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Rubber materials and structures can fracture because tensile deformation and growth
of small pre-existing voids become unstable, leading to failure localization and crack
propagation. Thus, it is important to predict the onset of static instability of the grow-
ing voids. We consider two typical cases of interest: the instability of 3D voids under
the remote hydrostatic tension in the bulk and the instability of 2D voids under the
remote biaxial tension in the membrane. For the purpose of analysis, we use constitutive
models of natural and styrene-butadiene rubbers with the failure description enforced
by energy limiters. The limiters provide the saturation value for the strain energy which
indicates the maximum energy that can be stored and dissipated by an infinitesimal
material volume. We find that the unstable growth of a 3D bulk void can start when
the remote hydrostatic tension reaches the value of ∼2÷3 MPa and the unstable growth
of a 2D membrane void can start when the remote biaxial tension reaches the value of
∼50 ÷ 60 MPa.

Keywords: Rubber; cavitation; void growth; instability; elasticity; energy limiters.

1. Introduction

Unstable growth of voids or cavities is a typical mechanism of material failure. Cav-
itation instabilities generally occur in the material regions undergoing hydrostatic
tension and they can lead to failure localization and crack propagation. Various
studies have been done on modeling cavitation in elastic [Williams and Schapery,
1965; Ball, 1982; Abeyaratne and Horgan, 1985; Lopez-Pamies, 2009; Henao, 2009]
and elastic-plastic [Durban and Baruch, 1976; Bassani et al., 1980; Huang et al.,
1991; Hou and Abeyaratne, 1992] materials. Review papers by Gent [1990], Horgan
and Polignone [1995], and Fond [2001] put special emphasis on cavitation in rub-
berlike materials. While the quoted works consider mainly 3D voids in the bulk
material, a separate series of studies has been devoted to the instability of 2D voids
in thin material sheets — membranes — under the biaxial tension [Durban and
Birman, 1982; Haughton, 1986, 1990; Xinchun and Changjun, 2002; Cohen and
Durban, 2010].

In the present work, we study the instability of a spherical bulk void under the
remote hydrostatic tension (Sec. 3) and the instability of a circular membrane void
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under the remote biaxial tension (Sec. 4) by using hyperelasticity with energy lim-
iters (Sec. 2). The limiters provide the saturation value for the strain energy which
indicates the maximum energy that can be stored and dissipated by an infinitesi-
mal material volume. The main outcome of our studies are the approximate critical
values, ∼ 2 ÷ 3 MPa and ∼ 50 ÷ 60 MPa, of the remote tension, which can lead to
the initiation of rubber failure in the bulk and membrane accordingly through the
unstable growth of small voids.

2. Constitutive Models of Rubber Including Failure Description

In this section, we describe constitutive models of natural and styrene-butadiene
rubbers that incorporate a failure description. The latter is achieved by including
energy limiters in the hyperelastic strain energy functions. The basic physical idea
behind the introduction of the energy limiters can be explained as follows. Let
us consider an interaction of two particles, which can be molecules or molecular
clusters as shown in Fig. 1. The interaction undergoes repulsion, attraction, and
separation. The separation starts at the limit point of the force-distance curve shown
on the right diagram of Fig. 1. The limit point appears due to the existence of
the energy limiter — the bond energy — for the particle potential shown on the
left diagram in Fig. 1. In the case of solids that comprise billions of particles,
the average interparticle distance is measured by strain tensors and the average
particle potential is measured by the strain energy function. Amazingly, in contrast
to the particle interaction, the classical elasticity theory describing multi-particle
systems does not include the energy limiter, which should be the average bond
energy. Thus, the particle separation and consequently, material failure, is beyond
the scope of the traditional elasticity theories.1 However, the failure description can
still be introduced in elasticity by analogy with the failure description in the particle
interaction. The latter idea was put forward in a series of publications [Volokh, 2007,
2008, 2010].
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Fig. 1. Particle interaction: I–Repulsion; II–Attraction; III–Separation.

