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a b s t r a c t

While elastoplasticity theories at small deformations are well established for various materials, elasto-
plasticity theories at large deformations are still a subject of controversy and lively discussions. Among
the approaches to finite elastoplasticity two became especially popular. The first, implemented in the
commercial finite element codes, is based on the introduction of a hypoelastic constitutive law and the
additive elasticeplastic decomposition of the deformation rate tensor. Unfortunately, the use of hypo-
elasticity may lead to a nonphysical creation or dissipation of energy in a closed deformation cycle. In
order to replace hypoelasticity with hyperelasticity the second popular approach based on the multi-
plicative elasticeplastic decomposition of the deformation gradient tensor was developed. Unluckily, the
latter theory is not perfect as well because it introduces intermediate plastic configurations, which are
geometrically incompatible, non-unique, and, consequently, fictitious physically.

In the presentwork, an attempt ismade to combine strengths of the described approaches avoiding their
drawbacks. Particularly, a tensor of the plastic deformation rate is introduced in the additive elasticeplastic
decomposition of the velocity gradient. This tensor is used in the flow rule defined by the generalized
isotropic Reiner-Rivlin fluid. The tensor of the plastic deformation rate is also used in an evolution equation
that allows calculating an elastic strain tensorwhich, in its turn, is used in the hyperelastic constitutive law.
Thus, thepresent approach employshyperelasticityand the additivedecompositionof the velocitygradient
avoiding nonphysical hypoelasticity and the multiplicative decomposition of the deformation gradient
associated with incompatible plastic configurations. The developed finite elastoplasticity framework for
isotropicmaterials is specified to extend the classical J2-theory ofmetal plasticity to large deformations and
the simple shear deformation is analyzed.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Small deformation elastoplasticity is a well-established theory:
Hill (1950); Kachanov (1971); Lubliner (1990); Lemaitre and
Chaboche (1990); Maugin (1992); Khan and Huang (1995); Simo
and Hughes (1998); Lubarda (2001); Haupt (2002); Chakrabarty
(2006); Asaro and Lubarda (2006); Srinivasa and Srinivasan
(2009). Unfortunately, the small deformation elastoplasticity is
not suitable for some important applications. For example, it is
impossible to describe the processes of the metal forming or the
large-scale geomechanical flow using small deformations. Also the
plasticity problems concerning the structural (Hutchinson, 1974)
and material (Needleman and Tvergaard, 1983) instabilities cannot
be convincingly posed within the small deformation framework.

Large deformation elastoplasticity is a subject of lasting
controversy: Besdo and Stein (1991), Havner (1992), Besseling and

Van Der Giessen (1994), Nemat-Nasser (2004), Bertram (2005), De
Souza Neto et al. (2008), Gurtin et al. (2010), Negahban (2012). A
comprehensive recent review of elastoplasticity beyond small
deformations was done by Xiao et al. (2006). Here, we will not
follow the historical path of the development of large deformation
elastoplasticity but focus on the main ideas.

A direct extension of the small deformation elastoplasticity to
the large deformation one involves the additive elasticeplastic
decomposition of the deformation rate tensor (Hill, 1958, 1959;
Prager, 1960)

D ¼ De þ Dp: (1)

This decomposition mimics the decomposition of strain rates in
the small deformation elastoplasticity. The plastic part of the
decomposition is defined by a flow rule analogously to the small
deformation elastoplasticity while the elastic part of the decom-
position is defined by the hypoelasticity theory proposed by
Truesdell (1955). In the general form hypoelasticity can be set as
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De ¼ CðsÞ : sV; (2)

where C(s) is a fourth-order tensor of the elastic compliances,

which can depend on stresses, and s
V
is an objective rate of the

Cauchy stress.
The basic idea behind hypoelasticity is to introduce elasticity in

the rate form. It does not work, unfortunately, because the consti-
tutive law (2) can lead to dissipation or creation of energy in
a closed deformation cycle. This drawback of hypoelasticity was
understood by Truesdell himself (Truesdell and Noll, 1965). Inter-
estingly, besides the problems with the energy conservation the
hypoelastic constitutive law can lead to nonphysical stress oscilla-
tions in simple shear (Khan and Huang, 1995).

Despite the noted physical shortcomings, hypoelasticity is
a popular computational tool: Huespe et al. (2012), McMeeking and
Rice (1975), Voyiadjis and Kattan (1992). It is usually argued that
the shortcomings of hypoelasticity become sound when elastic
deformations get large while in the case of small elastic deforma-
tions the use of hypoelasticity is safe (Khan and Huang, 1995; Simo
and Hughes,1998; Xiao et al., 2006). In this argument a definition of
small elastic deformations might be difficult. It should not be
missed also that while elastic strains can be really small (tenth of
percent) the elastic rotations can be large as it often occurs in
mechanics of thin-walled structures.

