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a b s t r a c t

A simple analytical study of a single-atom-thick sheet of graphene under biaxial tension is presented. It is
based on the combination of the approaches of continuum and molecular mechanics. On the molecular
level the Tersoff-Brenner potential with a modified cut-off function is used as an example. Transition to
a continuum description is achieved by employing the CauchyeBorn rule. In this analysis the graphene
sheet is considered as a crystal composed of two simple Bravais lattices and the mutual atomic relaxation
between these lattices is taken into account. Following this approach a critical failure surface is produced
for strains in biaxial tension. The adopted methodology is discussed in the context of the alternative
approaches.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

For a long time theoretical skepticism prevailed concerning the
possibility to create one-atom-thick graphene sheets. The skepti-
cism was based upon the considerations of instabilities of gra-
phene. Nonetheless, Novoselov et al. (2005) succeeded in isolating
a one-atom-thick sheet of graphene. This exciting experimental
finding led to the explosion of interest in the studies of graphene
sheets in view of their potential applications in physics, material
science, and engineering (Geim and Novoselov, 2007).

In recent years a number of analytical studies of the mechanical
properties of graphene have been reported, e.g. Khare et al. (2007),
Liu et al. (2007), Reddy et al. (2006), Zhou and Huang (2008), Lu and
Huang (2009), Lee et al. (2008), Wei et al. (2009), Marianetti and
Yevick (2010), Zhao and Aluru (2010). Some of them employ very
advanced and computationally involved techniques, such as Den-
sity Functional Theory and its various versions. The goal of the
present paper is to suggest a simple approach to study the same
problem and examine its validity.

The analysis presented here is a modification of the earlier
approach by Volokh (2012), who obtained the failure surface for
graphene under biaxial tension using a similar technique. Volokh
(2012) adopted a continuum-atomistic approach wherein the

strain energy of a 2D graphene sheet was defined with the help of
the TersoffeBrenner empirical potential (Tersoff, 1988; Brenner,
1990) for individual bonds. The multiscale approach allowed con-
sidering the problem analytically without numerical simulations. In
that paper no atomic relaxation was included.

In the present study we elaborate on Volokh’s (2012) results by
accounting for the atomic relaxation. For this purpose, we consider
the graphene sheet as a superposition of two simple atomic Bravais
lattices which can move with respect to each other during defor-
mation. This requires introduction of an additional degree of free-
dom e the internal displacement Dewhile still permitting for
a simple analytical calculations. In addition, in this paper we
introduce a new cut-off function, which is virtually indistinguish-
able from that of the original TersoffeBrenner potential and is more
convenient in numerical simulations, as it possesses higher degree
of smoothness. The model presented in the present work, which
includes atomic relaxation, provides means to examine the influ-
ence of additional degrees of freedom on the strength of graphene.

2. Governing equations: continuum-atomistic coupling

Coupling of continuum and molecular mechanics can dramati-
cally simplify the analysis of the mechanical behavior of graphene.
In the present section the major results of the coupling relevant to
the subsequent considerations are reviewed.

We model atomic interactions by using the TersoffeBrenner
environmental potential defined as follows (Tersoff, 1988;
Brenner, 1990)
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where Ri and ri are the referential and current positions of the ith
atom and the Heaviside unit step function has been used

HðzÞ ¼
�
1; z � 0
0; z < 0 :

In the case of graphene the constants can be defined as follows:
a0 ¼ 0.00020813; c0 ¼ 330; d0 ¼ 3.5; d ¼ 0.5; D ¼ 6.0 eV; S ¼ 1.22;
b ¼ 21 nm�1; a1 ¼ 0.17 nm; a2 ¼ 0.20 nm; and Rij ¼ R ¼ 0.142 nm is
the equilibrium bond length.

The cut-off function of Eq. (2) includes the Heaviside step
function that is rather inconvenient to use in computations. For that
reason we introduce a new cut-off function defined as follows
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The original and the new cut-off functions are plotted in Fig. 1
and, as can be seen there, they are virtually indistinguishable.

