the fail-
ure indicator should essentially depend on the spatial stress—strain
state.

Finally, we compare the critical stretches obtained by using the
elasticity with energy limiters with the results obtained by using
a multiscale model of rubber failure proposed by Dal and Kaliske
(2009) and experiments performed by Hamdi et al. (2006) - Fig. 6.

There is a good correspondence between theoretical and exper-
imental results for NR while for SBR there is some deviation of

d)sgmo =94.71 MPa, and
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Fig.3. Cauchy stress (MPa)versus stretch in uniaxial tension. Dashed line designates
intact Ogden model. Solid lines designate Ogden model with energy limiters for
varying m.
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Fig. 4. Critical failure stretches for NR (left) and SBR (right) materials based on the hyperelasticity with energy limiters.

300
ﬁ m=1 * m=1 *
2508 A 250
DE?A NR m=10 [] SBR m=10 [
FaN
200 o, m=50 A\ 200%§AA m=50 A
oa ©
: oa, ! 4
a
® 150 da ® 150 ds
oA d}
o a lf
DDA f
100 o2 100 =g
A o
DDA [ )
oA
A
50 Boa 50 '#A
o4 A
.Y i % %
50 100 150 200 250 300 50 100 150 2[%Q 250 300
o, o

Fig. 5. Critical failure stresses (MPa) for NR (left) and SBR (right) materials based on the hyperelasticity with energy limiters.

theoretical prediction from experiments when the stress state
tends to the equal biaxial tension. This deviation might be reason-
able since the equal biaxial state might be sensitive to imperfections
in samples and loads. The latter is the reason why it is prac-
tically impossible to execute equal biaxial tests of failure with
the displacement control. It should not be missed, of course, that
the energy limiters were fitted to the uniaxial tension experi-

ments and they can be improved, in principle, by fitting to the
more general biaxial data presented in Fig. 6. We also mention
that the multiscale theory of Dal and Kaliske (2009) provides a
better approximation of experimental data in equal biaxial ten-
sion of SBR than the present theory. However, the elasticity with
energy limiters is dramatically simpler than any multiscale or CDM
theory.
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Fig. 6. Critical failure stretches for NR (left) and SBR (right) materials based on the hyperelasticity with energy limiters.
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Fig. 7. Critical shear stress, T=(01 —02)/2, (MPa) for NR (left) and SBR (right) materials based on the hyperelasticity with energy limiters.
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Fig. 8. Critical von Mises stress (MPa) for NR (left) and SBR (right) materials based on the hyperelasticity with energy limiters.

5. Concluding remarks

We proposed a universal formula (1) which allows enriching
constitutive models of intact materials with a failure description.
This new formula includes the energy limiter, &, and a new con-
stant, m. @ makes the crucial contribution to the separation energy
that can be accumulated in an infinitesimal material volume prior
to its failure while m is related to the abruptness of the bond
rupture. The larger is m the faster is transition to failure. Small

magnitudes of m are required in the cases of the gradual bond
rupture.

We examined the proposed formula in the problems of
plane stress for NR and SBR by using the modified Yeoh
and Ogden models of conventional hyperelasticity. The
comparison of the results obtained by using the proposed
approach and experiments and other theories is favorable,
especially, taking into account the simplicity of the new
formulation.
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Fig. 9. Critical strain energy (MPa) for NR (left) and SBR (right) materials based on the hyperelasticity with energy limiters.
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Table 1
Full separation energy versus critical failure energy.

NR SBR

m=1 m=10 m=50 m=1 m=10 m=50

744 78.0 68.9
429 63.1 64.2

108.7 90.1 77.8
52.8 718 72.2

Full separation energy (MPa)
Critical energy (MPa)

Encouraged by the experimental verification we can use the
proposed models with energy limiters to examine various local
(pointwise) failure criteria.

It is evident from Figs. 4 and 5 that the criteria of the maxi-
mum principal stretch or stress derived from the uniaxial tension
experiments are questionable.

Another criterion is the maximum shear stress. Its variation in
the critical cases of the plane stress considered in the previous sec-
tion is depicted in Fig. 7. Evidently, the maximum shear stress is
not a good choice for the failure indicator.

Von Mises stress, o = \/3(0' o — (tr0')2/3)/2, is often used as
a failure indicator in order to account for the spatial variations of
the stress—strain state. The critical failure magnitudes of the von
Mises stress are shown in Fig. 8 for the cases analyzed in the present
work. These results do not favor the von Mises stress as the failure
criterion.

Finally, we checked the magnitudes of the accumulated strain
energy in all considered cases of failure - Fig. 9.

The results definitely favor a constant magnitude of the strain
energy as a failure criterion. It should not be missed that the crit-
ical failure energies that appear in Fig. 9 do not coincide with the
energy of full separation, @1"(1/m, 0)/m, — see Table 1. The failure
occurs before the limit of full separation is reached and, conse-
quently, the critical values of energy for various cases of loading
are not coincident in advance!
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