Alternatively to the hypoelasticity-based formulation discussed
above and almost simultaneously in time the formulation based on
the multiplicative elasticeplastic decomposition of the deforma-
tion gradient tensor was developed (Kroner, 1960; Besseling, 1966;
Lee and Liu, 1967; Lee, 1969)

F ¼ FeFp: (3)

According to this decomposition every material point
undergoes two successive mappings corresponding to the plastic
and elastic deformations. This approach allows using hyper-
elasticity for a description of elastic deformations. This is a way to
get rid of nonphysical hypoelasticity. Nonetheless, the multipli-
cative decomposition of the deformation gradient is not physically
perfect either. The problem is that decomposition (3) introduces
stress-relaxed intermediate configurations (after Fp mapping) in
the vicinity of all material points and these configurations are
geometrically incompatible. They generally form an abstract
mathematical manifold beyond the physical Euclidian space. Even
worse, such configurations cannot be defined uniquely and they
are isomorphic under superposed rigid rotations. Although the
said is probably enough to question the physical aspects of the
multiplicative decomposition its formal use in computations
might still be reasonable: Arghavani et al. (2011), Gurtin (2010),
Henann and Anand (2009), Lele and Anand (2009), Thamburaja
(2010). The reader is advised to consult Naghdi’s (1990) review
for the criticism of the theories based on (3). Remarkably, Naghdi’s
criticism was largely ignored in the subsequent literature.

In view of the drawbacks of the hypoelasticity- and the multi-
plicative decomposition-based approaches it is worth noticing that
another approach was proposed by Green and Naghdi (1965) and
developed by Naghdi and his collaborators and followers. In this
approach a plastic Green strain Ep is introduced as a primitive
variable and the elastic deformation is described by the difference
between the total andplasticGreen strains:E�Ep. Themathematical
purity and technical simplicity of this approach are appealing. Its
physical basis, however, is arguable on the principal grounds.
Indeed, the reference or initial material configuration is the very
heart of the Naghdi formulationwhile materials undergoing plastic
flow cannot remember this reference configuration. Only elastic
deformations have a perfect memory and the preference of

a reference configuration. Flowing materials have no preference to
the reference and constitutive equations of the plastic flow should
be formulatedwith respect to the current configuration. Besides, it is
desirable that in the presence of plastic flows the elastic deforma-
tion should refer to the current material configuration as well.

The fact that the elastic deformations should refer to the current
material configuration during plastic flows was realized by Eckart
(1948), who introduced inelasticity through a description of the
evolving elastic metric. This line of thought was also followed by
Leonov (1976), Rubin (2009), Rubin and Ichihara (2010), for
example. The approach of the present work is also based on the
constitutive description referring to the current material configu-
ration and it further generalizes the ideas of Eckart. Particularly, we
relax the restriction on the elastic deformations only and we
include the plastic deformations into consideration. Our approach
has three ingredients: Rivlin’s hyperelasticity; generalized Reiner-
Rivlin’s non-Newtonian fluidity; and the evolution equation linking
elastic strains and plastic deformation rates. Thus, our approach
allows describing both elasticity and plasticity at large deforma-
tions and it is potentially applicable to a variety of materials ranging
from soft polymers to hard metals. We emphasize, however, that
we restrict the considerations of the present work by the isotropic
material response only.

The paper is organized as follows. The field equations of the
classical local continuummechanics are briefly reviewed in Section
2. The general constitutive framework of the large deformation
elastoplasticity is presented in Section 3. This framework is
specialized for metals in Section 4 where a large deformation
extension of the J2-theory of metal plasticity is presented. The latter
theory is used for analysis of simple shear in Section 5. A short
summary of the proposed approach is made Section 6.

2. Field equations

In continuummechanics the atomistic or molecular structure of
material is approximated by a continuously distributed set of the
so-called material points. The continuum material point is an
abstraction that is used to designate a small representative volume
of real material including many atoms and molecules. A material
point that occupies position x in the reference configuration moves
to position y(x) in the current configuration of the continuum. The
deformation in the vicinity of the material point can be completely
described by the deformation gradient tensor

F ¼ vy
vx

: (4)

Introducing the velocity vector as a material time derivative of
the current placement of a material point

v ¼ dy
dt

¼ _y; (5)

it is possible to describe the time dependent deformation changes
with the help of the velocity gradient tensor

L ¼ vv
vy

¼ _FF�1: (6)

Neglecting inertia and body forces it is possible to write down
the linear and angular momentum balance laws in the following
forms accordingly

divs ¼ 0; (7)

s ¼ sT ; (8)
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where the divergence operator is calculated with respect to current
coordinates y; and s is the Cauchy tensor of true stresses.

The balance of linear momentum on the body surface reads

sn ¼ t (9)

where t is a prescribed traction on the surface with the unit
outward normal n.

