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Navier-Stokes model with viscous strength

K.Y. Volokh 1,2

Abstract: In the laminar mode interactions among molecules generate friction
between layers of water that slide with respect to each other. This friction triggers
the shear stress, which is traditionally presumed to be linearly proportional to the
velocity gradient. The proportionality coefficient characterizes the viscosity of wa-
ter. Remarkably, the standard Navier-Stokes model surmises that materials never
fail – the transition to turbulence can only be triggered by some kinematic instabil-
ity of the flow. This premise is probably the reason why the Navier-Stokes theory
fails to explain the so-called subcritical transition to turbulence with the help of the
linear instability analysis. When linear instability analysis fails, nonlinear instabil-
ity analysis can be resorted to, but, despite the occasional uses of this approach, it
is intrinsically biased to require finite flow perturbations which do not necessarily
exist.
In the present work we relax the traditional restriction on the perfectly intact ma-
terial and introduce the parameter of fluid viscous strength, which enforces the
breakdown of internal friction. We develop a generalized Navier-Stokes consti-
tutive model which unites two modes of the Newtonian flow: inviscid ideal and
linearly viscous. We use the new model to analyze the Couette flow between two
parallel plates to find that the lateral infinitesimal perturbations can destabilize the
laminar flow. Furthermore, we use the results of the recent experiments on the onset
of turbulence in pipe flow to calibrate the viscous strength of water. Specifically,
we find that the maximal shear stress that water can sustain in the laminar flow is
about one Pascal. We note also that the introduction of the fluid strength suppresses
pathological stress singularities typical of the traditional Navier-Stokes theory and
uncovers new prospects in the explanation of the remarkable phenomenon of the
delay of the transition to turbulence due to an addition of a small amount of long
polymer molecules to water.
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1 Introduction

The Navier-Stokes constitutive model for water is among the most efficient and
old-standing physical theories. Appreciation of this fact, however, need not deter
open-mindedness concerning its limitations. For example, a stark limitation of the
classical Navier-Stokes model is that material (namely water) never fails. Let us as-
sume there are no finite disturbances in the shear flow between parallel plates. Then
the Navier-Stokes model implies that any magnitude of shear stress can be reached
by an appropriate acceleration of a plate – the stress is not bounded. Our experi-
ence, however, teaches us that all materials fail, and maximal achievable stress is
always bounded. The traditional model cannot amend this gap. The latter drawback
is especially noticeable in the case of flow around sharp corners, in which the clas-
sical Navier-Stokes model predicts the existence of stress singularities, which are
not real physical phenomenon. A physically sound theory should seek to suppress
any such singularities.

Another motive for seeking a generalization of the classical model comes from ex-
periments (Mullin and Kerswell, 2005; Barkley and Tuckerman, 2005; Prigent and
Dauchot, 2005) which show that the flow instability, i.e. transition to turbulence,
can start at Reynolds numbers lower than those predicted by the linear instability
analysis – this is the subcritical transition to turbulence. In the latter case, nonlin-
ear instability analysis is often resorted-to in order to bridge the theoretical gap1

but it requires finite flow perturbations which generally do not exist. Thus, at least
from the physical standpoint, the approach of nonlinear instability analysis is open
to criticism. On the contrary, infinitesimal (molecular) perturbations always ex-
ist, and so one should expect linear instability analysis to catch the onset of the
transition to turbulence.

One more encouragement for possibly generalizing the Navier-Stokes model comes
from the remarkable phenomenon of the delay of turbulence – observed when a
small amount of polymer molecules is dissolved in water (Tanner and Walters,
1998). The polymer concentration is so small that the Newtonian nature of a fluid
does not change: “. . . so little is used that in conventional measurements the so-
lution displays no measurable normal stress differences and the viscosity is not
appreciably changed from that of the Newtonian solvent" (Schowalter, 1978). The
traditional Navier-Stokes model struggles to account for this phenomenon because

1 We should note here that a stream of results exploring the so-called traveling wave (TW) solution
of the Navier-Stokes equations presents a very recent attempt to approach the explanation of the
transition to turbulence in pipe flows: Faisst and Eckhardt (2003), Wedin and Kerswell (2004),
Hof et al (2004), Eckhardt (2011). Appreciating the interesting results reviewed in the quoted (and
other) works on TW solutions we should mention that there is no hurry to cancel the search for
new venues.
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its only material constant – the viscosity coefficient – is unaffected by the small
amount of added polymer. Clearly, more material constants are needed to account
for this effect.

A possible resolution of the aforementioned difficulties of the traditional Navier-
Stokes model is to enforce the concept of the viscous strength; first introduced in
Volokh (2009). In the present work, we enhance the mentioned model and, most
importantly, calibrate it based on experimental data (Avila et al, 2011) of the onset
of turbulence in pipe flow. It is explicitly found that the maximal shear stress that
can be sustained by water in laminar flow is of the order of one Pascal.

The paper is organized as follows: Section 2 presents the governing equations of
the generalized Navier-Stokes model, including a description of viscosity failure.
These governing equations are then used in Section 3 to show the possibility of lin-
ear instability in planar Couette flow between parallel plates. Section 4 explains
why simple rheological measurements are not helpful in finding fluid strength.
Then, the solution of the pipe flow problem is used in Section 5 to calibrate the
viscous failure parameter based on the experimental results of Avila et al (2011).
Section 6 presents a discussion of the proposed model.

