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Abstract Inflation and rupture of a circular rubber
membrane is modeled in the present work. It is the
first time when a failure description is incorporated in
the stress analysis of the rubber membrane. The failure
description is enforced by the concept of the energy
limiter that provides the saturation value for the strain
energy indicating the maximal energy which may be
dissipated by an infinitesimal material volume. The
energy limiter is a material constant that can be cal-
ibrated via macroscopic experiments. Particularly, two
constitutive theories for Natural and Styrene-Butadiene
Rubbers enhanced with the energy limiters calibrated
in experiments are used for modeling the membrane
inflation and failure. It is found based on the finite ele-
ment simulations and in a good correspondence with
the experimental data that rupture occurs in the center
of the membrane when the stretches reach the critical
magnitude of ∼ 5. It is interesting also that the stresses
at the point of rupture are essentially smaller than the
rubber strength—the critical stress in the uniaxial ten-
sion tests. The latter notion questions the applicability
of the concept of the material strength defined in uni-
axial tests to the multiaxial strain–stress states.
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1 Introduction

The modeling of the inflation of rubber membranes
is a dearly loved subject: Adkins and Rivlin (1952),
Corneliussen and Shield (1961), Foster (1967), Hart-
Smith and Crisp (1967), Oden and Sato (1967),
Kydoniefs and Spencer (1969), Yang and Feng (1970),
Tielking and Feng (1974), Needleman (1977), Fried
(1982), Dickey (1983), Kelkar et al. (1985), Grabmuller
and Weinitschke (1986), Weinitschke (1987), Chen and
Cheng (1996), Li et al. (2001), Verron and Marckmann
(2003). The topic culminated in the recent book by
Muller and Strehlow (2004), which is completely
devoted to rubber balloons.

To the best of the authors’ knowledge, however, none
of the works considering the membrane deformation
addressed also the failure issue. It is perfectly in a
row with the traditional approach of solid mechanics
to separate stress analysis from failure criteria. Such a
separation seems to be unreasonable and the necessity
to incorporate a failure description in the constitutive
equation is physically appealing and desirable. A sim-
ple way to introduce the failure description into con-
stitutive equations was considered by Volokh (2004,
2007, 2008, 2010), where the concept of the energy
limiter was introduced. The energy limiter provides
the saturation value for the strain energy indicating
the maximal energy, which may be dissipated by an
infinitesimal material volume. The energy limiter is
a material constant that can be calibrated via macro-
scopic experiments. Alternatively, the failure can be
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180 K. Balakhovsky, K. Y. Volokh

described by using the continuum-atomistic method as
in Dal and Kaliske (2009), for example, or methods
of continuum damage mechanics (CMD). CMD meth-
ods are also popular for modeling the Mullins effect,
which is not considered here: Johnson and Beatty
(1995), Huntley et al. (1997), De Tommasi et al. (2008),
Elias-Zuniga and Rodriguez (2010), Itskov et al.
(2010). Continuum-atomistic and CMD methods are
more involved computationally than the methods of
energy limiters. Besides, CMD methods are less appeal-
ing physically because they include internal vari-
ables, which are difficult to interpret and calibrate in
experiments.

In the present work we use constitutive theories for
Natural and Styrene-Butadiene Rubbers enhanced with
the energy limiters calibrated in experiments for model-
ing the membrane inflation and failure. We find based
on the finite element simulations and in a good cor-
respondence with the experimental data that rupture
occurs in the center of the membrane when the stretches
reach the critical magnitude of ∼ 5. It is interesting also
that the stresses at the point of rupture are essentially
smaller than the rubber strength—the critical stress in
the uniaxial tension tests. The latter notion questions
the applicability of the concept of the material strength
defined in uniaxial tests to the multiaxial strain–stress
states.