Alternatively to (9) a surface boundary condition can be
imposed on placements

y ¼ y; (10)

where the barred quantity is prescribed.
Eqs. (7) and (9) describe equilibrium in the spatial or Eulerian

form. It is more convenient sometimes to consider the referential
position of material points, x, as an independent variable and
reformulate the volumetric, (7), and surface, (9), equilibrium
equations in the referential or Lagrangean form

DivP ¼ 0; (11)

Pn0 ¼ t0; (12)

where ’Div’ operator is with respect to referential coordinates x; P
is the 1st Piola-Kirchhoff stress tensor; t0is traction per unit area of
the reference surface with the unit outward normal n0; and the
barred quantity is prescribed.

The Eulerian and Lagrangean quantities are related as follows

n ¼ F�Tn0

���F�Tn0

����1
; (13)

s ¼ J�1PFT ; (14)

t ¼ t0J
�1
���F�Tn0

����1
; (15)

J ¼ detF: (16)

The filed equations should be completed with the constitutive
equations.

3. Constitutive equations

Elastoplastic deformations exhibit features of both elasticity and
non-Newtonian fluidity so profoundly developed by Rivlin
(Barenblatt and Joseph, 1997). In the present section we describe
the elasticity and plasticity/fluidity components of the theory
separately starting with a rheological model.

3.1. Rheological model

The purpose of a rheological model is to create a primitive
prototype of a three-dimensional theory. Though different tensorial
formulations could be proposed for the same toy prototype they
would share similar qualitative features. Specifically, we choose the
successively joined spring and friction elements shown in Fig. 1 as
a rheological model of elastoplasticity.

Here the spring element is related with elasticity while the
friction element is related with plasticity. Remarkably, the friction
element can also exhibit a characteristic mechanism of the
interlayer friction in liquids, especially, the non-Newtonian ones.
Thus, generally, we associate plasticity with non-Newtonian
fluidity.

It is crucial for a three-dimensional tensorial formulation, which
can stem from the rheological model, that stresses in elasticity and
plasticity are equal because the spring and friction elements are
joined successively.

3.2. Kinematics

Following our discussion in Introduction we remind the reader
that various approaches exist to describe deformations of the
elements of the rheological model in the case of three-dimensional
theory. We choose the following additive elasticeplastic decom-
position of the velocity gradient, which is arguably the most
appealing physically,

L ¼ Le þ Lp: (17)

The choice of the velocity gradient for a description of kine-
matics is natural in the cases of flow. We also notice that the
additive decomposition does not introduce the hierarchy of defor-
mations contrary to the multiplicative decomposition.

We further decompose the elastic and plastic parts of the
velocity gradient into symmetric and skew-symmetric tensors as
follows

Le ¼ De þWe; De ¼ 1
2

�
Le þ LeT

�
; We ¼ 1

2

�
Le � LeT

�
;

(18)

Lp ¼ Dp þWp; Dp ¼ 1
2

�
Lp þ LpT

�
; Wp ¼ 1

2

�
Lp � LpT

�
:

(19)

Here De and Dp are the elastic and plastic deformation rate tensors
accordingly; and We and Wpare the elastic and plastic spin tensors
accordingly.

We assume that the plastic spin is zero

Wp ¼ 0; (20)

and, consequently,

L ¼ Le þ Dp: (21)

Decomposition (21) is a mathematical expression of the sepa-
rated kinematic response of the spring and friction elements of the
rheological model.

We emphasize that assumption (20) corresponds to the
isotropic material response. If the response is anisotropic then
a constitutive equation for the plastic spin should be defined
(Dafalias, 1984, 1985).

3.3. Elasticity

The constitutive law describing the elastic behavior of the spring
in the rheological model is a generalization of the Rivlin 3D
isotropic hyperelastic solid

s ¼ 2I�1=2
3

�
I3j31þ ðj1 þ I1j2ÞG� j2G

2
�
; (22)

σ σ
Elasticity Plasticity

Fig. 1. Rheological model for elastoplasticity at large strains.
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where j is the elastic strain energy function and 1 is the second
order identity tensor; invariants are

I1 ¼ trG; I2 ¼
n
ðtrGÞ2�tr

�
G2
�o.

2; I3 ¼ detG; (23)

and

jih
vjðI1; I2; I3Þ

vIi
: (24)

Symmetric elastic strain G ¼ GT is not generally the left Cauchy-
Green tensor used by Rivlin and we postpone its definition to
Section 3.5.

3.4. Plasticity

The constitutive law describing the plastic behavior of the fric-
tion element in the rheological model e the flow rule e is a gener-
alization of the Reiner-Rivlin model for an isotropic fluid

s ¼ b11þ b2D
p þ b3D

p2; (25)

where the response functionals depend on the history of the
deformation

b1 ¼ b̂1ðs;D;DpÞ; b2 ¼ b̂2ðs;D;DpÞ; b3 ¼ b̂3ðs;D;DpÞ:
(26)

We note, in view of (26), that constitutive Eq. (25) is history-
dependent and implicit.