1Short reviews of nonlinear elasticity with examples can be found in Beatty [1987] and Ogden
[2003].
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A very simple yet general way to introduce the energy limiters is by using the
following formula for the strain energy [Volokh, 2007]

ψ(Φ,W ) = Φ
{

1 − exp
(
−W

Φ

)}
, (1)

where W is the strain energy of an intact, i.e., without failure, material and Φ
is the energy limiter, which can also be interpreted as the average bond energy
or the failure energy. The latter provides the saturation value for the strain energy
indicating the maximum energy that can be stored and dissipated by an infinitesimal
material volume.

Formula (1) has two limit cases. If the failure energy is infinite, which means
Φ → ∞, then we have the classical hyperelastic material: ψ(∞,W ) = W . If the
failure energy is finite then the increase of the strain energy is limited: ψ(Φ,∞) = Φ.

An example of the use of (1) can be found in Volokh and Vorp [2008] for the
incompressible material of the Abdominal Aortic Aneurysm (AAA) with the intact
strain energy in the form of W = α1(λ2

1 + λ2
2 + λ2

3 − 3) + α2(λ2
1 + λ2

2 + λ2
3 −

3)2, J = λ1λ2λ3 = 1, where λis are the principal stretches and material constants
α1 = 10.3 N/cm2; α2 = 18.0 N/cm2; Φ = 40.2 N/cm2 were calibrated in the uniaxial
tension test shown in Fig. 2.

We emphasize that the energy limiter is calibrated in the macroscopic failure
experiments.

It is evident from Fig. 2 that formula (1) is useful for a description of smooth
failure2 with a flat limit point on the stress-strain curve, which corresponds to a
gradual process of the bond rupture. However, in the case of more abrupt bond
ruptures, a much sharper transition to the material instability occurs. To describe
such sharp transition to failure formula (1) can be generalized as follows [Volokh,
2010]:

ψ =
Φ
m

{
Γ

(
1
m
, 0

)
− Γ

(
1
m
,
Wm

Φm

)}
. (2)
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Fig. 2. Cauchy stress [N/cm2] versus stretch in the uniaxial tension of AAA material (from
Volokh and Vorp, [2008]).

2Other examples are reviewed in Volokh [2008].
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where the upper incomplete gamma function Γ(s, x) =
∫ ∞

x ts−1 exp(−t) dt is
used.

New parameter m controls the sharpness of the transition to material instability
on the stress-strain curve. Increasing or decreasing m it is possible to simulate
more/less catastrophic ruptures of the internal bonds. It should not be missed that
(2) reduces to (1) for m = 1.

Formula (2) can be applied to a filled Natural Rubber (NR) vulcanizate with
the following intact strain energy calibrated by Hamdi et al. [2006]

WNR =
3∑

k=1

Ck0(λ2
1 + λ2

2 + λ2
3 − 3)k, J = λ1λ2λ3 = 1, (3)

where λi are principal stretches and C10 = 0.298 MPa, C20 = 0.014 MPa, C30 =
0.00016 MPa.

Based on the experiments by Hamdi et al. [2006], who found the critical failure
stretch in uniaxial tension: λNR

c = 7.12, the energy limiter Φ = 82.0 MPa was
calibrated for m = 10 as shown in Fig. 3 [Volokh, 2010].

Formula (2) can also be applied to a filled Styrene-Butadiene Rubber (SBR)
vulcanizate with the following intact strain energy calibrated by Hamdi et al. [2006]:

WSBR =
2∑

k=1

µk

αk
(λαk

1 + λαk
2 + λαk

3 − 3), J = λ1λ2λ3 = 1, (4)

where µ1 = 0.638 MPa, α1 = 3.03, µ2 = −0.025 MPa,α2 = −2.35.
Based on the experiments by Hamdi et al. [2006], who found the critical failure

stretch in uniaxial tension: λSBR
c = 6.88, the energy limiter Φ = 94.71 MPa was

calibrated for m = 10 as shown in Fig. 4 [Volokh, 2010].
At this point we have to emphasize that elasticity with energy limiters does not

include a description of the energy dissipation in its theoretical setting. Such descrip-
tion is irrelevant for the static problems considered in the present work because no
unloading occurs. However, the account of the dissipation is crucial for modeling
dynamic failure where the elastic unloading can potentially lead to the healing of
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Fig. 3. Cauchy stress [MPa] versus stretch in uniaxial tension of NR: dashed line designates the
intact model; solid line designates the model with energy limiter Φ = 82.0MPa for m = 10.
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Fig. 4. Cauchy stress [MPa] versus stretch in uniaxial tension of SBR: dashed line designates the
intact model; solid line designates the model with energy limiter Φ = 94.71MPa for m = 10.

