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A B S T R A C T

The arterial wall is a composite where the preferred orientation of collagen fibers induces

anisotropy. Though the hyperelastic theories of fiber-reinforced composites reached a

high level of sophistication and showed a reasonable correspondence with the available

experimental data they are short of the failure description. Following the tradition of

strength of materials the failure criteria are usually separated from stress analysis. In

the present work we incorporate a failure description in the hyperelastic models of soft

anisotropic materials by introducing energy limiters in the strain energy functions. The

limiters provide the saturation value for the strain energy which indicates the maximum

energy that can be stored and dissipated by an infinitesimal material volume. By using

some popular constitutive models enhanced with the energy limiters we analyze rupture of

a sheet of arterial material under the plane stress state varying from the uniaxial to equal

biaxial tension. We calculate the local failure criteria including the maximum principal

stress, the maximum principal stretch, the von Mises stress, and the strain energy at the

moment of the sheet rupture. We find that the local failure criterion in the form of the

critical strain energy is the most robust among the considered ones. We also find that

the tensile strength – the maximum principal stress – that is usually obtained in uniaxial

tension tests might not be appropriate as a failure indicator in the cases of the developed

biaxiality of the stress–strain state.
c⃝ 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The arterial wall is an anisotropic inhomogeneous structure
undergoing large deformations. These features make the
phenomenological modeling of the arterial wall a challenging
task. Nonetheless, huge progress has been made in the
constitutive theories of arteries and, in a wider perspective,
of soft biological tissues: Fung (1993); Humphrey (2002); Cowin
and Humphrey (2002); Holzapfel and Ogden (2003, 2006, 2010).
Some issues, however, require further elaboration. Among
them is a theoretical description of failure.

E-mail address: cvolokh@technion.ac.il.

Two approaches to predict failure of soft materials and
biological tissues are used in the literature. The first – the
strength-of-materials approach – is based on a pointwise
criticality condition. According to this approach, a structure
is analyzed by using constitutive models that do not include a
failure description – the intact material models – and failure is
claimed when a local failure criterion is obeyed at a material
point. There are various local criteria as, for example, the
maximum von Mises stress; the maximum principal stress;
the maximum strain energy etc. Evidently, the strength-
of-materials approach is simple yet restrictive because the

1751-6161/$ - see front matter c⃝ 2011 Elsevier Ltd. All rights reserved.
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local state of deformation defines global failure, which is
not necessarily correct. Moreover, the critical failure criteria
are separated from stress analysis and their experimental
validation is difficult.

The second – Continuum Damage Mechanics (CDM) –
approach allows modeling global failure and includes the
failure condition in its constitutive description. In CDM a
scalar or tensor damage parameter is introduced to describe
the degradation of material properties during mechanical
loading (Hokanson and Yazdami, 1997; Rodriguez et al.,
2006; Calvo et al., 2006; Balzani et al., 2006). The damage
parameter is an internal variable whose magnitude is
constrained by the damage evolution equation and the critical
threshold condition analogously to theories of plasticity.
Theoretically, the approach of damage mechanics is very
flexible. Practically, the experimental calibration of damage
theories might be very complicated because the damage
parameter is hard to observe explicitly.

Recently, an alternative to the mentioned approaches
emerged, which is based on the hyperelastic constitutive
equations including the energy limiters—the softening
hyperelasticity (Volokh, 2007, 2008a). This new approach
is simpler than CDM because it involves neither internal
variables nor their critical threshold condition and evolution
equations. At the same time, contrary to the strength-of-
materials approach the elasticity with energy limiters is a
constitutive theory incorporating a failure description in the
strain energy function which allows modeling the global
failure.