Eqs. (25) and (26) present a general description of plasticity
while it is argued that an additional yield condition should be
obeyed during the plastic deformation

f ðs;DpÞ ¼ 0: (27)

The physical basis for the yield condition (27) is open for
discussion. Amazingly, the yield condition can be a blessing for an
analytical solution or it can be a pain in the neck for a numerical
procedure. The rate of the yield constraint (27) is often used to
derive the so-called plastic multiplier accounting for the history of
inelastic deformations. We discuss this issue below concerning the
theory of metal plasticity.

3.5. Evolution equation

We remind the reader that symmetric elastic strain G¼ GT is not
generally the left Cauchy-Green tensor used by Rivlin. The elastic
strain is defined as a solution of the evolution equation

_G� LeG� GLeT ¼ 0; (28)

which can be rewritten, accounting for decomposition (21), in the
form

_G� LG� GLT þ DpGþ GDp ¼ 0 (29)

with the initial condition

Gðt ¼ 0Þ ¼ 1: (30)

It should not be missed that the material response is isotropic
otherwise the tensor of the plastic deformation rate should be
replacedwith the tensor of the plastic deformation gradient in (29):
Dp/Lp ¼ Dp þWp; where the plastic spin, Wp, should be defined
by a constitutive law.

The initial-value problem (29) and (30) gives the crucial
connection between elastic and plastic deformations. This
connection is motivated by the general kinematic identity, which is
correct independently of the character of deformation:
_B ¼ LB þ BLT; where B¼FFT is the left Cauchy-Green tensor. Thus,
we assumed that the mentioned kinematic identity should be
obeyed for the purely elastic deformations as well.

In the absence of plastic deformations, Dp ¼ 0, Eqs. (29) and (30)
reduce to

_G� LG� GLT ¼ 0; Gðt ¼ 0Þ ¼ 1; (31)

and the solution of (31) is the left Cauchy-Green tensor

G ¼ B ¼ FFT : (32)

Remark 1 We notice that the evolution Eq. (28) is invariant
under the superposed rigid body motion. Indeed, let us designate Q
a proper orthogonal tensor describing the superposed rigid body
rotation. Then starring the rotated quantities we have

G* ¼ QGQ T ; (33)

L* ¼ QLQ T þ _QQ T ¼ Q ðLe þ DpÞQ T þ _QQ T ¼ Le*þ Dp*;

(34)

where

Le* ¼ QLeQ T þ _QQ T ; (35)

Dp* ¼ QDpQ T : (36)

By a direct calculation with account of (33)e(36) we have

_G*� Le*G*� G*Le*T ¼ Q
�
_G� LeG� GLeT

�
Q T : (37)

Remark 2 In some cases, it is possible to completely exclude the
notion of the plastic deformation from the theory. Indeed, let us
assume that the flow rule (25) and (26) are resolved with respect to
the plastic deformation rate, Dp. Then, the plastic deformation rate
can be expressed as a function of the stress,s. The stress, in its turn,
is a function of elastic strains, G, through the hyperelastic law (22).
Thus, the plastic deformation rate depends on the elastic strain and
we can rewrite the evolution law (29) in the form

_G� LG� GLT þ KðGÞ ¼ 0 (38)

where K(G) is a function of the elastic strain.
Examples of the specific choice of K(G) can be found in: Eckart

(1948); Leonov (1976); Rubin and Ichihara (2010). We emphasize,
however, that the reduction of the problem to Eq. (38) is not always
possible. We will show below, for example, that the J2-theory of
metal plasticity with isotropic hardening cannot be generally
reduced to the simple framework presented by (38).

3.6. Dissipation

Let us examine the dissipation inequality

D ¼ s : D� I�1=2
3

_j � 0: (39)

Decomposing the deformation rate and substituting elastic
strains the dissipation takes form
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D ¼ s : De þ s : Dp � I�1=2
3

vj

vG
: _G � 0: (40)

We transform the third term in (40) with account of evolution
Eq. (28) as follows

vj

vG
: _G ¼ vj

vG
: LeGþ vj

vG
: GLeT ¼ 2

vj

vG
G : Le ¼ 2

vj

vG
G : De:

(41)

Substituting (41) in (40) we get

D ¼
�
s� 2I�1=2

3
vj

vG
G
�

: De þ s : Dp � 0: (42)

We notice that the expression in the parentheses equals zero by
virtue of the hyperalstic constitutive law

s ¼ 2I�1=2
3

vj

vG
G ¼ 2I�1=2

3

�
I3j31þ ðj1 þ I1j2ÞG� j2G

2
�
:

(43)

Thus, the dissipation inequality reduces to

D ¼ s : Dp � 0: (44)

We substitute (25) in (44) as follows

D ¼
�
b11þ b2D

p þ b3D
p2
�
: Dp � 0: (45)

Taking into account that the rate of the plastic deformation is
a symmetric tensor, DP ¼ DpT, we can rewrite (45) in a more
compact form

D ¼ b1trðDpÞ þ b2tr
�
Dp2

�
þ b3tr

�
Dp3

�
� 0: (46)

In this way, the dissipation inequality imposes a restriction on
the plastic response functionals b1, b2, b3 and the processes of
plastic flow.