In addition, using the new cut-off function of Eq. (7), we solved
the problem considered by Volokh (2012) and found that the re-
sults obtained with the original and the new cut-off functions are
practically identical. Thus, in the subsequent analysis we will use
the cut-off function of Eq. (7).

Generally, the potentials of Eq. (1) should be defined and sum-
med overall atoms comprising the graphene sheet. However, we
will restrict our considerations to the homogeneous deformations,
which naturally suggest the use of the methods of continuum
mechanics. In continuum mechanics the atomistic or molecular
structure of material is approximated by a continuously distributed
set of the so-calledmaterial points. The continuummaterial point is
an abstraction that is used to designate a small representative
volume of real material including many atoms and molecules. A
material point that occupies position x in the reference or initial
configuration of continuum moves to position y(x) in the current
configuration of continuum. The homogeneous deformation in the

vicinity of the material point can be described by the deformation
gradient tensor

F ¼ vy
vx

: (9)

With the help of this tensor we can relate the relative atomic
positions before and after deformation as follows

rij ¼ FRij: (10)

Eq. (10) links atomistic and continuum descriptions. This link is
tacitly assumed in the classical continuum mechanics where the
infinitesimal representative material volumes deform locally in the
homogeneous manner. In crystal elasticity (Beatty and Hayes,
2005), the multiscale link of Eq. (10) is often referred to as the
CauchyeBorn rule (Born and Huang, 1954; Weiner, 1983; Tadmor
et al., 1996). Using Eq. (10) we can write the density of the stored
energy in the form

jðCÞ ¼ 1
2V0

X
i;j
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�
; (11)
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FRij



 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rij$CRij

q
; C ¼ FTF; (12)

where V0 is the initial volume occupied by the atomic assembly and
C is the so-called right CauchyeGreen tensor.

By introducing Eqs. (11) and (12) we established transition to
a continuum description of the atomic assembly. After defining the
stored energy by Eq. (11) we can define the total energy of the
assembly in the form

PðyÞ ¼
Z

jdV0 �
Z

t0$ydS0; (13)

where t0 is a prescribed surface traction.
For the sake of simplicity we assume that surface tractions are

‘dead’, that is independent of surface placements, and the inertia
and body forces are absent.

Equating the first variation of the total energy, with respect to
the position in the current configuration of the graphene, to zero

dPðyÞ ¼ 0 (14)

the equilibrium equations and natural boundary conditions on
tractions are obtained by virtue of arbitrary dy

DivP ¼ 0 on U0; Pn0 ¼ t0 on vU0; (15)
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Fig. 1. Cut-off function.
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where ‘Div’ is computed with respect to the referential coordinates
x; U0 and vU0 designate the initial configuration of the assembly
and its bounding surface respectively; n0 is the unit outward nor-
mal to the surface in the initial configuration; and P is the so-called
1st PiolaeKirchhoff stress tensor defined by the hyperelastic con-
stitutive law

P ¼ 2F
vj

vC
: (16)

It should be noted that only those solutions of Eq. (15) are stable
and observable which obey the condition of the positive definite-
ness of the second variation of the total energy (for every
variation dy)

d2PðyÞ > 0: (17)

We notice also that in the case of homogeneous deformations
considered in the present work the 1st PK stress is constant and,
consequently, the equilibrium condition of Eq. (15)1 is satisfied
automatically. The constant stresses can be found from the traction
condition of Eq. (15)2 or, in the case of the displacement control, the
stresses are calculated from the constitutive equation, Eq. (16).