The paper is organized as follows. The total energy
of the axisymmetric membrane is derived in Sect. 2.
The constitutive equations of rubber including the fail-
ure description are given in Sect. 3. The finite element
discretization of the membrane is considered in Sect. 4.
The results of the simulation are presented in Sect. 5.
Adiscussionof the results inSect. 6completes thework.

2 Total potential energy of axisymmetric
membrane

A membrane is in equilibrium when the virtual work
of the internal forces, δΠ1, is equal to the virtual work
of the external forces, δΠ2, or

δΠ = δΠ1 − δΠ2 = 0. (2.1)

The virtual work of the internal forces can be calcu-
lated by varying the total strain energy of the membrane

δΠ1 = δ

∫
ψ dV , (2.2)

where ψ is the strain energy density per unit reference
volume V of the membrane.

r

z

0=s n

α
dz ds

dr

Fig. 1 Axisymmetric membrane

The virtual work of the external forces is the virtual
work of pressure, p,

− δΠ2 = −p

l∫

0

2π rn · δx ds

= 2πp

l∫

0

r

(
dz

ds
δr − dr

ds
δz

)
ds, (2.3)

where

n =
⎛
⎝ cosα

0
sin α

⎞
⎠ =

⎛
⎝−dz/ds

0
dr/ds

⎞
⎠ , δx =

⎛
⎝ δr0
δz

⎞
⎠ , (2.4)

and s is the arc length of the membrane surface—see
Fig. 1.

We notice that it is possible to transform integral
(2.3) over the current configuration to the integral over
an initial reference configuration introducing the ref-
erence arc length, S, such that the current arc length
is a unique function of the referential arc length: s(S).
After such a substitution we have

− δΠ2 = 2πp

L∫

0

r
(
z′δr − r ′δz

)
d S, (2.5)

where primes designate derivatives with respect to the
referential arc length and l = s(L).

It is possible now to introduce the pressure potential
explicitly

−Π2 =
L∫

0

γ
(
r, z′) d S, γ

(
r, z′) = pπ r2z′. (2.6)
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Inflation and rupture of rubber membrane 181

Indeed, varying (2.6) we get (2.5)

− δ Π2 =
L∫

0

(
∂γ

∂r
δr − ∂2γ

∂S∂z′ δz
)

d S

= 2πp

L∫

0

r
(
z′δr − r ′δz

)
d S. (2.7)

Thus, equilibrium is provided by the stationary state
of the total potential energy

Π = Π1 −Π2 =
∫
ψ dV + pπ

L∫

0

r2z′ d S. (2.8)

In the case of the membrane we can further simplify
(2.8) as follows

Π = π

L∫

0

(
2Rhψ + p r2z′) d S, (2.9)

where R is the referential or initial radial coordinate;
and h is the initial membrane thickness.

It is worth drawing the reader’s attention to the fact
that the total potential energy has been written down
explicitly given that the pressure potential (2.6) had
been found out. The latter result is due to Fried (1982)
and it is truly remarkable because generally the hydro-
static pressure load is not conservative. Isaac Fried
discovered that in the case of the axisymmetric mem-
brane inflation the pressure load was still displacement-
dependent yet conservative.

3 Constitutive equations for rubber

In this section we describe constitutive models of nat-
ural (NR) and styrene-butadiene (SBR) rubbers that
incorporate a failure description. Energy limiters in the
hyperelastic strain energy functions enforce the fail-
ure description. The basic physical idea behind the
introduction of the energy limiters can be explained
as follows. Let us consider an interaction of two
particles—Fig. 2.