4. Metal plasticity at large deformations

In this section we cast the classical J2 small deformation elas-
toplasticity in the general large deformation framework developed
in the previous section.

4.1. Elasticity

Various hyperelastic isotropic models can be developed, which
reduce to the Hooke law at small deformations. We choose here the
Ciarlet (1988) proposal for the elastic strain energy function

j ¼ l

4
ðI3 � 1Þ � lþ 2m

4
lnI3 þ

m

2
ðI1 � 1Þ; (47)

where l and m are the Lame constants.
Substituting (47) in (22) we derive the constitutive law for

elastic deformations e the spring element of the rheological
model e as follows

s ¼ I�1=2
3

�
l

2
ðI3 � 1Þ1þ mðG� 1Þ

�
: (48)

4.2. Plasticity

In the case of metal plasticity we set the plastic response
functions in the following form

b1 ¼ 1
3
trs; b2 ¼ 2~s

3a
; b3 ¼ 0; (49)

where a > 0 is the plastic multiplier and

~s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
devs : devs

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

�
s : s� 1

3
ðtrsÞ2

�s
(50)

is the von Mises equivalent stress.
Substituting (49) in (25) we get the familiar flow rule

Dp ¼ 3a
2~s

devs; (51)

where the deformation rate is equal to the strain rate in the case of
small deformations. One of the reasons for the choice of the
response functions in the form (49) is the necessity to obey the
plastic incompressibility condition

tr Dp ¼ 0: (52)

The yield condition takes form

f ðs;~εÞ ¼ ~sðsÞ � syð~εÞ ¼ 0; (53)

~ε ¼
Z

_~εdt; _~ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
Dp : Dp

r
; (54)

where sy is the yield stress and the accumulated plastic strain, ~ε, is
introduced to account for the isotropic hardening.

Based on the flow rule (51) we can derive the relationship
between the rate of the effective plastic strain, _~ε, and the plastic
multiplier

Dp : Dp|fflfflfflffl{zfflfflfflffl}
3 _~ε

2
=2

¼
�
3a
2~s

�2

devs : devs|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2~s

2
=3

; (55)

and, consequently, we get

_~ε ¼ a: (56)

The plastic multiplier is obtained from the following consistency
condition

_f ¼ vf
vs

: _sþ vf
v~ε

_~ε ¼ 0: (57)

We can calculate the stress increment accounting for (29) as
follows

_s ¼ vs

vG
: _G ¼ vs

vG
:
�
LGþ GLT � DpG� GDp

�
: (58)

Substituting (51) in (58) we get

_s ¼ vs

vG
: _G ¼ vs

vG
:

�
LGþ GLT � 3a

2~s
½ðdevsÞGþ G devs�

�
:

(59)

Finally, substituting (56) and (59) in (57) we find the plastic
multiplier
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a ¼
vf
vs

:
vs

vG
:
�
LGþ GLT

�
3
2~s

vf
vs

:
vs

vG
: ½ðdevsÞGþ G devs� � vf

v~ε

; (60)

where

vf
vs

¼ v~s

vs
¼ 3devs

2~s
; (61)

and

vs

vG
¼ I�1=2

3

�
lðI3 þ 1Þ þ 2m

4
A1 �

m

2
A2 þ m1

�
; (62)

A1 ¼ 1
2

n
G�151þ 15G�1

o
; (63)

A2 ¼ 1
2

n
G�15Gþ G5G�1

o
; (64)

�
1
�
mnij

¼ 1
2
�
dmidnj þ dnidmj

�
: (65)

The standard plastic loading/unloading conditions complete the
formulation: a � 0; f � 0;a f ¼ 0.

Remark 3 We notice that the metal plasticity theory described
above cannot be cast in the framework described by Eq. (38) in
Remark 2 because the plastic modulus

H ¼ �vf
v~ε

¼ vsy
v~ε

(66)

generally depends on the accumulated plastic strain and we cannot
get rid of it.

Remark 4 We also notice that (60) is invariant under the
superposed rigid body motion. The latter can be shown by a direct
yet lengthy calculation e see Appendix. It can also be shown that
the skew part of L does not affect (60) and L can be replaced with D.

4.3. Dissipation

To check the dissipation inequality we substitute (49) and (52)
in (46) as follows

D ¼ 2~s
3a

tr
�
Dp2

�
� 0: (67)

This inequality is evidently obeyed in the case of plastic defor-
mations because all cofactors are positive.

5. Simple shear

We consider the problem of simple shear to illustrate the theory
developed in the previous section. This problem allows analytically
tracking the machinery of the theory and obtaining a compact final
evolution equation, which describes the dependence of the shear
stress on the amount of shear.

5.1. Kinematics

We start with the deformation law for simple shear

y ¼ x þ gðtÞx2e1; (68)

where x and y are the referential and current positions of a material
point accordingly; g is the amount of shear; and e1 is a base vector.