In the present work we use the elasticity with energy
limiters for modeling failure of soft anisotropic materials
with emphasis on arteries. We propose three generalizations
of the well-known arterial models by enforcing the failure
descriptions. The first one generalizes the celebrated Fung
model of the arterial wall. Two others generalize the
popular Holzapfel–Gasser–Ogden (HGO) model based on the
presentation of the characteristic directions of anisotropy by
structural tensors. The proposed models are used to analyze
failure in tension of an arterial sheet under the varying
biaxiality conditions. The analysis allows us to reassess the
local strength-of-materials criteria of the arterial failure.

The paper starts with a short review of elasticity with
energy limiters in Section 2. The generalized Fung model
is considered in Section 3. Two versions of the generalized
HGO model are considered in Sections 4 and 5 accordingly.
The discussion of the applicability of the local failure criteria
appears in Section 6.

2. Elasticity with energy limiters

Let us consider the interaction of two particles, which can
be molecules or molecular clusters. The reference distance
between them corresponds to zero interaction force and
zero stored energy. The interaction passes three stages with
the increase of the distance. At the first stage the force
increases proportionally to the increasing distance: the linear
stage. At the second stage the force–distance relationship
deviates from the linear proportionality: the nonlinear stage.
At the third stage the force drops with the increasing

distance: the separation or failure stage. In the case of solids
composed of many particles two first stages of the particle
interaction are described by the linear and nonlinear theories
of elasticity correspondingly where the changing distance
between particles is averaged by a continuum strain measure
and the energy of the particle interaction is averaged by a
strain energy function. Amazingly, the third, failure, stage of
the particle interaction is beyond the scope of the traditional
elasticity theories.1 However, the failure description can
still be introduced in elasticity by analogy with the failure
description in the particle interaction. Indeed, the force of the
pair interaction decreases with the increase of the interaction
distance because the energy that can be stored during
separation is limited by the constant of the bond energy. If
the energy limiter exists for the pair interaction then it should
exist in the multiple interactions. The latter means that we
should limit the magnitude of the strain energy in order to
describe material failure within the framework of elasticity.2

A very simple way to introduce the energy limiters is by
using the following formula for the strain energy (Volokh,
2007)

ψ(Φ,W) = Φ


1 − exp


−
W
Φ


, (2.1)

where W is the strain energy of an intact, i.e. without failure,
material and Φ is the volumetric failure energy—the energy
limiter. Formula (2.1) has two limit cases. If the failure energy
is infinite, Φ = ∞, then we have the classical hyperelastic
material: ψ(∞,W) = W. If the failure energy is finite then the
increase of the strain energy is limited: ψ(Φ,∞) = Φ.

An example of the use of (2.1) can be found in Volokh and
Vorp (2008) for the incompressible material of the Abdominal
Aortic Aneurysm (AAA) with the intact strain energy in the
form

W = α1(λ
2
1 + λ22 + λ23 − 3)+ α2(λ

2
1 + λ22 + λ23 − 3)2,

J = λ1λ2λ3 = 1
(2.2)

where λis are the principal stretches and material constants
α1 = 10.3 N/cm2; α2 = 18.0 N/cm2; Φ = 40.2 N/cm2 were
calibrated in the uniaxial tension test shown in Fig. 1.

It is evident from Fig. 1 that formula (2.1) is useful for a
description of smooth failure3 with a flat limit point on the
stress–strain curve, which corresponds to a gradual process of
the bond rupture. In the case of more abrupt bond ruptures,
however, a much sharper transition to the material instability
occurs. To describe such sharp transition to failure (2.1) can
be generalized as follows (Volokh, 2010a)

ψ =
Φ

m


0


1
m
,0


− 0


1
m
,
Wm

Φm


. (2.3)

where the upper incomplete gamma function 0(s, x) =
∞

x ts−1 exp(−t)dt is used.
The new material parameter m controls the sharpness of

the transition tomaterial instability on the stress strain curve.