the damaged material. To prevent the healing, the dissipation is easily enforced
computationally by removing the failed finite elements from the mesh. Thus, the
account of the dissipation is a technical rather than a theoretical issue (see Trapper
and Volokh [2010] and Volokh [2011], for example).

3. Bulk Void

In this section, we consider the deformation of a thick-walled rubber sphere under
hydrostatic tension. Assuming that the deformation is centrally-symmetric and
the base vectors in spherical coordinates coincide with the principal directions of
stretches, we can write the deformation law as follows

r = r(R), ϑ = Θ, ω = Ω, (5)

where a material particle occupying position (R,Θ,Ω) in the initial configuration is
moving to position (r, ϑ, ω) in the current configuration.

Designating the radial direction with Index 1 and tangential direction with
Indices 2 and 3 we can write the principal stretches in the form

λ1 =
dr

dR
, λ2 = λ3 =

r

R
. (6)

Since the volume of incompressible material is preserved during deformation we
have

b3 − a3 = B3 −A3, (7)

where A andB are the internal and a and b are the external radii of the sphere before
and after deformation accordingly. We also notice that any sub-sphere with the
internal or external radius r(R) should also preserve its volume and, consequently,
we get

r3 − a3 = R3 −A3. (8)
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The principal components of the Cauchy stress are in the directions of the base
vectors

σ1 = σrr = −p+ λ1
∂ψ

∂λ1
,

σ2 = σϑϑ = −p+ λ2
∂ψ

∂λ2
, (9)

σ3 = σωω = −p+ λ3
∂ψ

∂λ3

where p is indefinite Lagrange multiplier.
The stresses should obey the only equilibrium equation

dσrr

dr
+ 2

σrr − σϑϑ

r
= 0. (10)

This equation can be integrated as follows

σrr (b) − σrr (a) = 2
∫ b

a

σϑϑ − σrr

r
dr, (11)

or

g = 2
∫ b

a

(
λ2

∂ψ

∂λ2
− λ1

∂ψ

∂λ1

)
dr

r
, (12)

where boundary conditions have been taken into account

σrr (r = a) = 0, σrr (r = b) = g. (13)

We notice that hydrostatic tension g is a function of the placement of the internal
boundary, a, with account of

R(r, a) = 3
√
r3 − a3 +A3. (14)

To make the formulation dimensionless with respect to length we rewrite (12)
as follows:

g = 2
∫ b̄

ā

(
λ2

∂ψ

∂λ2
− λ1

∂ψ

∂λ1

)
dr̄

r̄
, (15)

where

λ1 =
R2

r2
=
R̄2

r̄2
, λ2 = λ3 =

r

R
=

r̄

R̄
, (16)

r̄ =
r

A
, R̄ =

R

A
, ā =

a

A
, b̄ =

b

A
, (17)

R̄(r̄, ā) = 3
√
r̄3 − ā3 + 1. (18)

For b̄ � ā we have the problem of the expansion of small void in the infinite
medium under the remote hydrostatic tension.3 The graph defined by (15) relates

3In computations we have assumed: b̄ = 1000.
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Fig. 5. 3D void: hydrostatic tension versus void hoop stretch for NR.
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Fig. 6. 3D void: hydrostatic tension versus void hoop stretch for SBR.

the tension with the void hoop stretch, ā = a/A. The results of the numerical
integration of (15) are presented in Figs. 5 and 6 for natural and styrene-butadiene
rubbers accordingly.