The interaction undergoes three stages: repulsion,
attraction, and separation. The separation starts at the
limit point of the force-distance curve shown on the
right diagram of Fig. 2. The limit point appears due to
the existence of the energy limiter—the bond energy—
for the particle potential shown on the left diagram on

Energy limitI

II
III

U

r I

II
III

r

f

r

rUf ∂∂= /

Fig. 2 Particle interaction: I repulsion; II attraction; III separa-
tion

Fig. 2. In the case of solids that contain many par-
ticles it is impossible to track behavior of individual
particles and the concept of continuum is introduced
where the averaged characteristics of the particle inter-
action are described with the help of tensorial mea-
sures. For example, the average interparticle distance
is measured by a strain tensor and the average particle
potential is measured by a strain energy function. How-
ever, in contrast to the particle interaction, the classical
continuum theories do not include the energy limiters
presenting the average bond energy. Thus, the particle
separation and, consequently, material failure is beyond
the scope of the traditional continuum theories of elas-
ticity: Beatty (1987); Saccomandi and Ogden (2004).
However, the failure description can still be introduced
in elasticity by analogy with the failure description in
the particle interaction: Volokh (2004), Volokh (2007),
Volokh (2008), Volokh (2010).

A very simple yet general way to introduce the
energy limiters is by using the following formula for
the strain energy (Volokh 2007)

ψ(Φ,W ) = Φ

{
1 − exp

(
−W

Φ

)}
, (3.1)

where W is the strain energy of an intact, i.e. without
failure, material andΦ is the energy limiter, which can
also be interpreted as the average bond energy or the
failure energy. The energy limiter provides the satura-
tion value for the strain energy indicating the maximum
energy that can be stored and dissipated by an infini-
tesimal material volume.

Formula (3.1) has two limit cases. If the failure
energy is infinite, Φ → ∞, then we have the classical
hyperelastic material: ψ(∞,W ) → W . If the failure
energy is finite then the increase of the strain energy is
limited: ψ(Φ,∞) → Φ.
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182 K. Balakhovsky, K. Y. Volokh

Experiment

Theory
1σ

1λ

Fig. 3 Cauchy stress [N/cm2] versus stretch in the uniaxial ten-
sion of AAA material (from Volokh and Vorp 2008)

An example of the use of (3.1) can be found in
Volokh and Vorp (2008) for the incompressible mate-
rial of the Abdominal Aortic Aneurysm (AAA) with the
intact strain energy in the form W = α1(λ

2
1 + λ2

2 + λ2
3

− 3) + α2(λ
2
1 + λ2

2 + λ2
3 − 3)2, J = λ1λ2λ3 = 1,

where λi s are the principal stretches and material con-
stants α1 = 10.3 N/cm2;α2 = 18.0 N/cm2;Φ =
40.2 N/cm2 were calibrated in the uniaxial tension test
shown in Fig. 3.

We emphasize that the energy limiter is calibrated
in the macroscopic failure experiments.

It is evident from Fig. 3 that formula (3.1) is use-
ful for a description of smooth failure with a flat limit
point on the stress-strain curve, which corresponds to
a gradual process of the bond rupture. In the case of
more abrupt bond ruptures, however, a much sharper
transition to the material instability occurs. To describe
such sharp transition to failure Volokh (2010) modife-
ied formula (3.1) as follows

ψ = Φ

m

{
Γ

(
1

m
, 0

)
− Γ

(
1

m
,

W m

Φm

)}
, (3.2)

where the upper incomplete gamma functionΓ (s, x)=∫ ∞
x t s−1 exp(−t)dt is used.

New parameter m controls the sharpness of the
transition to material instability on the stress strain
curve. Increasing/decreasing m it is possible to sim-
ulate more/less steep ruptures of the internal bonds.
It should not be missed that (3.2) reduces to (3.1) for
m = 1.

Formula (3.2) can be applied to a filled NR vulcani-
zate with the following intact strain energy calibrated
by Hamdi et al. (2006)

1λ

1σ

Fig. 4 Cauchy stress [MPa] versus stretch in uniaxial tension of
NR: dashed line designates the intact model; solid line designates
the model with energy limiter Φ = 82.0 MPa for m = 10

WN R =
3∑

k=1

Ck0(λ
2
1 + λ2

2 + λ2
3 − 3)k,

J = λ1λ2λ3 = 1, (3.3)

where C10 = 0.298 MPa,C20 = 0.014 MPa,C30 =
0.00016 MPa.