1 Short reviews of nonlinear elasticity with examples can be
found in Beatty (1987) and Ogden (2003), for instance.

2 It should not be missed that significant plastic deformations
are beyond the scope of elasticity with energy limiters.

3 Other examples are reviewed in Volokh (2008a).
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Fig. 1 – Cauchy stress [N/cm2] versus stretch in the
uniaxial tension of AAA material (from Volokh and Vorp,
2008).

Fig. 2 – Cauchy stress [MPa] versus stretch in uniaxial
tension of NR: blue dashed line designates the intact
model; red lines designate the model with energy limiters
for varying m.

Increasing m it is possible to simulate more brittle ruptures of
the internal bonds. It should not be missed that (2.3) reduces
to (2.1) for m = 1.

It is worth emphasizing again that by the sharp (m > 10)
transition to material instability we mean the rupture of
ideal bonds within a representative volume. Some materials
have bonds that tear gradually and the stress–stretch curve
goes down gently while other materials have bonds that tear
abruptly and the stress–stretch curve goes down steeply. We
do not consider localization into cracks which is a result of
the imperfect material structure. It is clear, however, that
such localization should happen near the limit point of the
idealized stress–stretch curve.

Formula (2.3) was applied to a filled Natural Rubber (NR)
vulcanizate with the following intact strain energy

W =

3−
k=1

Ck0(λ
2
1 + λ22 + λ23 − 3)k, J = λ1λ2λ3 = 1, (2.4)

where λi are principal stretches and C10 = 0.298 MPa,C20 =

0.014 MPa,C30 = 0.00016 MPa.
Based on the experiments by Hamdi et al. (2006), who

found the critical failure stretch in uniaxial tension: λc = 7.12,
the energy limiters Φ1 = 74.4 MPa,Φ10 = 82.0 MPa,Φ50 =

69.63 MPa were calibrated for varying parameter m =

1,10,50— Fig. 2.
The strain energy (2.3)–(2.4) calibrated in the uniaxial

tension test was also examined under the biaxial tension
and the results were compared to the biaxial tension
tests conducted by Hamdi et al. (2006). The results of the

Fig. 3 – Critical failure stretches in biaxial tension for NR.

comparison are presented in Fig. 3. It is not surprising that
the critical experimental stretches presented in the center
of Fig. 3 are slightly lower than the theoretical prediction
because the equal biaxial stretching is very sensitive to
imperfections in specimens and loads. The latter sensitivity
is the reason why the equal biaxial failure tests are so difficult
to perform. It seems like this situation is similar to the
celebrated shell buckling problem which was a source of
controversy for a long period unless it was realized that the
critical buckling load was very sensitive to imperfections.

At this point we have to emphasize that the elasticity with
energy limiters does not include a description of the energy
dissipation in its theoretical setting. Such a description is
irrelevant for the static problems considered in the present
work because no unloading occurs. However, the account of
the dissipation is crucial for modeling dynamic failure where
the elastic unloading can potentially lead to the healing of the
damaged material. Indeed, the unloading path should follow
the same stress–strain curve as the loading path in the case of
hyperelasticity and, consequently, no dissipation occurs and
material heals. To prevent from the healing, the dissipation is
easily enforced computationally by removing the failed finite
elements from the mesh. Thus, the account of the dissipation
is a technical rather than a theoretical issue—see Trapper and
Volokh (2010) and Volokh (2011), for example.

Based on the presented AAA and NR models it is possible
to calculate the critical rupture states of the material sheet,
where ∂2ψ/∂λ21 · ∂2ψ/∂λ22 − (∂2ψ/∂λ1∂λ2)

2
= 0, under the varying

biaxiality parameter

n = ln λ2/ ln λ1, (2.5)

where λ1 and λ2 are the principal stretches in the plane of the
sheet.

Uniaxial Tension (UT) corresponds to n = −0.5; Pure Shear
(PS) corresponds to n = 0.0; and the equal Biaxial Tension (BT)
corresponds to n = 1.0. Figs. 4 and 5 present the failure criteria
for the critical states of the sheet instability calculated for
the considered constitutive models incorporating the energy
limiters for AAA and NR (m = 10)materials accordingly.

