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Failure of a single-atomic-layer graphene sheet is analyzed in
plane tension under the varying biaxiality condition. The analysis
is based on the combined use of continuum and molecular
mechanics where the strain energy is expressed with the help of
the Tersoff-Brenner atomistic potential. A critical failure surface
is produced for strains in biaxial tension. It is found that the ani-
sotropy of graphene has a pronounced effect on its strength.
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1 Introduction

Despite theoretical fears, Novoselov et al. [1] succeeded in
isolating a one-atom-thick layer of graphene. This experimental
finding drew attention to the study of graphene sheets in view of
their potential applications in physics, material science, and engi-
neering [2]. Interestingly, the studies of the mechanical properties
of graphene are yet relatively few [3–10].

The purpose of the present work is to obtain the failure surface
for graphene under biaxial tension. To do that, a continuum-
atomistic approach is adopted where the strain energy of a 2D
graphene sheet is defined with the help of the Tersoff-Brenner
empirical potential. The multiscale approach allows for analyti-
cally considering the problem without numerical simulations. The
failure surface showing the tensile strength of graphene is pre-
sented in Fig. 3. Remarkably, the anisotropy of graphene makes a
sound presence in the shape of the failure surface.

2 Continuum Mechanics

Generally, a single-atomic-layer graphene sheet should be mod-
eled by the methods of molecular mechanics. However, in the
case of the homogeneous deformation that is examined in the
present work, a great deal of simplification can be achieved by a
combination of molecular and continuum mechanics. In this sec-
tion, the major results of continuum mechanics, relevant to the
subsequent considerations, are highlighted.

In continuum mechanics the atomistic or molecular structure of
material is approximated by a continuously distributed set of the
so-called material points or particles. The continuum material
point is an abstraction that is used to designate a small (infinitesi-
mal) representative volume of real material, including many
atoms and molecules. A material point that occupies position x in
the reference configuration moves to position yðxÞ in the current
configuration of the continuum. The deformation in the vicinity of
the material point can be completely described by the deformation
gradient tensor

F ¼ @y=@x (1)

Using the deformation gradient, it is possible to introduce a
convenient deformation measure: the right Cauchy-Green tensor

C ¼ FTF (2)

This tensor is good to use because it is not affected by the rigid
body motion.

In the case of elastic continuum the true (Cauchy) stress is
related to the strain, Eq. (2), with the following constitutive
equation

r ¼ 2F
@w
@C

FT (3)

where wðCÞ is the strain energy per unit material volume in the
reference configuration.

In the absence of body and inertia forces, the stress should be
divergence-free, obeying the momentum balance

div r ¼ 0 (4)

The governing Eqs. (1)–(4) should be completed with boundary
conditions on tractions

rn ¼ �t (5)

or placements

y ¼ �y (6)

where n is the unit outward normal to the surface of the contin-
uum and the barred quantities are prescribed.

Let us be more specific about the problem of interest in the
present work and consider a biaxial tension of a thin material
sheet. Since the sheet is made of a single atomic layer and the out-
of-plane strains and stresses might be difficult to interpret, we
restrict the considerations to the in-plane 2D continuum
mechanics.

We define the Cartesian axes in the plane of the sheet as the
axes of symmetry during deformation; see Fig. 1. The deformation
law takes the form

y1 ¼ k1x1; y2 ¼ k2x2 (7)

and

F ¼ k1e1 � e1 þ k2e2 � e2; C ¼ k2
1e1 � e1 þ k2

2e2 � e2 (8)

where e1 and e2 are the Cartesian base vectors.
In view of Eq. (8) the constitutive Eq. (3) can be simplified as

follows

r11 ¼ k1

@w
@k1

; r22 ¼ k2

@w
@k2

(9)

The biaxial deformation is homogeneous and, consequently, the
stresses defined by Eq. (9) identically obey the momentum bal-
ance, Eq. (4). Moreover, because of the homogeneous deforma-
tion, the global elastic energy accumulated by the sheet is equal to
the local strain energy times the sheet area. Assuming, in addition,
that the external tensile forces (equal to r11;r22) applied at the
edges of the sheet are ‘dead’, i.e., constant during deformation,
we may formulate the criticality condition in the form

@2w

@k2
1

@2w
@k1k2

@2w
@k1k2

@2w

@k2
2

���������

���������
¼ 0 (10)

This condition defines the singularity of the Hessian of the total
potential energy, which physically means the loss of stability of
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the quasi-static deformation. The loss of stability marks the onset
of the material bond rupture with the subsequent failure localiza-
tion and propagation. Next, we will only consider the critical point
of the onset of failure without analyzing its localization and
propagation.