In the case of the homogeneous deformation, the approach of
continuum mechanics described by Eqs. (13)e(17) is applicable to
atomic assemblies forming a single simple Bravais lattice. However,
a graphene sheet is composed of two simple Bravais lattices e

Fig. 2.
Two simple lattices comprising graphene canmovewith respect

to each other independently. Thus, an additional vector of the lat-
tice shift should be introduced in Eq. (10) for one of the two Bravais
lattices (yellow, in the subsequent analysis) as follows

rij ¼ FRij þ g ¼ F
�
Rij þD

�
; (18)

where vectors g andD¼ F�1g describe a possible shift between the
two lattices. These vectors are introduced to increase the number of
possible equilibrium states and allow for the relaxation of the
atomic positions of the lattices, if any.

The shift vector is determined by minimizing the stored energy
density with respect toD (Weiner,1983; Tadmor et al., 1999; Arroyo
and Belytschko, 2002, 2004; Huang et al., 2006; Zhang et al., 2004;
Zhou and Huang, 2008; Wu et al., 2008)

vjðC;DÞ
vD

¼ 0: (19)

3. Specialization

In this section we specialize the formulae considered in the
previous section for the case of biaxial tension of a graphene sheet.
Since the sheet is made of a single atomic layer and out-of-plane
strains and stresses might be difficult to interpret, we restrict
considerations to the in-plane 2D continuum mechanics.

We define the Cartesian axes in the plane of the sheet as shown
in Fig. 2. Thus, the two-dimensional deformation can be described
as follows

y1 ¼ l1x1; y2 ¼ l2x2; (20)

F ¼ l1e15e1 þ l2e25e2; C ¼ l21e15e1 þ l22e25e2; (21)

where e1 and e2 are the Cartesian base vectors.
We notice that the initial configuration of the graphene sheet,

shown in Fig. 2, has vertical and horizontal axes of symmetry. At the
same time the biaxial tensile loads we consider should preserve
these symmetries in the deformed configuration up to the critical
point of the sheet instability. This reasoning excludes vertical shifts
between the simple Bravais lattices comprising the sheet; other-
wise, the symmetries would be destroyed. However, the horizontal
shift between the lattices preserves these symmetries and it is
admissible e Fig. 3 e Consequently we have

D ¼ De1: (22)

Substituting Eqs. (21) and (22) in Eq. (18) we obtain

rij ¼ FRij þ l1De1: (23)

11, yx

22 , yx

Fig. 2. Graphene sheet composed of two (red and yellow) simple Bravais lattices. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

22 , yx

11, yx

Fig. 3. Graphene sheet with a horizontal mutual shift of two simple Bravais lattices.
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It is possible to restrict further analysis to the graphene pattern
shadowed in Fig. 4.

In this case the stored energy function defined per area rather
than per volume can be written as follows

A0j ¼ Uðr12Þ þ Uðr13Þ þ Uðr14Þ; (24)

where A0 ¼ 3
ffiffiffi
3

p
R2=2 is the area of the shadowed pattern in the

reference configuration.
We determine the first term on the right hand side of Eq. (24) as

follows
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To calculate the potentials of Eqs. (25)e(26) we define the ref-
erence relative atomic positions as follows
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Substituting expressions of Eq. (27) into that of Eq. (23) we get
the current relative atomic positions
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Furthermore, substituting expressions of Eq. (28) into those of
Eqs. (5) and (6) we have

r12 ¼ l1ðRþ DÞ; r13 ¼ r14 ¼ r25 ¼ r26
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Expressions of Eqs. (29) and (30) combined with those of Eq.
(26) yield

B12 ¼ B21: (31)

The second term on the right hand side of Eq. (24), calculated in
a similar fashion, yields
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To evaluate expressions of Eqs. (32)e(33) we use Eq. (28)1e3
using the following reference relative atomic positions

8<
:

R31 ¼ �R13
R37 ¼ �R14
R38 ¼ �R12

: (34)

Substituting Eq. (34) in Eq. (23) we get

8<
:

r31 ¼ �r13
r37 ¼ �r14
r38 ¼ �r12

: (35)

Eq. (28)1e3 and (35) together with Eqs. (5) and (6) render the
following results
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Fig. 4. Graphene pattern is shadowed in gray.
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Substituting Eqs. (36) and (37) in Eqs. (32) and (33) we conclude
that