Von Mises stress presented in the figures is calculated as

follows: σ =


3(σ : σ− (trσ)2/3)/2, where σ is the Cauchy stress

tensor.
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Fig. 4 – Critical failure criteria for Natural Rubber under varying biaxiality ratio.

Figs. 4 and 5 clearly show that only the energy criterion
is almost constant for the critical failure states with varying
biaxiality. It is especially crucial that critical parameters
corresponding to uniaxial tension, which are usually fitted
in experiments, decrease with the developing biaxiality.
Thus, the rupture under equal biaxial tension occurs under
smaller values of the critical parameters (except energy)
than it is observed in uniaxial tension. This notion is very
important because rubber-like materials and soft biological
tissues are often loaded in the biaxial or triaxial stress–strain
states in engineering and biological structures where the
strength criteria based on uniaxial tension tests might not be
applicable.

It should not be missed that all results concerning
the reassessment of the local failure criteria presented
in this section were obtained for isotropic materials.
Arteries are anisotropic and we will examine the effect of
anisotropy on their strength below. We also notice that AAA
material is modeled as isotropic in Fig. 5 and in works by
Volokh and Vorp (2008) and Volokh (2010b). However, the
experimental analysis of Vande Geest et al. (2006) showed
that the transition from the healthy artery to AAA can be
accompanied by the increase of the material anisotropy.
This conclusion is interesting and somewhat counterintuitive

because we used to think that the formation of AAA is
triggered by the degradation of the media layer which is the
main source of anisotropy. Thus, one might probably expect
the decrease of the arterial anisotropy with the development
of AAA contrary to the data reported by Vande Geest et al.
(2006). More light should be shed on this intriguing issue.

3. Enhanced Fung model

In a series of pioneering articles Fung developed the
exponential strain energy functions W, which describe the
intact deformation of the arterial wall (Fung et al., 1979;
Chuong and Fung, 1983; Fung, 1993). Fung’s model is
incompressible and orthotropic and its generalized version
incorporating failure can be written as follows

ψ =
Φ

m


0


1
m
,0


− 0


1
m
,
Wm

Φm


, (3.1)

W =
c
2
(eQ − 1), (3.2)

Q = c1E
2
11 + c2E

2
22 + c3E

2
33 + 2c4E33E22

+2c5E11E22 + 2c6E11E33, (3.3)
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Fig. 5 – Critical failure criteria for Abdominal Aortic Aneurysm under varying biaxiality ratio.

where indices 1, 2, 3 of the components of the Green strain
tensor E designate the axial, circumferential, and radial
directions of the artery accordingly; material constants are:
c = 26.95 KPa; c1 = 0.4180; c2 = 0.9925; c3 = 0.0089; c4 =

0.0193; c5 = 0.0749; c6 = 0.0295; m = 10. The Green strain
tensor E = (FTF − 1)/2 is calculated by using the second-
order identity tensor 1 and the deformation gradient tensor
F = ∂y/∂x where x and y(x) are the referential and current
positions of a material point accordingly.

We notice that themodel does not include the dependence
on shear strains following the original suggestion by
Fung because the three axial directions are considered
to be principal. Following this setting we can express
the homogeneous deformation law and nonzero strains as
follows

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3, (3.4)

E11 =
1
2
(λ21 − 1), E22 =

1
2
(λ22 − 1), E33 =

1
2
(λ23 − 1). (3.5)

Based on these kinematic assumptions and the incom-
pressibility condition we have the following constitutive
equations

σ11 = −p + λ21
∂ψ

∂E11
, σ22 = −p + λ22

∂ψ

∂E22
,

σ33 = −p + λ23
∂ψ

∂E33
,

(3.6)

or

σ1 = −p + λ1
∂ψ

∂λ1
, σ2 = −p + λ2

∂ψ

∂λ2
,

σ3 = −p + λ3
∂ψ

∂λ3
,

(3.7)

where p is indefinite Lagrange multiplier.
The incompressibility condition J = λ1λ2λ3 = 1 means

that one stretch is not independent and, consequently, it is
possible to modify the strain energy function as follows