It now remains to set the strain energy function w for the gra-
phene sheet. In continuum mechanics, the latter is usually done by
assuming an analytical expression for the strain energy function
and fitting it to the results of macroscopic tests. At this point, how-
ever, we depart from the classical continuum mechanics and we
derive the strain energy function based on the empirical atomistic
potentials.

3 Molecular Mechanics

In order to derive the strain energy function from the atomistic
potentials we note that the relative positions of two atoms in the
referential configuration

Rij ¼ Rj � Ri (11)

can be mapped into the relative position of the same atoms in the
current configuration

rij ¼ rj � ri (12)

with the help of the deformation gradient

rij ¼ FRij (13)

where Ri and ri are the referential and current positions of the ith
atom.

Equation (13) allows the linking of the atomistic and continuum
descriptions. This link is tacitly assumed in the classical contin-
uum mechanics where the infinitesimal representative material
volumes locally deform in the homogeneous mode.

In crystal elasticity [11], the multiscale link, Eq. (13), is often
referred to as the Cauchy-Born rule [12–14]. It is usually assumed
that the Cauchy-Born rule is applicable to every simple Bravais
lattice while various lattices can move independently with respect
to each other. Thus, additional relaxation parameters are intro-
duced in the theory. We do not follow this path, however, assum-
ing that the highly symmetric deformation considered in the
present work would not be essentially affected by any possible
atomic relaxation. The reader can find the discussions of the
applicability of the Cauchy-Born rule in Refs. [15–18], for
example.

Having Eq. (13) at hand, we can express all distances and
angles between the current positions of the atoms through the
right Cauchy-Green tensor as follows

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rij � rij
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rij � CRij

p
(14)

cos uijk ¼
rij � rik

rijrik
¼ Rij � CRik

rijrik
(15)

Now, gathering all atomistic potentials U taking into account
Eqs. (14) and (15), it is possible to set the strain energy function
per unit surface area in the form

wðCÞ ¼ 1

2A0

X
i;j

UðrijðCÞÞ; (16)

where A0 is the area of the graphene sheet in the reference
configuration.

We specify the potential for carbon following [19,20]

UðrijÞ ¼
D

S� 1
fcðrijÞfexp½�

ffiffiffiffiffi
2S
p

bðrij � RijÞ�

� S

2
ðBij þ BjiÞ exp½�

ffiffiffiffiffiffiffiffi
2=S

p
bðrij � RijÞ�g (17)

Rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rij � Rij

p
(18)

Bij ¼ 1þ
X

kð6¼i;jÞ
a0 1þ c2

0

d2
0

� c2
0

d2
0 þ ð1þ cos uijkÞ2

 !
fcðrikÞ

8<
:

9=
;
�d

(19)

where a0 ¼ 0:00020813, c0 ¼ 330, d0 ¼ 3:5, d ¼ 0:5, D ¼ 6:0 eV,
S ¼ 1:22, b ¼ 21 nm�1, and Rij ¼ 0:142 nm is the equilibrium
bond length for atoms i and j under the condition of multiatomic
coupling.

The cutoff function fcðrijÞ used in Eq. (17) is

fcðrijÞ ¼

1 0 < rij < a1

1

2
þ 1

2
cos

pðrij � a1Þ
a2 � a1

a1 � rij < a2

0 rij � a2

8>>><
>>>:

(20)

where a1 ¼ 0:17 nm and a2 ¼ 0:20 nm include the only the first-
neighbor shell for carbon.

The cutoff function can be rewritten in a more compact form as
follows

fcðrijÞ ¼ HðrijÞ � Hðrij � a1Þ þ
1

2
1þ cos

pðrij � a1Þ
a2 � a1

� �
� fHðrij � a1Þ � Hðrij � a2Þg (21)

where the Heaviside unit step function has been used

HðzÞ ¼ 1; z � 0

0; z < 0

�
(22)

Other potentials, accounting for two- and three-body interac-
tions, can also be found in the literature with various cutoff
functions.