Based on the experiments by Hamdi et al. (2006),
who found the critical failure stretch in uniaxial ten-
sion: λN R

c = 7.12, the energy limiter Φ = 82.0 MPa
was calibrated for m = 10—Fig. 4 (Volokh 2010).

Formula (3.2) can also be applied to a filled SBR
vulcanizate with the following intact strain energy cal-
ibrated by Hamdi et al. (2006)

WSB R =
2∑

k=1

μk

αk

(
λ
αk
1 + λ

αk
2 + λ

αk
3 − 3

)
,

J = λ1λ2λ3 = 1, (3.4)

where μ1 = 0.638 MPa, α1 = 3.03, μ2 = −0.025
MPa, α2 = −2.35.

Based on the experiments by Hamdi et al. (2006),
who found the critical failure stretch in uniaxial ten-
sion: λSB R

c = 6.88, the energy limiter Φ = 94.71MPa
was calibrated for m = 10—Fig. 5 (Volokh 2010).

At this point we have to emphasize that elasticity
with energy limiters does not include a description of
the energy dissipation in its theoretical setting. Such
description is irrelevant for the static problems consid-
ered in the present work because no unloading occurs.
However, the account of the dissipation is crucial for
modeling dynamic failure where the elastic unloading
can potentially lead to the healing of the damaged mate-
rial. To prevent from the healing, the dissipation should
be enforced computationally by removing the failed
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Inflation and rupture of rubber membrane 183

1λ

1σ

Fig. 5 Cauchy stress [MPa] versus stretch in uniaxial tension of
SBR: dashed line designates the intact model; solid line desig-
nates the model with energy limiterΦ = 94.71 MPa for m = 10

finite elements from the mesh—see Trapper and Volokh
(2010) and Volokh (2011a), for example.

In view of the axisymmetric deformation of the
membrane we can describe the deformation gradient
in principal stretches

F = λ1τ ⊗ τ 0 + λ2ω ⊗ ω0 + λ3n ⊗ n0, (3.5)

where

λ1 = s′ =
√

r ′2 + z′2, λ2 = 2π r

2π R
= r

R
,

λ3 = 1

λ1λ2
, (3.6)

τ =
⎛
⎝ sin α

0
− cosα

⎞
⎠ =

⎛
⎝ dr/ds

0
dz/ds

⎞
⎠ , ω = n × τ

=
⎛
⎝ 0

1
0

⎞
⎠ , n =

⎛
⎝ cosα

0
sin α

⎞
⎠ =

⎛
⎝−dz/ds

0
dr/ds

⎞
⎠ , (3.7)

τ 0 =
⎛
⎝ sin α0

0
− cosα0

⎞
⎠ =

⎛
⎝ d R/d S

0
d Z/d S

⎞
⎠ , ω0 = n0 × τ 0

=
⎛
⎝ 0

1
0

⎞
⎠ , n0 =

⎛
⎝ cosα0

0
sin α0

⎞
⎠=

⎛
⎝−d Z/d S

0
d R/d S

⎞
⎠. (3.8)

Equations (3.5)–(3.8) use current quantities r, z, s,
α, τ ,ω,n and their referential counterparts R, Z , S,
α0, τ 0,ω0,n0 accordingly.

Based on these kinematic assumptions and the
incompressibility condition we have the following con-
stitutive equations for the principal Cauchy stresses

σ1 = −g + λ1
∂ψ

∂λ1
, σ2 = −g + λ2

∂ψ

∂λ2
,

σ3 = −g + λ3
∂ψ

∂λ3
, (3.9)

where g is indefinite Lagrange multiplier.
Excluding the Lagrange multiplier from (3.9) we get

σ1 − σ3 = λ1
∂ψ

∂λ1
− λ3

∂ψ

∂λ3
, σ2 − σ3

= λ2
∂ψ

∂λ2
− λ3

∂ψ

∂λ3
, (3.10)