ψ̂(λ1, λ2) = ψ(λ1, λ2, λ
−1
1 λ−1

2 ). (3.8)

Excluding the Lagrange multiplier from (3.7) and account-
ing for (3.8) we get

σ1 − σ3 = λ1
∂ψ̂

∂λ1
, σ2 − σ3 = λ2

∂ψ̂

∂λ2
, (3.9)

or for a thin sheet of material we assume σ3 = 0 and obtain

σ1 = λ1
∂ψ̂

∂λ1
, σ2 = λ2

∂ψ̂

∂λ2
. (3.10)
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Fig. 6 – Pure shear for the enhanced Fung model: stress [KPa] versus stretch in axial and circumferential directions of the
artery.

The stress–stretch curves in pure shear (PS) in axial (λ1 =

λ, λ2 = 1) and circumferential (λ2 = λ, λ1 = 1) directions are
presented in Fig. 6 for varying Φ.

The different graphs presented in Fig. 6 point towards the
difference between the isotropic and anisotropic models. The
graph on the left and the right of the figure present the pure
shear in the axial and circumferential directions of the artery
correspondingly. Because of anisotropy the graphs show the
different stiffness and strength. Indeed, the increase of the
stress–stretch curve in the axial arterial direction is more
gradual than in the circumferential direction. Accordingly,
the strength, which is the maximum principal stress, in
the circumferential direction is higher than in the axial one
while the corresponding maximum stretch is lower. Thus,
the circumferential direction is stiffer overall than the axial
direction.

Fig. 6 also reveals the role of parameter Φ whose increase
leads to the increase of strength. It is remarkable that the
departure from the stress–stretch curve of the intact material
occurs at the point of rupture. The latter is due to the
relatively high value of m = 10.

We further consider the biaxial tension of an arterial sheet
described by the enhanced Fungmodel (3.1)–(3.3). In this case,
which preserves symmetry, formula (3.10) is applicable and
we can analyze rupture analogously to the previous section.

We do not know the true value of Φ because of the lack of
the experimental data and we arbitrarily choose Φ = 40 KPa
for the subsequent calculations.

Fig. 7a presents the local failure criteria at the point of
rupture when the sheet is stretched by λ in the axial and
by λn in the circumferential arterial direction accordingly.
Qualitatively, the results are similar to those for isotropic
materials considered in the previous section—the local
magnitude of the critical energy stays as the most robust
failure criteria. There is an interesting point, however, in the
obtained results which appears due to anisotropy: the graphs
of the maximum principal stress and von Mises stress have
a global minimum point. This point indicates the transition
from the maximum principal stress in the axial direction,
σ1max, to themaximumprincipal stress in the circumferential
direction, σ2max. This transition occurs because the material
is stiffer in the circumferential direction.

Fig. 7b presents the local failure criteria at the point
of rupture when the sheet is stretched by λ in the

circumferential and by λn in the axial arterial direction
accordingly. Qualitatively, the results are similar to those for
isotropic materials considered in the previous section—the
local magnitude of the critical energy stays as themost robust
failure criteria. Contrary to the results presented in Fig. 7a
there is no point of the transition between the maximum
principal stretches in directions 1 and 2. The latter happens
because the circumferential direction is stiffer from the point
of view of the material and it dominates deformation.

4. First enhanced HGO model

We turn now to another model of the arterial wall
(Holzapfel et al., 2000), which became very popular recently.
The Holzapfel–Gasser–Ogden (HGO) material model is also
incompressible and anisotropic. Contrary to Fung’s model,
however, anisotropy is introduced with the help of the so-
called structural tensors that are formed by the tensor
product of the unit vectors in the characteristic directions
of anisotropy. The latter idea should probably be credited
to Spencer (1972, 1984). We also mention the work by Lanir
(1983), which was in effect a predecessor of the rising trend of
the so-called multiscale models in soft tissue mechanics.