We further assume that the amount of shear changes in a steady
mode with the constant velocity

g ¼ _gt; _g ¼ constant: (69)

Based on (68) and (69) we can calculate the velocity vector and
the velocity gradient tensor

_y ¼ _gx2e1 ¼ _gy2e1; (70)

L ¼ _ge15e2: (71)

5.2. Elasticity

Before plastic deformations occur we have a purely elastic
deformation with the strain tensor equal the left Cauchy-Green
tensor

G ¼ B ¼ FFT ¼ 1þ g2e15e1 þ gðe15e2 þ e25e1Þ; (72)

I3 ¼ detG ¼ 1: (73)

Then, the Cauchy stress tensor takes form

s ¼ I�1=2
3

�
l

2
ðI3 � 1Þ1þ mðG� 1Þ

�
¼ s11e15e1 þ s12ðe15e2 þ e25e1Þ; (74)

s11 ¼ mg2; s12 ¼ mg: (75)

We notice that the normal stress and strain appear in (74) and
(72) typically of large elastic deformations. The fact that it is
necessary to apply the normal stress to maintain simple shear is
known by the name of the Poynting effect (Truesdell and Noll,1965;
Barenblatt and Joseph, 1997).

When plastic deformations occur we assume that elastic
deformations are small and, consequently, the tensor of elastic
strains can be written as follows

G ¼ 1þ bðe15e2 þ e25e1Þ; (76)

I3 ¼ detG ¼ 1� b2z1: (77)

The stress tensor triggered by (76) and (77) takes form

s ¼ s12ðe15e2 þ e25e1Þ ¼ mbðe15e2 þ e25e1Þ: (78)

5.3. Plasticity

The plasticity description starts with the calculation of the von
Mises stress based on (78)

~s ¼
ffiffiffiffiffiffiffiffiffiffi
3s212

q
¼ m

ffiffiffi
3

p
b: (79)

Then, we assume that the isotropic hardening of the yield stress
is described by the Ramberg-Osgood formula

sy ¼ E~ε0

�
~ε

~ε0

�1=n
; (80)

where E is the material Young modulus; n is a constant of hard-
ening; and ~ε0 is a material constant designating the effective strain
of the onset of the plastic deformation.
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Substituting (79) and (80) in (53) we obtain the yield condition

f ¼ m
ffiffiffi
3

p
b� E~ε0

�
~ε

~ε0

�1=n
¼ 0; (81)

where the Young and shear moduli are related through the Poisson
ration: E/m ¼ 2(1 þ n).

We turn to the plastic deformation rate, which can be written as
follows,

Dp ¼ d
2
ðe15e2 þ e25e1Þ; (82)

where d is the unknown constant rate of the plastic deformation.
Substituting (82) in (54) we obtain

_~ε ¼ d=
ffiffiffi
3

p
; (83)

and

~ε ¼
Zg= _g
0

_~εdt ¼ d=
ffiffiffi
3

p Zg= _g
0

dt ¼ gd
_g
ffiffiffi
3

p : (84)

Substituting (84) in (81) we obtain the yield condition in the
form

f ¼ m
ffiffiffi
3

p
b� E~ε0

 
gd

_g~ε0
ffiffiffi
3

p
!1=n

¼ 0; (85)

and, consequently, we can find the analytical relationship between
unknowns d and b

d ¼ _g~ε0
ffiffiffi
3

p

g

 
m
ffiffiffi
3

p
b

E~ε0

!n

: (86)

5.4. Evolution equation

It remains to find unknown b using the evolution equation.
Since the approximation has been made concerning the form of G
we will only consider one evolution equation for the shear strain
G12. In this case (29) and (30) reduce to

_bþ d ¼ _g; bðt ¼ 0Þ ¼ 0; (87)

or, substituting from (86), we have

_bþ _g~ε0
ffiffiffi
3

p

g

 
m
ffiffiffi
3

p
b

E~ε0

!n

¼ _g; bðt ¼ 0Þ ¼ 0; (88)

Pre-multiplying (88) by shear modulus m we obtain the evolu-
tion equation for the shear stress during the plastic deformation

_s12 þ
m _g~ε0

ffiffiffi
3

p

g

 ffiffiffi
3

p
s12

E~ε0

!n

¼ m _g; s12ðt ¼ 0Þ ¼ 0; (90)

In (90) we can consider the dependence on the amount of shear
instead of time. Based on (69) we have

d
dt

¼ _g
d
dg

; (91)

and, substituting (91) in (90),

ds12
dg

þ m~ε0
ffiffiffi
3

p

g

 ffiffiffi
3

p
s12

E~ε0

!n

¼ m; s12ðg ¼ 0Þ ¼ 0: (92)

It remains only to introduce the dimensionless shear stress

s12 ¼ s12
m

: (93)

Substituting (93) in (92) we have

ds12
dg

þ
ffiffiffi
3

p
~ε0

g

 ffiffiffi
3

p
s12

2ð1þ nÞ~ε0

!n

¼ 1; s12ðg ¼ 0Þ ¼ 0; (94)

where n is the Poisson ratio.
The reader should not forget that the second term on the left

hand side of (94) is present during the plastic deformation only. In
the case of the purely elastic deformation the second term is
omitted and we have the elastic solution: s12 ¼ mg.