4 Specialization

In this section we specialize formulas in view of the homogene-
ous deformation of interest. It is possible to restrict attention to
the graphene pattern shadowed in Fig. 2.

In this case, the strain energy function can be written as follows

A0w ¼ Uðr12Þ þ Uðr13Þ þ Uðr14Þ (23)

where A0 ¼ 3
ffiffiffi
3
p

R2=2 is the area of the shadowed pattern.
We calculate the first term on the right hand side of Eq. (23) as

follows

Fig. 1 Fragment of a graphene sheet
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Uðr12Þ ¼
D

S� 1
fcðr12Þfexp½�

ffiffiffiffiffi
2S
p

bðr12 � RÞ� � S

2
ðB12 þ B21Þ

� exp½�
ffiffiffiffiffiffiffiffi
2=S

p
bðr12 � RÞ�g (24)

where

B12 ¼ 1þ
X
k¼3;4

a0 1þ c2
0

d2
0

� c2
0

d2
0 þ ð1þ cos u12kÞ2

 !
fcðr1kÞ

( )�d

(25)

B21 ¼ 1þ
X
k¼5;6

a0 1þ c2
0

d2
0

� c2
0

d2
0 þ ð1þ cos u21kÞ2

 !
fcðr2kÞ

( )�d

(26)

To calculate Eqs. (24)–(28), we define the reference relative
atomic positions as follows

R12 ¼ Re1

R13 ¼ �Rðe1 þ
ffiffiffi
3
p

e2Þ=2

R14 ¼ �Rðe1 �
ffiffiffi
3
p

e2Þ=2

R21 ¼ �R12

R25 ¼ �R13

R26 ¼ �R14

8>>>>>>>>><
>>>>>>>>>:

(27)

Substituting Eq. (27) in Eq. (13), taking into account Eq. (8)1

we obtain

r12 ¼ k1Re1

r13 ¼ �Rðk1e1 þ
ffiffiffi
3
p

k2e2Þ=2

r14 ¼ �Rðk1e1 �
ffiffiffi
3
p

k2e2Þ=2

r21 ¼ �r12

r25 ¼ �r13

r26 ¼ �r14

8>>>>>>>>>><
>>>>>>>>>>:

(28)

Substituting Eq. (28) in Eqs. (14) and (15) we have

r12 ¼ k1R; r13 ¼ r14 ¼ r25 ¼ r26 ¼
R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ 3k2
2

q
(29)

cos u123 ¼ cos u124 ¼ cos u215 ¼ cos u216 ¼
�k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1 þ 3k2

2

q (30)

Substituting Eqs. (29) and (30) in Eqs. (25) and (26) we observe
that

B12 ¼ B21 (31)

Analogously, we calculate the second term on the right hand
side of Eq. (23)

Uðr13Þ ¼
D

S� 1
fcðr13Þ

�
exp½�

ffiffiffiffiffi
2S
p

bðr13 � RÞ� � S

2
ðB13 þ B31Þ

� exp½�
ffiffiffiffiffiffiffiffi
2=S

p
bðr13 � RÞ�

�
(32)

where

B13 ¼ 1þ
X
k¼2;4

a0 1þ c2
0

d2
0

� c2
0

d2
0 þ ð1þ cos u13kÞ2

 !
fcðr1kÞ

( )�d

(33)

B31 ¼ 1þ
X
k¼7;8

a0 1þ c2
0

d2
0

� c2
0

d2
0 þ ð1þ cos u31kÞ2

 !
fcðr3kÞ

( )�d

(34)

To calculate Eqs. (32)–(34) we have Eq. (28)1-3 and we define the
lacking reference relative atomic positions as follows

R31 ¼ �R13

R37 ¼ �R14

R38 ¼ �R12

8><
>: (35)

Substituting Eq. (35) in Eq. (13) we obtain

r31 ¼ �r13

r37 ¼ �r14

r38 ¼ �r12

8><
>: (36)

Substituting Eq. (28)1-3 and Eq. (36) in Eqs. (14) and (15)
we have

r13 ¼ r14 ¼ r37 ¼
R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ 3k2
2

q
; r12 ¼ r38 ¼ k1R (37)

cos u132 ¼ cos u318 ¼
�k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1 þ 3k2