The results show that starting from the hydrostatic tension of 2.3 MPa for natu-
ral rubber and 3.3 MPa for styrene-butadiene rubber the void expands unstably — it
yields. Interestingly, for both materials the starred instability point corresponds to
the same critical hoop stretch at the void edge: a/A = 5.4. It should be highlighted
that the unstable yield of the void is a result of the assumption of the centrally-
symmetric deformation. This assumption is restrictive, of course, and it will be
violated for real materials which are not perfect. The latter will trigger localization
of failure in the vicinity of the critical starred point. Nonetheless, the prediction of
the critical point of the void instability seems to be reasonable even in the presence
of imperfections.

Remark. It is worth emphasizing that there is no general agreement on the defi-
nition of the void instability and different authors use different definitions. In the
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present work, we define the instability of the void as an event when the increase of
the void size does not require further increase of the load. Such event is designated
by stars on Figs. 5 and 6. The post-critical yield on the stress-stretch curves is of
minor interest because it considers the highly idealized behavior of the material
undergoing perfect centrally symmetric progressive failure at the void edge. It is
clear, however, that material imperfections will cause non-symmetric failure modes
initiating the failure localization into cracks. Thus, only the point of the onset of
instability is of practical value.

4. Membrane Void

In this section, we consider the biaxial tension of a membrane rubber disk. By using
cylindrical coordinates we define the referential region occupied by the membrane
as follows

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, −H/2 ≤ Z ≤ H/2. (19)

The membrane region after the deformation is

a ≤ r ≤ b, 0 ≤ ϑ ≤ 2π, −h/2 ≤ z ≤ h/2. (20)

We assume that the deformation is axisymmetric and a material particle occu-
pying position (R,Θ,Ω) in the reference configuration moves to position (r, ϑ, ω) in
the current configuration in accordance with the following law

r = r(R), ϑ = Θ, z =
h(R)
H

Z. (21)

Based on (21) we calculate the deformation gradient in cylindrical coordinates

F =




dr

dR
0 0

0
r

R
0

dh

dR

Z

H
0

h

H



. (22)

Since the membrane is thin, we will use the deformation gradient averaged over the
thickness

〈F〉 =




dr

dR
0 0

0
r

R
0

0 0
h

H



, (23)

where the average is defined as follows

〈F〉 =
1
H

∫ H/2

−H/2

FdZ. (24)
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We notice that the transition from (22) to (23) brings a great simplification
since the directions of the base vectors in cylindrical coordinates coincide with the
average principal stretches. Based on (23) and designating the radial, tangential,
and lateral directions with Indices 1, 2, and 3 accordingly, we can write the average
principal stretches in the form

λ1 =
dr

dR
, λ2 =

r

R
, λ3 =

h

H
. (25)

The constitutive equations relate the average stretches to the components of the
1st Piola–Kirchhoff stress tensor, P, as follows

P1 = PrR =
∂ψ

∂λ1
− pλ−1

1

P2 = PϑΘ =
∂ψ

∂λ2
− pλ−1

2 (26)

P3 = PzZ =
∂ψ

∂λ3
− pλ−1

3

where p is the indefinite Lagrange multiplier enforcing the incompressibility
condition

λ1λ2λ3 = 1. (27)

Since the membrane faces are stress-free, PzZ = 0, we can exclude the Lagrange
multiplier from (26)

P1 = PrR =
∂ψ

∂λ1
− λ3

λ1

∂ψ

∂λ3

P2 = PϑΘ =
∂ψ

∂λ2
− λ3

λ2

∂ψ

∂λ3
.

(28)

It is worth reminding again that the principal values of the 1st Piola–Kirchhoff
stress tensor correspond to the thickness average stretches.

