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Diffusion through soft polymer filters is a nonlinear process: the
increase of the pressure on the filtrating liquid does not trigger
the proportional increase of the flux through the filter. There are
two sources of nonlinearity: the diffusivity properties of the filter
and its high deformability. In the present work we use a theoreti-
cal formulation coupling large deformations and diffusion to
describe a liquid flux through a polymeric filter. Two key factors
making the present formulation simple are the molecular incom-
pressibility condition and the nonlinear mobility tensor. The
developed model is calibrated based on the experiments on
toluene-rubber filtration. [DOI: 10.1115/1.4005578]
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1 Introduction

Gibbs [1] started modeling the chemomechanical coupling and
diffusion and the subsequent progress concerning diffusion in soft
materials was essentially due to the work in Flory and Rehner
[2,3], see also Ref. [4]. Modern developments are profoundly
based on continuum mechanics and they are present, for example,
in Refs. [5–10]. The quoted works differ in the complexity of the-
oretical formulations. Combining the approaches of the quoted
works, we set a coupled deformation-diffusion problem aiming at
the simplest possible formulation, which includes a nonlinear dif-
fusion. The formulation is used to solve the problem of the diffu-
sion of toluene through a soft rubber filter.

2 Governing Equations

We assume that the inertia effects of the infiltrating liquid are
negligible as well as the momentum transfer from the liquid to the
solid. These assumptions allow us to describe the filtration process
by the altering concentration of the liquid within a solid particle—
an infinitesimal volume of soft filter.

Thus, the first governing equation sets the equilibrium for the
infiltrated solid without inertia and body forcesþ

rndA ¼ 0 (2.1)

where r is the Cauchy stress tensor and n is the unit outward nor-
mal to the body surface A.

By using the divergence theorem it is possible to localize the
equilibrium equation as follows

divr ¼ 0 (2.2)

where ðdivrÞi ¼ @rij=@yj is calculated with respect to the spatial
coordinates.

Boundary conditions on tractions or placements read
accordingly

rn ¼ �t or yðxÞ ¼ �y (2.3)

where the barred quantities are prescribed and x designates the
referential position of the particle moved to position yðxÞ after the
deformation.

The equilibrium equation and boundary conditions should be
coupled with the balance equation for the infiltrating liquid, which
can be set in the form

d

dt

ð
c dV ¼

ð
n dV þ

þ
u � n dA (2.4)

where c is the true concentration, i.e., the number of molecules/
moles of the liquid per unit current volume of the mixture; n is its
volumetric supply and u is its flux through the body surface.

Localizing Eq. (2.4) we formulate the differential balance equa-
tion for the infiltrating liquid

@ c

@t
þ divðcvÞ ¼ divuþ n (2.5)

Its boundary conditions read

u � n ¼ �un or f ðcÞ ¼ 0 (2.6)

where f is a boundary constraint imposed on the concentration.
The initial condition takes form

cðt ¼ 0Þ ¼ �c (2.7)

Since the deformed boundary is generally not known in
advance, it can be advantageous to use the referential description
where Eqs. (2.1)–(2.7) take the following forms accordingly:þ

Tn0dA0 ¼ 0 (2.8)

DivT ¼ 0 (2.9)

Tn0 ¼ �t0 or yðxÞ ¼ �y (2.10)

d

dt

ð
c0 dV0 ¼

ð
n0 dV0 þ

þ
u0 � n0dA0 (2.11)

@c0

@t
¼ Divu0 þ n0 (2.12)

u0 � n0 ¼ �u0n or f0ðc0Þ ¼ 0 (2.13)

c0ðt ¼ 0Þ ¼ �c0 (2.14)

where T is the 1st Piola-Kirchhoff stress tensor and ðDivTÞi
¼ @Tij=@xj is calculated with respect to the referential
coordinates.