B13 ¼ B31: (38)

Finally, we specify the third term on the right hand side of
Eq. (24)
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To evaluate expressions involved in Eqs. (39) and (40) we use Eq.
(28)1e3 with the following reference relative atomic positions:
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R410 ¼ �R13
R49 ¼ �R12

: (41)

Substituting expressions of Eq. (41) in Eq. (23) we get
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Using expressions of Eq. (28)1e3, (42) in Eqs. (5) and (6) we
obtain
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Substituting Eqs. (43) and (44) in Eqs. (39) and (40) we observe

B14 ¼ B41: (45)

Thus, the stored energy of Eq. (24) is completely defined.

4. Results

In the previous sections the stored energy j was completely
defined as a function of stretches l1, l2 and the lattice relaxation
shift D. The latter shift can be calculated as a function of stretches
from the condition of Eq. (19)

vjðl1; l2;DÞ
vD

¼ 0: (46)

The deformation of the graphene sheet is stable as long as the
second variation of the total energy is positive

d2Pðl1; l2;DÞ ¼ A2
0d

2jðl1; l2;DÞ>0 (47)

It is emphasized that in the above development the deformation
is homogeneous and the surface tractions are ‘dead’. In addition,
the relations of Eq. (20) specifying the deformed configuration of
graphene in terms of stretches has been used in Eq. (47).

For the second variation of Eq. (47) to be positive, the following
Hessian matrix

M ¼

2
66666666664

v2j

vl21

v2j

vl1vl2

v2j

vl1vD

v2j

vl1vl2

v2j

vl22

v2j

vl2vD

v2j

vl1vD
v2j

vl2vD
v2j

vD2

3
77777777775

(48)

evaluated at the equilibrium point (the parameter of the relaxation
shift, D, is computed from Eq. (46)) must be positive definite. This
implies that all principal minors of matrix M must be positive and
stability of graphene sheet is lost when any one of them becomes
negative.

One way of trying to determine the boundary between the
stable and unstable regions is based on the observation that for
l1 ¼ l2 (isotropic expansion of lattice) equilibrium conditions are
satisfied with D ¼ 0. Thus, any values of l1 ¼ l2 and D ¼ 0
constitute good starting point to determine subsequent values of
D for incrementally changing l1 while keeping l2 ¼ constant (or
vice-versa). To compute the value of D Eq. (46) is solved in an
iterative manner. At each step of such analysis all three minors of
Hessian matrix M are computed and the process continues until
one of them becomes negative. The corresponding values of l1,
l2 determine the boundary of the stability region, and the
resulting D is the lattice shift associated with that point of the
boundary.

The loss of stability marks the onset of the material bond rup-
ture with the subsequent failure localization and propagation.
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Below wewill only consider the critical point of the onset of failure
without analyzing its localization and propagation.

It is convenient to define the critical failure surface in terms of
the engineering strains

31 ¼ l1 � 1; 32 ¼ l2 � 1: (49)

This failure surface is presented by the solid line in Fig. 5. Dashed
line represents the failure surface without relaxation parameter D
(Volokh, 2012).

It could be seen that the curve obtained with the inclusion of
relaxation parameter is significantly different from the one
obtained without that parameter. To appreciate the influence the
lattice shift D has on the overall stable deformation, Fig. 6 provides
its value normalized with respect to undeformed lattice dimension
R at each point of the stability boundary parameterized by 31. A
couple of characteristic features can be seen in Fig. 6: (i) extreme
values of D correspond to uniaxial stretching in either horizontal or
vertical direction, (ii) the signs of D corresponding to those two
directions of stretching are different, as expected.

