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Computer  modeling  of  crack  propagation  in concrete  requires  the  knowledge  of the characteristic  length
of failure  localization,  which  coincides  with  the  thickness  of  the  fracture  process  zone  in tension.  We pro-
pose  a simple  formula  for the  calculation  of the characteristic  length  of  failure  localization.  Remarkably,
the  formula  does  not  require  the  knowledge  of  the internal  structure  of  concrete  and  its  components
can  be  derived  from  the  macroscopic  experiments  only.  A  trial calculation  gives  a  magnitude  of  the
characteristic  length  that is in  a  good  agreement  with  the  reported  experimental  data.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture is not a peaceful subject, especially in the case of con-
crete (Shah et al., 1995; Van Mier, 1997; Bazant and Planas, 1998).
The material structure of concrete is very sophisticated because its
average grain size is large – it is visible. The latter fact makes the
essential difference between fracture processes in concrete and,
say, nanostructures like graphene, carbon nanotubes, etc. Indeed,
nanostructures fail when two adjacent atomic layers separate –
Fig. 1 (left). In the case of concrete, however, a crack does not appear
as a result of an ideal separation of two adjacent atomic layers. Just
the opposite, the crack appears as a result of the development of
multiple micro-cracks triggered by the massive breakage of atomic
bonds – Fig. 1 (right). The microcracking and the bond breakage are
not confined to two neighbor atomic planes: the process involves
thousands atomic planes within the representative characteristic
volume of size h.

The knowledge of the characteristic size h, where failure locali-
zes, is crucial for numerical simulations of damage necessitated by
engineering applications (Hofstetter and Meschke, 2011; Trapper
and Volokh, 2010). Indeed, the traditional failure simulations based
on the approach of the classical local continuum mechanics are
sensitive to the size of geometrical meshes used for the spatial dis-
cretization. A way to suppress this pathological mesh-sensitivity is
to enforce the characteristic length of the failure localization in the
spatial discretization of material. For example, the characteristic
length of the failure localization can set the mesh size in the case
of finite elements with the linear shape functions. The fixed mesh
size is, thus, physically motivated and it should be used in material
areas where failure is supposed to localize in cracks and propa-
gate. Alternatively, the characteristic length can be used within the
nonlocal gradient- and integral-type theories1.

1 Unfortunately, the physical interpretation of nonlocal formulations is difficult.
For example, gradient formulations increase the order of differential equations and

2. Characteristic length for concrete

It is not simple to find the characteristic length or, better said,
the crack thickness. It is usually attempted to observe this length
in experiments where the thickness of the process zone in tension
is tracked (Chao et al., 1984; Maji and Shah, 1988; Ouyang et al.,
1991; Mindes, 1991; Wittmann, 1992; Guo and Kobayashi, 1993;
Li and Shah, 1994; Otsuka and Date, 2000; Denarie et al., 2001). The
results scatter depending on the sort of concrete, specimen, grain
structure, etc.

In the present note we develop a theoretical approach for a direct
calculation of the characteristic length for concrete. The main idea
behind the calculation is the following (cf. Volokh, 2011, 2012). Let
us assume that the characteristic linear size of the representative
volume where bonds break during fracture is h. Then, the work
dissipated during the fracture process within the volume is ∼ωh3

where ω is the density of the volumetric work of fracture. In the case
of brittle fracture all work is consumed by the elastic deformation of
the breaking bonds.

On the other hand, the energy of the creation of two surfaces
from the bulk is ∼�h2 where � is the density of the surface work of
fracture introduced by Griffith (1921).

Equating two works, ωh3 = �h2, we get the characteristic length
of failure localization

h = �

ω
. (1)

require additional boundary conditions. What is the physical meaning of these addi-
tional conditions and how should they be determined? There are no clear physical
answers to these questions. Similar is the situation with the integral type theo-
ries where the physical meaning of the space averaging is not clear as well as the
imposition of boundary conditions is not trivial.
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Fig. 1. Cracks of zero and finite thickness.

In the case of concrete we have for the surface work of brittle
fracture

� = K2
1C

E
, (2)

where K1C is the mode 1 fracture toughness and E is the Young
modulus.

Here we assume that cracks propagate in Mode 1 predomi-
nantly.