The incompressibility condition means that one
stretch is not independent (3.6)3 and for a thin mem-
brane we can assume: σ3 = 0. In view of these notions
we can simplify (3.10) to

σ1 = λ1
∂ψ

∂λ1
, σ2 = λ2

∂ψ

∂λ2
. (3.11)

Remark Calibration of energy limiters and, in a general
prospect, strength of materials is based on the assump-
tion that failure occurs homogeneously and material
particles break simultaneously. The latter is an ideali-
zation that is presented by the limit/peak point on the
stress-strain curve. Clearly, real materials are not ideal
and they fail inhomogeneously depending on mate-
rial features and imperfections1 of a particular spec-
imen. Thus, failure normally localizes into cracks. If
so, the question should be asked whether the concept
of material strength (or energy limiter) is physically
reasonable. The answer can be found in experimen-
tal observations on failure of various specimens of the
same material under similar loads. If the critical load
scatters significantly for various specimens then there
is no ‘strength of material’. If the critical load does
not scatter significantly and cracks appear at approx-
imately the same load then material has strength (and
the energy limiter can be calibrated). To the best of
the authors’ knowledge most specimens fail at approx-
imately the same loads for the same material, thus,
supporting the concept of strength. Though, it is gen-
erally impossible to exactly predict where cracks will
appear under the homogeneous deformation it is possi-
ble to predict when they will appear. Evidently, local-
ization into cracks occurs near the peak/limit point on
the stress-strain curve. Does it happen before or after

1 By imperfections we do not mean macroscopic cracks, notches
etc, which trigger the macroscopic stress concentration, rather,
we mean imperfections on the size of the internal material struc-
ture.
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184 K. Balakhovsky, K. Y. Volokh

the critical point? In ductile materials, it is believed,
the shear bands triggering cracks occur past the critical
point on the stress-strain curve. In brittle materials and
rubber it is reasonable to assume that material imper-
fections lead to localization of failure before the ideal
critical point is reached. Anyway, localization occurs in
the vicinity of the critical point making the concept of
strength of materials and energy limiters useful. Need-
less to say, finally, that structural design is based heav-
ily on the concept of strength of materials and it proved
itself superbly.

4 Discretization

In this section we discretize the problem. We partition
the membrane into finite elements of equal length le and
approximate functions within the eth element accord-
ing to

Re(ξ) = 1

2
ξ(ξ − 1)Re1 + (1 − ξ2)Re2

+1

2
ξ(ξ + 1)Re3, (4.1)

re(ξ) = 1

2
ξ(ξ − 1)re1 + (1 − ξ2)re2

+1

2
ξ(ξ + 1)re3, (4.2)

ze(ξ) = 1

2
ξ(ξ − 1)ze1 + (1 − ξ2)ze2

+1

2
ξ(ξ + 1)ze3, (4.3)

dre(ξ)

dξ
=

(
ξ − 1

2

)
re1 − 2ξre2 +

(
ξ + 1

2

)
re3,

(4.4)
dze(ξ)

dξ
=

(
ξ − 1

2

)
ze1 − 2ξ ze2 +

(
ξ + 1

2

)
ze3,

(4.5)

where ξ ∈ [−1, 1] is a local coordinate; and Rei , rei , zei

are the nodal values of Re(ξ), re(ξ), ze(ξ) accordingly.
Noticing that

d S = ledξ, (. . .)′ = 1

le

d(. . .)

dξ
, (4.6)

we calculate

r ′
e(ξ)= 1

le

{(
ξ − 1

2

)
re1 − 2ξre2 +

(
ξ + 1

2

)
re3

}
,

(4.7)

z′
e(ξ)= 1

le

{(
ξ − 1

2

)
ze1 − 2ξ ze2 +

(
ξ + 1

2

)
ze3

}
.