The spatial (Eulerian) and referential (Lagrangean) quantities
are related as follows

dV ¼ JdV0 (2.15)

ndA ¼ JF�Tn0dA0 (2.16)

r ¼ J�1TFT (2.17)

c ¼ J�1c0 (2.18)

n ¼ J�1 n0 (2.19)

u ¼ J�1Fu0 (2.20)
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where

F ¼ @y=@x (2.21)

is the deformation gradient and J ¼ det F.
In addition to the balance laws, it is necessary to formulate the

constitutive equations that can generally be written in the follow-
ing form

T ¼ TðC; c0;rc0Þ (2.22)

u0 ¼ u0ðC; c0;rc0Þ (2.23)

n0 ¼ n0ðC; c0;rc0Þ; (2.24)

where C ¼ FTF is the right Cauchy-Green deformation tensor and
ðrc0Þi ¼ @c0=@xi.

It is important to emphasize that the flux should depend on the
gradient of the concentration to provide the second order of the
balance equations.

3 Diffusion Through Filter

Based on the described theoretical framework, we examine the
problem of the diffusion of the toluene liquid through a rubber
filter—Fig. 1—that was considered in the experiments of Paul and
Ebra-Lima [11].

The rubber filter is placed on a permeable porous plate and the
liquid diffuses through it under pressure p2 > p1. We assume that
the volumetric source is zero: n0 ¼ 0; and the process is steady
state: _c0 ¼ 0. Under these assumptions the balance equations
reduce to

DivT ¼ 0 (3.1)

Divu0 ¼ 0 (3.2)

The constitutive equations can be defined as follows; for example,

T ¼ 2F
@WðC; c0Þ

@C
(3.3)

u0 ¼Mðc0;CÞ rl (3.4)

l ¼ @WðC; c0Þ
@c0

(3.5)

where W is the Helmholtz free energy function, M is the mobility
tensor, and l is the chemical potential.

Following Ref. [9], we assume the molecular incompressibility
constraint

cðc0;FÞ ¼ 1þ vc0 � J ¼ 0 (3.6)

where v is the volume of one molecule of the liquid.

The increment of this constraint takes form

_c ¼ @c
@c0

_c0 þ
@c
@F

: _F ¼ v _c0 � JF�T : _F ¼ 0 (3.7)

Multipliers v and �JF�T in Eq. (3.7) represent the workless chem-
ical potential and stress accordingly, which can be scaled by
arbitrary factor P. With account of Eq. (3.7), we modify Eq. (3.3)
and Eq. (3.5) as follows

T ¼ 2F
@W

@C|fflfflffl{zfflfflffl}
~T

�JPF�T ¼ ~T� JPF�T (3.8)

l ¼ @W

@c0

þ vP (3.9)

Since the thickness of the filter is small as compared to its
width, we can consider the field variations in the lateral directions
only. Specifically, we set the deformation and concentration gra-
dients in the following forms accordingly

F ¼ e1 � e1 þ e2 � e2 þ kðx3Þe3 � e3 (3.10)

u0 ¼ u03e3 (3.11)

Substituting Eqs. (3.10)–(3.11) in Eq. (3.8) and Eq. (3.4), we
get the following nontrivial stresses and fluxes

T11 ¼ T22 ¼ ~T11 � kP (3.12)

T33 ¼ ~T33 �P (3.13)

u03 ¼ M33

@l
@x3

(3.14)

We notice that the traction/placement boundary conditions take
the following forms on the upper and lower surfaces of the mem-
brane accordingly

T33ðLÞ ¼ �p2 (3.15)

y3ð0Þ ¼ 0 (3.16)

Since the stress tensor is divergence-free and T33 ¼ constant,
we can obtain the unknown multiplier P from the boundary con-
dition in Eq. (3.15)

P ¼ ~T33 þ p2 (3.17)

Substituting Eq. (3.17) in Eq. (3.9), we obtain for the chemical
potential

l ¼ @W

@c0

þ v ~T33 þ vp2 (3.18)

We also notice that, due to the molecular incompressibility con-
dition, the concentration is related to the stretch as follows

vc0 ¼ k� 1 (3.19)