In order to find the volumetric work of fracture we  assume
that concrete deforms linearly in tension up to the point of the
tensile strength �t. At this point the material fails abruptly. In
the uniaxial tension the only nonzero component of stress tensor
is �11 and the general expression of the volumetric energy den-
sity W = [(1 + �)�ij�ij − �(�kk)2]/2E reduces to W = �2

11/2E. Thus,
the area under the stress–strain diagram up to the tensile strength
equals the volumetric work of fracture

ω = �2
t

2E
. (3)

Substituting (2) and (3) in (1) we get the general formula for the
characteristic length of the failure localization in concrete

h = 2K2
1C

�2
t

. (4)

Unfortunately, there is scattering of the experimental data on
the fracture toughness and tensile strength of concrete because
of various reasons. Nonetheless, to get a taste of the numbers we
choose the following specific magnitudes of the fracture toughness
and tensile strength

K1C = 0.4 [MPa
√

m]; �t = 3.5 [MPa]. (5)

Then, substituting (5) in (4) we get the following characteristic
length

h = 2.6 [cm]. (6)

This number is in a reasonable correspondence with the exper-
imental studies (Chao et al., 1984; Maji and Shah, 1988; Ouyang
et al., 1991; Mindes, 1991; Wittmann, 1992; Guo and Kobayashi,
1993; Li and Shah, 1994; Otsuka and Date, 2000; Denarie et al.,
2001) which predict the characteristic length h in the range from 1
to 3 cm.

Remark. We  emphasize that Eqs. (1) and (4) give the characteris-
tic length of damage localization which is interpreted as the crack
thickness – Fig. 1. These formulae should not be confused with the
similar ones that have, however, a different meaning. For example,
Rice (1968) calculates the length of the process zone ahead of the
crack tip using a similar formula; or Espinoza and Zavattieri (2003a,
b) calculate the crack opening using a similar formula. It is impor-
tant that in both mentioned cases cracks have zero thickness which
corresponds to the so-called cohesive zone models (CZM). While
CZM are very effective for modeling crack propagation when its

path is known beforehand (e.g. material interface) their general use
for the bulk is more problematic since it requires separate criteria
for the crack onset, direction, and branching.

3. Comparison with Bazant’s work

To avoid possible misinterpretation of the developed formula
we pinpoint the difference between the proposed concept of the
volumetric work of fracture, ω, and the concept of the fracture
energy density, �F, considered by Bazant and Planas (1998). The
latter concept is defined as follows (formula (8.2.3) in Bazant and
Planas, 1998)

�F =
∫ ∞

0

�(εf )dεf , (7)

where εf is “the inelastic fracturing strain” that is obtained by the
exclusion of the elastic strain �/E from the total strain.

Thus, Bazant relates volumetric fracture energy to inelastic post-
peak deformations on the stress-strain curve with softening (Fig.
8.2.2c in Bazant and Planas, 1998). On the contrary, in the present
note inelastic postpeak deformations are ignored and it is assumed
that the elastic energy dominates the behavior of the breaking
bonds in concrete. It is evident, therefore, that

�F /= ω. (8)

It is noteworthy that the post-peak deformations used by Bazant
can be observed experimentally in the uniaxial tension under the
displacement control. Under the force control, which is more rel-
evant to practical situations, the post-peak deformations are not
observed because they are statically unstable and, consequently,

εf = 0, �F = 0. (9)

4. Discussion

We  derived a general formula for the calculation of the charac-
teristic length of the tensile failure localization in concrete – (4).
It is amazing that the experiments required for the calculation are
macroscopic while the characteristic length is an internal structural
parameter of the material.

It is important to note finally that despite its straightforward-
ness formula (4) was not derived in the previous literature to the
best of the author knowledge. It did not happen because the tradi-
tional approach of fracture mechanics considered only the surface
energy of fracture introduced by Griffith as a material parameter.
Traditionally, the volumetric work of fracture was not consid-
ered as a material parameter yet it was  used by Hillerborg et al.
(1976), Bazant and Planas (1998) and others as a variable that
should be fitted to the size of the finite element discretization to
suppress the pathological mesh-sensitivity of computations. Unfor-
tunately, the Hillerborg approach implies the mesh-dependence
of the constitutive equations which is physically meaningless.
In the present work, on the contrary, it was assumed that the
volumetric work of fracture was  a material parameter, similar
to the surface work of fracture, implying that the characteris-
tic length of the failure localization was  a material parameter as
well.
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