Now, the equilibrium equations with respect to referential coordinates [Volokh,
2006] will reduce to

dP1

dR
+
P1 − P2

R
= 0. (29)

This equation is completed by the conditions at the membrane edges

P1(A) = 0, P1(B)λ1(B) = g, (30)

where g is the value of the hydrostatic tension.
Normalizing the length scale by the radius of the initial cavity we introduce

λ1 =
dr̄

dR̄
=

dr

dR
, λ2 =

r̄

R̄
=

r

R
, λ3 =

h̄

H̄
=

h

H
, (31)

r̄ =
r

A
, R̄ =

R

A
, h̄ =

h

A
, H̄ =

H

A
, Ā = 1, B̄ =

B

A
. (32)
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Substituting (31)–(32) in (29)–(30) we obtain the two-point boundary value
problem

dP1

dR̄
+
P1 − P2

R̄
= 0, (33)

P1(1) = 0, P1(B̄)λ1(B̄) = g, (34)

where the principal stresses are defined in (28) and principal stretches are defined
in (31) with account of the incompressibility condition (27).

Equation (33) and boundary conditions (34) can be solved numerically for r̄(R̄)
with account of (27), (28), and (31). In the case of B̄ � 1 we have the problem of
the expansion of small void in the infinite membrane under the biaxial tension.4

Since our purpose is to track the stress-stretch curve, there is no need to solve
the two-point boundary value problem for the given hydrostatic tension, g. Instead,
it is reasonable to solve a simpler initial value problem defined by the following
conditions at point Ā = 1:

r̄(1) = a/A,
dr̄

dR̄
(1) = β. (35)

Here β is defined from (34)1 by solving the algebraic equation

∂ψ

∂λ1
− λ3

λ1

∂ψ

∂λ3
= 0, (36)

where

λ1 = β, λ2 =
a

A
, λ3 =

1
λ1λ2

. (37)

By the direct calculation we obtain

∂ψ

∂λ1
=

∂ψ

∂W

∂W

∂λ1
=

∂ψ

∂W
2λ1

3∑
k=1

kCk0(λ2
1 + λ2

2 + λ2
3 − 3)k−1, (38)

∂ψ

∂λ3
=

∂ψ

∂W

∂W

∂λ3
=

∂ψ

∂W
2λ3

3∑
k=1

kCk0(λ2
1 + λ2

2 + λ2
3 − 3)k−1. (39)

Substituting (38)–(39) in (36) we get

λ2
1 = λ2

3. (40)

Finally, substituting (37) in (40) we have

β =

√
A

a
. (41)

Now the solution of (33) and (35) can be generated numerically for varying a
and g is the outcome of the calculation, as shown in Figs. 7 and 8.

4In computations we have assumed: B̄ = 1000.
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Fig. 7. Membrane void: hydrostatic tension versus void hoop stretch for NR.
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Fig. 8. Membrane void: hydrostatic tension versus void hoop stretch for SBR.

The results show that starting from the tension of 56 MPa for natural rubber
and 63 MPa for styrene-butadiene rubber, the void starts expanding in the unstable
mode. Parallel to the results of the previous section, the instability point corresponds
to the similar critical hoop stretch for both materials at the void edge: a/A = 7.5.

5. Discussion

The problem of the void expansion in rubberlike materials was addressed by many
authors who used various approaches. In the present work, we also addressed this
problem using a new approach of the elasticity with energy limiters, which allowed
enforcing a material failure description in the constitutive equations. Specifically,
we used the failure enhanced models of natural and styrene-butadiene rubbers cali-
brated in experiments to calculate the critical hydrostatic tension imposed remotely
on bulk and membrane voids. For NR and SBR we found that the critical magnitude
of the bulk hydrostatic tension is about 2 ÷ 3 MPa and the membrane tension is
about 50÷60 MPa. These magnitudes of the hydrostatic and membrane tension cor-
respond to the critical void hoop stretches equal 5.4 and 7.5 accordingly. It should
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not be missed, of course, that though the critical value of the hydrostatic tension
is smaller than the critical value of the membrane tension the critical integral force
that is imposed on the bulk void is proportional to the surface area of a 3D sphere
while the critical integral force that is imposed on the membrane void is propor-
tional to the perimeter of a 2D circle times the membrane thickness. Consequently,
the integral force on the void in the bulk will be generally greater than the integral
force on the membrane void.

It is hoped that the obtained critical parameters of the void instability will be
helpful in the design structural elements made of rubber.
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