Initial-value problem (94) is easily integrated numerically for
constants: ~ε0 ¼ 0:002; n ¼ 5; n ¼ 0.3. The numerically generated
stressestrain curve is shown in Fig. 2.

5.5. Comparison with the multiplicative decomposition of the
deformation gradient

In this section we compare the approach of the present work to
the approach based on the multiplicative decomposition of the
deformation gradient. We start with some general observations.
First, the additive decomposition of the velocity gradient, which is
triggered by the multiplicative decomposition (3), takes the
following form

L ¼ _FF�1 ¼ Le þ Lp; (95)

Le ¼ _F
e
Fe�1; Lp ¼ Fe _F

p
Fp�1Fe�1; (96)

where Le and Lp are the elastic and plastic parts of the velocity
gradient accordingly.
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Fig. 2. Stress versus shear in the simple shear problem.
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Second, the elastic and plastic strains can be written as follows

Be ¼ FeFeT ¼ FCp�1FT ; (97)

Cp ¼ FpTFp: (98)

Third, differentiating (97) with respect to time we get the
evolution equation

_B
e � LeBe � BeLeT ¼ 0; (99)

which, after some algebraic manipulations and the use of identity
_F
p�1 ¼ �Fp�1 _F

p
Fp�1, can be rewritten in the following form

_B
e � LBe � BeLT ¼ F _C

p�1
FT : (100)

Eq. (99) formally coincides with the evolution Eq. (28) where
G ¼ Be. However, there is a significant informal difference between
them because all quantities in (28) are independent while all
quantities in (99) depend on the elastic, Fe, and plastic, Fp, parts of
the deformation gradient.

For example, within the multiplicative decomposition framework
one cannot prescribe Fe, Fp and Le, Lp independently. The latter
means, particularly, that in the case of the plastic isotropy it is
impossible to impose conditions of the zero plastic spin on the anti-
symmetric part of the plastic velocity gradient

Wp ¼ 1
2

�
Lp � LpT

�
s0: (101)

Thus, even isotropic and isotropically deforming material will
produce the plastic spin!

We illustrate this notion on the simple shear deformation
considered above. In this case we have for the elastic deformations

Fe ¼ 1þ gee15e2; (102)

ðFeÞ�1 ¼ 1� gee15e2; (103)

Je ¼ detFez1; (104)

Leh _F
eðFeÞ�1z _gee15e2; (105)

where ge is the amount of elastic shear.
For the plastic deformations we have

Fp ¼ 1þ gpe15e2; (106)

ðFpÞ�1 ¼ 1� gpe15e2; (107)

LphFe _F
pðFpÞ�1ðFeÞ�1z _gpe15e2; (108)

where gp is the amount of plastic shear.
The reduced Eq. (95) follows from (71), (105), and (108)

_g ¼ _ge þ _gp: (109)

Designating

ge ¼ b; _gp ¼ d; (110)

we obtain the complete set of equations considered in the previous
sections.

At this point, one might conclude that the formulations and
results of the previous and present sections coincide. Such

a conclusion would not be accurate because the approach of the
present work predicts zero plastic spin while the multiplicative
decomposition approach predicts the following nonzero plastic
spin

Wp ¼ 1
2

�
Lp � LpT

�
¼ _gp

2
ðe15e2 � e25e1Þ: (111)

Thus, in the theory developed in the present work the plastic
spin is an independent variable and in the case of the isotropic
response the plastic spin can be assumed zero and the transition
can be done from (28) to (29). The latter transition is impossible
within the framework of the multiplicative decomposition of the
deformation gradient, where the plastic spin is a dependent
variable.

Elastic deformations were assumed small in the considered
example. In the case where the elastic deformations are negligible
we have approximately the rigid-plastic behavior in simple shear

G ¼ 1; L ¼ _ge15e2: (112)

Substitution of (112) in (29) yields

2Dp ¼ L þ LT ¼ _gðe15e2 þ e25e1Þ; (113)

and further analysis of the stress follows the lines of the previous
sections which we will not repeat here. It is important to note that
the plastic spin is not involved: Wp ¼ 0.

In the case of the multiplicative decomposition we have for the
simple rigid-plastic shear

Fe ¼ 1; Je ¼ detFe ¼ 1; Le ¼ _F
eðFeÞ�1 ¼ 0: (114)

Substitution of (114) in (95) and (96) yields the evolution
equation for the plastic deformation gradient

_F
p ¼ LpFp ¼ LFp ¼ ð _ge15e2ÞFp; (115)

whose solution with the initial condition Fp(t ¼ 0) ¼ 1 takes form

Fp ¼ 1þ ge15e2: (116)

In deriving (115), we used a consequence of (114)3

Lp ¼ L ¼ _ge15e2: (117)

Eq. (117) again implies that the plastic spin is nonzero

Wp ¼ 1
2

�
Lp � LpT

�
¼ _g

2
ðe15e2 � e25e1Þ: (118)

Thus, the rigid-plastic behavior with the negligible elastic
deformations unavoidably leads to the appearance of nonzero
plastic spin.