Substituting Eqs. (3.18)–(3.19) and Eq. (3.14) in Eq. (3.2), we
get a second order ordinary differential equation of the chemical
balance in term of stretches. To solve it, we need to impose two
boundary conditions

f ðk1Þ ¼ lðk1Þ � p1v ¼ 0 (3.20)

f ðk2Þ ¼ lðk2Þ � p2v ¼ 0 (3.21)

where k1 ¼ kð0Þ and k2 ¼ kðLÞ.Fig. 1 Diffusion through a soft polymer filter
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We define the mobility tensor and the Helmholtz free energy
function as follows

M ¼ ðac0vÞb�1 c0D

kT
C�1 (3.22)

W ¼ 1

2
NkTðk2

1 þ k2
2 þ k2

3 � 3� 2 log½k1k2k3�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Elastic energy

� kT

v
vc0 log 1þ 1

vc0

� �
þ v

1þ vc0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Energy of mixing

(3.23)

where a and b are dimensionless material constants to be fitted to
experiments; D is the diffusion coefficient for the solvent mole-
cules, k is the Boltzmann constant, T is the absolute temperature,
N is the number of polymer chains in the gel divided by the refer-
ence volume, v is a dimensionless parameter, and ki are the princi-
pal stretches.

We notice that the neo-Hookean elastic energy and the Flory-
Huggins energy of mixing in Eq. (3.23) follow the standard for-
mulation based on the microscopic statistical considerations—see
Ref. [4], for example. Contrary to the statistical considerations the
choice of the mobility tensor in Eq. (3.22) is purely phenomeno-
logical. In the case of b ¼ 1 we have the linear diffusion, which,
unfortunately, does not allow fitting the experimental data
obtained in Ref. [11]. In the case of b > 1, more flexibility is
introduced into the theory to account for the nonlinear diffusion—
see also Ref. [7]. Of course, some statistical reasoning justifying
the choice of the phenomenological parameters a and b would be
highly welcome. We will not pursue the statistical approach in the
present work, however, regarding the simple phenomenology as a
good approximation.

Substituting Eq. (3.22) in Eq. (3.4) and accounting for
Eqs. (3.10)–(3.11) we obtain

u03 ¼ ðac0vÞb�1 c0D

kT
k�2 @l

@x3

(3.24)

Differentiating Eq. (3.23) with respect to stretches and concen-
tration and accounting for Eq. (3.19) we find

~T33 ¼ NkTðk� k�1Þ (3.25)

@W

@c0

¼ kT log
k� 1

k
þ 1

k
þ v

k2

� �
(3.26)

Substituting Eqs. (3.25)–(3.26) in Eq. (3.18) we have finally

l ¼ kT log
k� 1

k
þ 1

k
þ v

k2

� �
þ NvkTðk� k�1Þ þ vp2 (3.27)

Substituting Eq. (3.27) in Eq. (3.14) and Eq. (3.2), we have a
second-order ordinary differential equation, which is completed
by the boundary conditions noted in Eqs. (3.20)–(3.21).

Based on the numerical solution of the boundary-value problem
it is possible to calculate the increase of the flux through the filter
with the pressure increase—Fig. 2—for the toluene-rubber data
shown in the Table 1.

We notice that all parameters in Table 1 are given except for
a ¼ 5:7 and b ¼ 3 that were fitted to the experimental data.

4 Conclusion

A simple model of a liquid diffusion through the soft polymer
filter was developed and calibrated for the toluene-rubber data.
The simplicity was achieved by the use of the molecular incom-
pressibility condition and the nonlinear mobility tensor. The pro-
posed scheme can be easily applied to other filtration problems if
necessary.
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Fig. 2 Flux versus pressure

Table 1 Toluene-rubber data

k 1.38 � 10�23 Nm/K
T 303� K
p1 105 N/m2

v 17.7 � 10�29 m3

D 2.36 � 10�10 m2/s
N 6.36 � 1025 1/m3

L 2.65 � 10�4 m
v 0.425
a 5.7
b 3
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