The HGO model enhanced with the failure description can
be written as follows

ψ =
Φ

m


0


1
m
,0


− 0


1
m
,
Wm

Φm


, (4.1)

W =
c
2
(I1 − 3)+

k1
2k2

{exp(k2(J1 − 1)2)

+ exp(k2(J2 − 1)2)− 2}, (4.2)

I1 = F : F, J1 = (FTF) : (M1 ⊗ M1),

J2 = (FTF) : (M2 ⊗ M2),
(4.3)

M1 = (sinβ, cosβ,0)T, M2 = (− sinβ, cosβ,0)T, (4.4)

where4 c = 3.0 KPa, k1 = 2.36 KPa, k2 = 0.84, β = π/6,m = 10;
the structural tensors M1 ⊗ M1 and M2 ⊗ M2 are formed
from the unit vectors M1,M2 pointing out the characteristic
direction of the collagen fibers which are inclined with angle
β with respect to the circumferential direction, 2.

4 We use the Holzapfel et al. (2000) data for the media layer,
which dominates mechanical behavior of the artery.
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Fig. 7a – Local failure criteria for the enhanced Fung model in biaxial tension: λ1 = λ, λ2 = λn.

In the case of the homogeneous deformation described
by (3.4) we can express the invariants in (4.3) through the
principal stretches that, because of symmetry, coincide with
the main arterial directions: axial, circumferential, radial.
Thus, we have

I1 = λ21 + λ22 + λ−2
1 λ−2

2 , J1 = J2 = λ21 sin
2 β+ λ22 cos

2 β, (4.5)

where we used the incompressibility condition in the form:
λ23 = λ−2

1 λ−2
2 .

Substituting (4.5) in (4.1) and (4.2) we get

ψ̂(λ1, λ2) = ψ(I1, J1, J2). (4.6)

We can further use Eq. (3.10) for the study of biaxial
tension of the enhanced HGO model. Particularly, Fig. 8
presents the stress–stretch curves in pure shear (PS) in axial
(λ1 = λ, λ2 = 1) and circumferential (λ2 = λ, λ1 = 1) directions
are presented for varying Φ.

The graphs in Fig. 8 are qualitatively similar to those in
Fig. 6 for Fung’s material. There is a quantitative difference,
however. Again we observe that the stiffness and the strength
are higher in the circumferential direction than in the axial
one and the increase ofΦ leads to the increase of the strength.

We further investigate the states of biaxial failure under
the varying biaxiality parameter n = ln λ2/ ln λ1. Figs. 9a and
9b presents the critical local criteria of the material failure
analogously to Figs. 7a and 7b. It is readily observed that the
results are qualitatively similar to those for the enhanced
Fung material while there is some quantitative difference as
expected. Again we observe that anisotropy makes profound
effect on the failure criteria. And again the local energy
criterion seems to be the most robust.

5. Second enhanced HGO model

Two previousmodels, considered in Sections 3 and 4, included
only one parameter Φ enforcing a failure description. In the
absence of the experimental data it is difficult to decide
whether this parameter is enough for the failure description.
In the present section, we show how to make the models
more flexible in fitting the experimental data. The basic
idea is to consider anisotropic material as a mixture of
constituents enjoying their separate failure descriptions. In
effect, this idea has been implemented in Volokh (2008b).
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Fig. 7b – Local failure criteria for the enhanced Fung model in biaxial tension: λ2 = λ, λ1 = λn.

Fig. 8 – Pure shear for the first enhanced HGO model: stress [KPa] versus stretch in axial and circumferential directions of
the artery.