It is important to comprehend from the considered example
that the condition of the zero plastic spin cannot be generally
imposed on the theory based on the multiplicative decomposition
of the deformation gradient. The zero spin condition produces an
over-determinate system of equations which generally does not
have a non-trivial solution. Indeed, assuming zero plastic spin in
(118) we get the trivial zero rate of shear deformation.

Remark 5 The multiplicative decomposition of the defor-
mation gradient is not unique: F ¼ FeFp ¼ F

e
F
p
, where

F
e ¼ FeR; F

p ¼ RTFp and R is an arbitrary proper orthogonal
rotation tensor. Of course, it is possible to find a specific rotation
R that will provide the zero plastic spin. The latter means that
the existence or non-existence of the physical quantity e the
plastic spin e depends on the choice of the arbitrary rotation of

K.Y. Volokh / European Journal of Mechanics A/Solids 39 (2013) 153e162160



Author's personal copy

the intermediate configurations. The latter ambiguity is hardly
acceptable for a physical theory. This ambiguity is completely
excluded from the theory formulation given in the present work.

6. Concluding remarks

A general constitutive framework for the large deformation
isotropic elastoplasticity summarized in the box below was
developed in the present study.

The elastic part of the elastoplastic deformation is described by
the elastic strain tensor G, which defines the hyperelastic consti-
tutive law in the first row of the box. The plastic part of the elas-
toplastic deformation is described by the plastic deformation rate
tensor Dp, which defines the generalized non-Newtonian flow rule
in the second row of the box. The elastic strain tensor G and the
plastic deformation rate tensorDp are related through the evolution
equation presented in the third row of the box.

The introduction of the elastic strain tensor G and hyper-
elasticity allows avoiding the use of the nonphysical hypoelasticity
on the one hand. The introduction of the plastic deformation rate
tensor Dp allows avoiding the use of the multiplicative decompo-
sition of the deformation gradient having a vague physical meaning
on the other hand. Thus, the proposed framework avoids the
shortcomings of the traditional approaches. Moreover, all consti-
tutive equations and unknowns in the box are referred to the
current material configuration, which is physically appealing.
Indeed, during plastic deformations a material loses its memory of
the initial or reference configuration and it is reasonable to exclude
an explicit notion of this configuration from the constitutive
formulation.

The proposed framework can be specialized for various mate-
rials. As an example of such a specialization the classical small
deformation J2-theory of metal plasticity was extended to large
deformations in the present work. The analytically tractable
example of the simple shear deformation was analyzed. Further
examination and use of the proposed general framework will
require computer simulations and numerical schemes for the
constitutive updating. The latter topic, however, is beyond the
scope of the present work.
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Appendix

The purpose of the appendix is to show the objectivity of the
plastic multiplier, (60),

a ¼
vf
vG

:
�
LGþ GLT

�
3

2~sðsÞ
vf
vG

: ½ðdevsÞGþ Gdevs� � vf
v~εðDpÞ

: (A1)

We notice immediately that all tensors in the denominator,
s,G,Dp, are objective, and, consequently, the denominator itself is
objective.

The objectivity of the numerator is a subtler matter because the
non-objective tensor of the velocity gradient, L, is involved. To treat
the numerator in (A1) we calculate first

vf
vG

¼ vf
vs

:
vs

vG
¼ 3m

2~sI3
devG :

�
lðI3 þ 1Þ þ 2m

4
A1 �

m

2
A2 þ m1

�
;

(A2)

and

devG : A1 ¼ 1
2

�
3� 1

3
trG trG�1

�
1; (A3)

devG : A2 ¼ 1
2

( 
3� trG trG�1

3

!
Gþ

 
trG2 � ðtrGÞ2

3

!
G�1

)
;

(A4)

devG : 1 ¼ G� trG
3

1: (A5)

Since traces of objective tensors are objective it only remains to
show the objectivity of the following products in the numerator of
(A1)

1 :
�
LGþ GLT

�
; G :

�
LGþ GLT

�
; G�1 :

�
LGþ GLT

�
: (A6)

Taking into account the symmetry property of G and G�1,
expressions in (A6) can be rewritten as follows accordingly

G :
�
L þ LT

�
; G2 :

�
L þ LT

�
; 1 :

�
L þ LT

�
: (A7)

The latter expression can be further simplified

2G : D; 2G2 : D; 21 : D: (A8)

These scalars are objective, of course.
In summary, all entries in the numerator and denominator of

(A1) are objective and, moreover, all velocity gradient tensors can
be replaced with the deformation rate tensors: L/D.
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