There is a visible lack of smoothness around the point of the
stability boundary corresponding roughly to l1 ¼ l2, which can be
explained by the sensitivity of the numerical analysis used. In this
regard we note that to obtain the part of the curve of Fig. 6 located
to the left of that point l1 had to be kept constant while changing l2.
To the right of that point the roles of l1 and l2 were reversed. In
view of the fact that the formulas used in the calculations depend
on l1 and l2 in a very different way, and in view of the assumed

limited accuracy of the computations, it is natural to expect the
errors reflected in Fig. 6. This is particularly true considering that
around that point the value of the relaxation parameterD is close to
zero.

5. Conclusions

In this paper we studied a simple analytical procedure to
examine strength of graphene in biaxial tension, which is an
important aspect of its mechanical behavior. It was accomplished
without having to calculate stressestrain relationships. This is in
contrast with all previous approaches (e.g. Liu et al., 2007) where
the strength could only be deduced from the stress-strain curve. To
obtain stress-strain curves the previous authors used (a) various
macroscopic stress measures and (b) various definitions of mac-
roscopic stresses through the interatomic forces. Since neither
macroscopic stress measures nor their microscopic definitions are
unique (Admal and Tadmor, 2010) the limit points on the simulated
stress-strain curves cannot be accepted as a unique description of
strength. Contrary to the previous works, the global energy analysis
performed in the present paper is much more natural and unique.

In our approach the stress-strain curve could also be obtained
from Eq. (16) but direct computation of strength is advantageous.

In addition, we introduced a new cut off function in the Tersoffe
Brenner potential that is more convenient in numerical analysis of
the problem. It was shown that the new cut-off function can be
usedwith virtually no influence on the results of numerical analysis
comparing with the original function.

We studied the influence of the relative motion of simple atomic
lattices e atomic relaxation e on the results of analysis. It was
found that the deformability of graphene at failurewas significantly
affected by the presence of the atomic relaxation parameter. In
purely one dimensional stretching (l1 ¼ 1 or l2 ¼ 1) the inclusion
of the relaxation parameter increased the strength of graphene.
This is understandable since the additional degree of freedom al-
lows for additional patterns of deformation. For biaxial stretching
with equal intensity (l1¼ l2) in both directions, the failure occurs at
about the same strains as those without the relaxation parameter.
This is also understandable since in this case original hexagonal
arrangement of atoms deforms proportionally and no relaxation
parameter is needed to maintain equilibrium. Overall, the curve
representing strains at failure is significantly smoothened as the
result of lattice relaxation. However, as expected, the strains at
failure corresponding to two orthogonal direction of stretching are
different (strength anisotropy).

Comparing our results to those resulting from the stress-strain
curves based on ab initio calculations (Liu et al., 2007 and others)
the strains at failures we obtained are about twice as big. This could
be possibly attributed to two major differences between our
approach and the approaches of the other authors. First, as men-
tioned earlier, there is an ambiguity in the definition of strains and,
particularly, stresses. Second, equally significant, is the fact that in
the existing approaches the one-dimensional analysis presented
there was in fact one-dimensional stress analysis (s11 s 0 and
s22¼ 0 or vice versa) while in our approach it was one-dimensional
strain analysis ( 311s0 and 322¼ 0 or vice versa). Those are two very
different problems more then likely associated with different
mechanisms of failure.

In recent publication (Marianetti and Yevick, 2010) it has been
found that, when inhomogeneous deformation is allowed, groups
of atoms in the grapheme form a new honeycomb arrangement
associated with a new failure mechanism. This mechanism corre-
sponds to a significantly smaller failure load than those reported in
the literature earlier. Detection of that mechanism was possible by
analyzing phonons and observing that there exists an unstable and
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rather weak phonon. Detection of such mechanism within our
approach would only be possible if the deformation gradient used
in our description was allowed to be a function of position. That
would mean that a system of partial differential equations would
need to be solved, which would significantly complicate the
analysis.

Finally, it is important to emphasize that other interatomic po-
tentials can be used within the proposed methodology (e.g. REBO
potentials, Brenner et al., 2002) likely leading to somewhat differ-
ent results. This and other issues alluded to in this Section could be
explored in a future work.
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