2

q ;

cos u134 ¼ cos u317 ¼
k2

1 � 3k2
2

k2
1 þ 3k2

2

(38)

Substituting Eqs. (37) and (38) in Eqs. (33) and (34) we observe
that

B13 ¼ B31 (39)

Finally, we calculate the third term on the right hand side of
Eq. (23)

Uðr14Þ ¼
D

S� 1
fcðr14Þ

�
exp½�

ffiffiffiffiffi
2S
p

bðr14 � RÞ� � S

2
ðB14 þ B41Þ

� exp½�
ffiffiffiffiffiffiffiffi
2=S

p
bðr14 � RÞ�

�
(40)

where

B14 ¼ 1þ
X
k¼2;3

a0 1þ c2
0

d2
0

� c2
0

d2
0 þ ð1þ cos u14kÞ2

 !
fcðr1kÞ

( )�d

(41)

Fig. 2 Graphene pattern is shadowed in gray
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B41 ¼ 1þ
X

k¼9;10

a0 1þ c2
0

d2
0

� c2
0

d2
0 þ ð1þ cos u41kÞ2

 !
fcðr4kÞ

( )�d

(42)

To calculate Eqs. (41) and (42), we have Eq. (28)1-3 and
we define the lacking reference relative atomic positions as
follows

R41 ¼ �R14

R410 ¼ �R13

R49 ¼ �R12

8><
>: (43)

Substituting Eq. (43) in Eq. (13) we get

r41 ¼ �r14

r410 ¼ �r13

r49 ¼ �r12

8><
>: (44)

Substituting Eq. (28)1-3 and Eq. (44) in Eqs. (14) and (15)
we have

r13 ¼ r14 ¼ r410 ¼
R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ 3k2
2

q
; r12 ¼ r49 ¼ k1R (45)

cos u142 ¼ cos u419 ¼
�k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1 þ 3k2

2

q ;

cos u143 ¼ cos u4110 ¼
k2

1 � 3k2
2

k2
1 þ 3k2

2

(46)

Substituting Eqs. (45) and (46) in Eqs. (41) and (42) we observe
that

B14 ¼ B41 (47)

Thus, we have completely defined the strain energy.

5 Results and Conclusions

Based on the previously developed strain energy function and
the critical instability condition in Eq. (10), it is possible to derive

the critical failure surface in the 2D space defined by the engineer-
ing strains

e1 ¼ k1 � 1; e2 ¼ k2 � 1 (48)

This failure surface is presented in Fig. 3 for tensile strains.
In the case of compressive strains, the situation is subtler
because the out-of-plane buckling can occur. The latter possi-
bility is not analyzed in the present work, which is restricted to
purely tensile strains. It should also be mentioned that we do
not calculate stresses because of the following two reasons.
First, the very concept of stress in molecular mechanics is con-
troversial; see [21] for a discussion. Second, even in the case
of the agreement on the definition of stress, it is impossible to
directly measure it in contrast to strain that can be measured in
experiments.

It is remarkable that the critical failure surface shows a pro-
nounced anisotropy of the graphene strength. Indeed, the tensile
strength in direction x1 does not depend on the strain in direc-
tion x2. The latter independence occurs because the horizontal
bonds control failure in direction x1 and they are not affected by
the deformation in the perpendicular direction; see Fig. 1. At the
same time, there are no bonds aligned with direction x2 and the
tensile strength in direction x2 is controlled by the inclined
bonds that are affected by the deformation in direction x1. The
latter effect is presented on the top of the failure surface in
Fig. 3; the critical strain in the uniaxial tension is greater than
in the equal-biaxial one. The latter difference is explained by
the fact that the strain energy, which is limited, is consumed by
straining in one direction only in the case of the uniaxial tension
e1 ¼ 0; while the same amount of energy is consumed by strain-
ing in two directions simultaneously in the case of equal biaxial
tension e1 ¼ e2.

We note, finally, that the graphene sheet was assumed to be
ideal without defects, which might trigger a much earlier onset of
failure than predicted in Fig. 3. Besides, temperature effects might
also affect failure [22].
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