(4.8)

Fig. 6 Inflation of NR and
SBR membranes under the
increasing hydrostatic
pressure; stars designate
points of rupture
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Inflation and rupture of rubber membrane 185

Fig. 7 Pressure versus vertical displacement at the central point
for various finite element meshes; stars designate points of rup-
ture

The squared stretches of the membrane element
(3.6) take form

λ2
1e(ξ) = r ′2

e(ξ)+ z′2
e(ξ), λ2

2e(ξ) = r2
e (ξ)

R2
e (ξ)

,

λ2
3e(ξ) = 1

λ2
1e(ξ)λ

2
2e(ξ)

. (4.9)

Then, the total energy of the element, (2.9), can be
written as follows

Π =
∑

e

Πe, (4.10)

Πe = π

1∫

−1

(
2Reheψe + p r2

e z′
e

)
le dξ . (4.11)

Integrating the previous expression at two Gauss
points: ξ1 = −1/

√
3 and ξ2 = 1/

√
3 we get the spatial

approximation

Πe ≈ π le{2Re(ξ1)heψe(ξ1)+ pr2
e (ξ1)z

′
e (ξ1)

+ 2Re(ξ2)heψe(ξ2)+ pr2
e (ξ2)z

′
e (ξ2)}. (4.12)

Fig. 8 Minimum eigenvalue of the Hessian of the total energy
(tangent stiffness matrix) versus the increasing hydrostatic pres-
sure

5 Results

In the present section we report the results of the
numerical simulations of the inflation of a plane cir-
cular membrane of radius 1 cm and thickness 0.01 cm
fixed at its edge as shown in Fig. 1. The pressure was
increased gradually in a quasistatic mode until rupture
that occurred in the center of the membrane as shown
in Fig. 6. The found critical pressure was ∼ 44 KPa for
NR and ∼ 47 KPa for SBR.

The equilibrium path increased monotonically Fig. 7
and it ended up at the point of rupture where no further
equilibrium solution existed. The coincident results
were obtained on three finite element meshes for the
half-membrane which included 10, 50 and 80 elements.

Since the problem was conservative—see Sect. 2—
it was reasonable to track the minimum eigenvalue of
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186 K. Balakhovsky, K. Y. Volokh

Fig. 9 Principal stretches at
the central, mid-, and
edge-points of the inflating
membrane; stars designate
points of rupture

the Hessian of the total energy or the tangent stiffness
matrix. The varying minimum eigenvalue drops to zero
at the point of rupture—Fig. 8.

It was also interesting to track the changing prin-
cipal stretches and stresses at the center, at the mid-
point, and at the edge of the membrane—Figs. 9 and 10.

Expectedly, the stretches and stresses dominated at the
center of the membrane.

It is remarkable that the critical principal stresses
corresponding to the event of rupture were significantly
lower in the case of the membrane inflation than in the
case of the uniaxial tension shown in Figs. 4 and 5.
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Inflation and rupture of rubber membrane 187

Fig. 10 Principal stresses
at the central, mid-, and
edge-points of the inflating
membrane; stars designate
points of rupture

Thus, the concept of the material strength defined as
the critical stress determined in the uniaxial tension
tests is open for criticism.

Finally, the strain energy density is present at the
center, at the midpoint, and at the edge of the mem-
brane in Fig. 11.

The reader should not miss that the magnitudes of
the strain energy density at the points of rupture cannot
exceed the theoretical limits

ψmax = Φ

m
Γ

(
1

m
, 0

)
= 78 [MPa], (5.1)

in the case of NR and

ψmax = Φ

m
Γ

(
1

m
, 0

)
= 90 [MPa], (5.2)

in the case of SBR.
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188 K. Balakhovsky, K. Y. Volokh

Fig. 11 Strain energy
density at the central, mid-,
and edge-points of the
inflating membrane; stars
designate points of rupture

6 Discussion

The problem of the inflation of a rubber membrane is
one of the oldest in the field of mechanics of rubber-
like materials. Ronald Rivlin, largely the founder of the
field, addressed this problem in his classical series of
papers. Since then the problem is a subject of the con-
stant interest. It is remarkable that all previous studies
did not consider failure as a result of inflation while
real membranes do fail.