However, a description of failure was a bit too complex

and not systematic. In the present section we improve on

Volokh (2008b) by making the model more general and simple

simultaneously. Particularly, we introduce the following strain

energy function

ψ = ψ1 + ψ2 + ψ3, (5.1)

ψ1 =
Φ1
m1


0


1
m1

,0


− 0


1
m1

,
W

m1
1

Φ
m1
1


, (5.2)

W1 =
c
2
(I1 − 3), (5.3)
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Fig. 9a – Local failure criteria for the first enhanced HGO model in biaxial tension: λ1 = λ, λ2 = λn.

ψ2 =
Φ2
m2


0


1
m2

,0


− 0


1
m2

,
W

m2
2

Φ
m2
2


, (5.4)

W2 =
k1
2k2

{exp(k2(J1 − 1)2)− 1}, (5.5)

ψ3 =
Φ3
m3


0


1
m3

,0


− 0


1
m3

,
W

m3
3

Φ
m3
3


, (5.6)

W3 =
k1
2k2

{exp(k2(J2 − 1)2)− 1}. (5.7)

Here ψ1 describes themechanical response of the isotropic
matrix while ψ2 and ψ3 describe the response of two families
of fibers accordingly. Every constituent has its own failure
parameters Φi and mi that can be fitted independently.

To be specific we assume: mi = 10, c = 3.0 KPa, k1 =

2.36 KPa, k2 = 0.84, β = π/6, like in the previous section.
Besides, we fix Φ1 = 10 KPa in all subsequent computations
and we only vary Φ2 = Φ3 = 10;15;20 KPa.

Again, we use Eq. (3.10) for the study of biaxial tension
of the second enhanced HGO model. Fig. 10 presents the
stress–stretch curves in pure shear (PS) in axial (λ1 = λ, λ2 = 1)
and circumferential (λ2 = λ, λ1 = 1) directions are presented
for varying Φ2 = Φ3.

Similar to the already considered models we observe
that the stiffness and the strength are higher in the
circumferential direction than in the axial one and the
increase of Φ2 = Φ3 leads to the increase of the strength.

The critical failure criteria are analyzed in Fig. 11.
As compared to the previous models we notice a slight

scattering for the data on the critical failure energy around
the magnitude of 30 KPa.

6. Discussion

In the present work we developed new models of soft
anisotropic materials considering a description of the
mechanical behavior of the arterial wall. The main feature
of the developed models is the account of material failure
in constitutive equations. The latter is achieved by setting
the limits for the accumulation of the strain energy. These
limits lead to the appearance of the limit point on the
stress–strain curve indicating material instability and failure.
An attractive aspect of the proposed approach is the
possibility to enhance the already existing and successful
models of intact materials with a failure description. We
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Fig. 9b – Local failure criteria for the first enhanced HGO model in biaxial tension: λ2 = λ, λ1 = λn.

Fig. 10 – Pure shear for the second enhanced HGO model: stress [KPa] versus stretch in axial and circumferential directions
of the artery.

emphasize, however, that the proposed approach is not
universal: materials exhibiting essential structural changes
during deformation, e.g. plasticity, are beyond the scope of
the methods of energy limiters.

Particularly, we enhanced the Fung and the Holzapfel–
Gasser–Ogden models of anisotropic soft tissue with the

energy limiters. The new enhanced models were used for
analysis of rupture of a material sheet under tension with
the varying biaxiality ratio. The found rupture conditions
were used for the calculation of some basic failure criteria
including the maximum principal stretch and stress, the von
Mises stress, and the strain energy. The calculation showed
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Fig. 11a – Local failure criteria for the second enhanced HGO model in biaxial tension: λ1 = λ, λ2 = λn.

that only the strain energy magnitude corresponding to the
point of rupture exhibited a small scattering while other
criteria altered significantly under the variation of the stress
state from the uniaxial tension to the equal biaxial tension.
Moreover, the effect of anisotropy on these alterations was
pronounced.

It is remarkable that the maximum principal stretches and
stresses as well as the critical von Mises stress derived in the
uniaxial tension tests cannot be used as the failure criteria for
the stress–strain states with the developed biaxiality because
in the latter case the critical stretches and stresses have
soundly lower magnitudes than in the case of the uniaxial
tension.5 The comprehension and appreciation of this fact
is crucial and it is, probably, the main practical lesson to be
learned from the present theoretical study.

Onemight argue that the considered failure criteria are not
the criteria of the choice in the case of the fiber-reinforced
composites. Indeed, Bower (2010) suggests the following
criteria for anisotropic materials, for example.

The criterion of the orientation dependent fracture strength
is described by the following inequality for an orthotropic

5 See also Appendix.

material

max
θ,ϕ

ni(θ, ϕ)σijnj(θ, ϕ)

(σTS1 cos2 θ+ σTS2 sin
2 θ) sin2 ϕ+ σTS3 cos2 ϕ

≤ 1, (6.1)

where unit vector n(θ, ϕ) is defined by its spherical angular
coordinates θ and ϕ with respect to the orthotropy directions
and σTS1, σTS2, σTS3 are the tensile strength magnitudes in the
directions of orthotropy.

It is vital to note that though the tensile strengths are
used for all orthotropy directions their values are defined in
uniaxial tension tests. The results of the present work, however,
show that the uniaxial tension tests do not provide enough
information for establishing the local stress-based failure
criteria in the case of the multiaxial stress state.

Another possible critical condition for a fiber-reinforced
composite is the Tsai-Hill criterion that can be written as
follows for the plane stress state

σ211

σ2TS1

+
σ222

σ2TS2

−
σ11σ22

σ2TS1

+
σ212

σ2SS

≤ 1, (6.2)

where index 1 designates the direction of fibers and index 2
designates the orthogonal direction.
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Fig. 11b – Local failure criteria for the second enhanced HGO model in biaxial tension: λ2 = λ, λ1 = λn.

Tensile strengths σTS1, σTS2 are derived in uniaxial
tension tests while shear strength σSS can be expressed
through σTS1, σTS2 (see Bower (2010) for details). Again the
uniaxial tension experiments are assumed to be enough for
establishing the multiaxial fracture criteria contrary to the
results of the present work.

It is our hope and purpose that the results of the present
study will encourage the experimentalists to do failure tests
in the biaxial tension. Such tests are a great challenge
because the biaxial tension and failure are very sensitive to
imperfections in materials and loads. The only work we know
where the biaxial tension including failure was monitored
is the study by Hamdi et al. (2006) whose results we used
in Section 2. In that work the rubber balloon was inflated
up to rupture under the varying radius of the stiff meniscus
fixing the balloon. While this sort of experiment is suitable for
rubber it is hardly doable for the living tissue.6 It is probably
possible to suggest another experimental design for a tissue
sample. The idea is to stretch the tissue sheet in the first
direction and then to fix the stretch by using a device which

6 We would be happy to find this statement wrong.

can slide freely in the perpendicular direction. After that it
is possible to stretch the sheet up to rupture in the second
perpendicular direction. By changing the initial pre-stretch
it is possible to obtain the biaxial failure data of the type
presented in Figs. 7, 9 and 11. The proposed scheme does
not require the simultaneous loading in two directions which
is difficult to perform and can probably be more attractive
practically.

Appendix

The comparisons of various local failure criteria have been
made in the paper based on the models of elasticity with
energy limiters. It might also be interesting to directly
compare the local failure criteria established in the uniaxial
tension tests to the experimental data on natural rubber
presented in Fig. 3. Such a comparison is shown in Fig. A.1
for the critical von Mises stress and the maximum principal
stress calculated based on the intact rubber model described
by Eq. (2.4). We also notice that criterion (6.1) coincides with
the maximum principal stress for isotropic materials.
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Fig. A.1 – Critical failure stretches in biaxial tension for
natural rubber.
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