To model failure we limited the capacity of material
to accumulate and dissipate the strain energy. The idea
of limiting the strain energy density has deep physi-
cal roots because it introduces the average energy of
molecular/atomic bonds in the continuum description
of the bulk. Technically, the idea was implemented by

a special choice of the strain energy function, formula
(3.2), where a constant,Φ, called the energy limiter was
introduced. The energy limiter is a material parameter
that is calibrated in macroscopic experiments as any
other material parameter. Particularly, to calibrate NR
and SBR the uniaxial tension test data had been used
including failure. As it was described in Sect. 3, the
energy limiter Φ = 82.0 MPa was fitted to the rupture
of the NR sample at the critical stretch λN R

c = 7.12
and the energy limiter Φ = 94.71 MPa was fitted to
the rupture of the SBR sample at the critical stretch
λSB R

c = 6.88.
The calibrated strain energy function incorporating

the energy limiters allowed for a constitutive descrip-
tion of any deformation and not just the one used
for calibration. It was important thus to examine the
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Inflation and rupture of rubber membrane 189

theory considering various sorts of deformation. The
problem of the membrane inflation gave an opportu-
nity to examine the theory in the case of the biaxial
deformation. According to the results of the finite ele-
ment analysis presented in Sect. 5, the failure starts at
the center2 of the inflated membrane where stretches
reach the critical magnitude of ∼ 5. According to tests
of Hamdi et al. (2006), the failure starts at the center of
the inflated membrane where stretches reach the critical
magnitude of ∼ 4.5. The experimentally observed crit-
ical stretches are slightly lower than the theoretically
predicted ones because of the effects of the material and
geometrical imperfections, which escape the idealized
theoretical formulation. Nonetheless, the ability of the
theory to predict failure seems to be encouraging. It was
also found that the stresses at the point of rupture were
essentially smaller than the rubber strength—the criti-
cal stress in the uniaxial tension tests. The latter finding
questions the applicability of the concept of the mate-
rial strength, defined in uniaxial tests, to the multiaxial
strain–stress states.

We must note at this point that we used experimen-
tal results of Hamdi et al. (2006) to compare them to
the developed theory while another set of very similar
experiments was performed by Kawabata (1973) much
earlier. The latter author reported critical stretches of
approximately ∼6.5–7.0 in uniaxial tension for natu-
ral rubber close to the results of Hamdi et al. (2006).
However, according to Kawabata (1973) these critical
stretches practically do not change under the develop-
ing biaxiality of the stress-stretch state whereas accord-
ing to Hamdi et al. (2006) the critical stretches decrease
with the developing biaxiality. The experimental data
of two groups is controversial and more experiments
are required. From the theoretical standpoint results of
Kawabata (1973) can be explained by material anisot-
ropy. Indeed, applying the concept of energy limiters to
anisotropic materials Volokh (2011b) found that critical
stretches might not be affected by the developing biaxi-
ality for some anisotropic rubberlike materials. If mate-
rial is isotropic then the developing biaxiality should
reduce the critical stretch. The latter conclusion also
clearly follows from the recent theoretical analysis by
Dal and Kaliske (2009) who considered a multiscale
structural model of rubber enforced with the rupture

2 It is interesting to note that inflating aneurysms in the car-
diovascular system of the man also tend to rupture at the center
similar to the inflating rubber membranes.

of individual bonds. Undoubtedly, more experimental
and theoretical studies are necessary to shed more light
on the experimental controversy.

Finally, we should note that after the onset of rupture
and because of the material and geometrical imperfec-
tions in the real membrane the failure should localize
into the propagating crack(s). This stage is of great
interest too yet it is beyond the scope of the present
work.
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