2 Governing equations

The balance laws for mass and momentum in the absence of body forces take the
following forms respectively:

divv = 0, (1)

ρ
∂v
∂ t

+ρ(v ·∇)v = div σσσ , (2)

where ρ is a constant mass density; v is a fluid particle velocity; t is time; and
σσσ = σσσT is the Cauchy stress tensor.

The stress tensor is decomposed into two terms

σσσ =−p1+ τττ, (3)

where p is an unknown hydrostatic pressure; 1 is the second-order identity tensor;
and τττ is the so-called viscous stress.

Traditionally, the constitutive model for the viscous stress in Newtonian fluids is
set as follows

τττ = 2η D, (4)
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where η is a constant viscosity coefficient and

D =
1
2
(∇v+∇vT ), (5)

is the symmetric part of the velocity gradient.

Substituting (3)-(5) in (2) we get the Navier-Stokes equations, which should be
completed with boundary/initial conditions in order to set an initial-boundary-value
problem.

Instead of the constant viscosity coefficient in (4), it is proposed to use the following
constitutive model enforcing failure of viscous/frictional molecular bonds

τττ = 2η
∗D , (6)

η
∗ = η exp[−(D : D/φ

2)m], (7)

where D : D = Di jDi j in Cartesian coordinates and the sum is performed over the
repeated indices; m is a constant whose meaning is clarified below; and φ > 0 is a
constant defining the viscous fluid strength – Fig. 1.

Figure 1: The meaning of the viscosity coefficient in (7)

We note that (6) and (7) are objective because tensors τττ and D are objective and
the double scalar product D : D is not affected by the superposed rigid body motion
as well. The latter can be easily shown by a direct computation.

It is clear from Fig. 1 that the viscosity coefficient has two main modes: linearly
viscous fluid

η
∗ = η when D : D < φ

2, (8)
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and ideal fluid

η
∗ = 0 when D : D > φ

2, (9)

and by increasing m it is possible to sharpen the step function.

The first mode, (8), corresponds to the classical Navier-Stokes viscosity with the
full internal friction. The second mode, (9), corresponds to the loss of viscosity or
internal friction. These two modes reflect upon Landau’s remark that “. . . for the
large eddies which are the basis of any turbulent flow, the viscosity is unimportant”
(Landau and Lifshitz, 1987, Section 33: “Fully developed turbulence”).

In the case of the shear flow, D = D12(e1⊗e2+e2⊗e1) and τττ = τ12(e1⊗e2+e2⊗
e1), the constitutive law, (6), takes the following dimensionless form

τ12

ηφ
= 2

D12

φ
exp(−2m D2m

12
φ 2m ) , (10)

and it can be presented graphically – Fig. 2.

Figure 2: Viscous stress versus deformation rate

The critical points of the viscosity failure in Fig. 2 have the following horizontal
coordinates
D12

φ
=

±1√
2 2m
√

2m
. (11)

In the limit case of m→ ∞ we get the critical deformation rate

Dcr
12 =

±φ√
2
, (12)
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and the critical stress, which can be called the viscous fluid strength,

τ
cr
12 =±

√
2ηφ . (13)

The traditional Navier-Stokes theory is obtained from the modified constitutive law
when the fluid strength goes to infinity with φ → ∞.

It is worth noting that some viscosity thinning takes place in the vicinity of the limit
point when the fluid strength is approached. This phenomenon is negligible, being
mostly a consequence of our analytical exponential expression for the constitutive
law rather than a physical phenomenon.

It is crucial to emphasize that the proposed model describes the breakdown of vis-
cous bonds at the limit points in Fig. 2. Such limit points are absent in the tra-
ditional non-Newtonian or generalized Newtonian models of fluids. Thus, the pro-
posed model should be interpreted as a Newtonian model with finite strength rather
than a non-Newtonian model.

We will complete the general modification of the Navier-Stokes theory by setting
the linearized governing equations where the small perturbations of the motion
dressed with tildes are superimposed on the existing motion. Varying equations
(1)-(3) and (5)-(7) we get accordingly

div ṽ = 0, (14)

ρ
∂ ṽ
∂ t

+ρ(v ·∇)ṽ+ρ(ṽ ·∇)v = div σ̃σσ , (15)

σ̃σσ =−p̃1+ τ̃ττ, (16)

D̃ =
1
2
(∇ṽ+∇ṽT ), (17)

τ̃ττ = 2η̃
∗D +2η

∗ D̃, (18)

η̃
∗ =− 2η

φ 2m (D : D)m−1(D : D̃)exp[−(D : D/φ
2)m]. (19)

The addition of the initial/boundary conditions of zero velocity perturbations com-
pletes the linearized initial-boundary-value problem.

Remark 1. The concept of viscous strength is introduced above in order to describe
the transition from the linearly viscous behavior of Newtonian fluid to the ideal
fluid behavior with negligible viscosity. The reader should clearly realize that this
transition has nothing to do with decohesion, partitioning or molecular separation
in fluids.
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3 Planar Couette flow

In this section we illustrate the generalized Navier-Stokes model developed in the
previous section with the analysis of the planar Couette flow – see Drazin (2002)
and Schmid and Henningson (2001) for review.

We assume that there is no pressure gradient and the velocity field has form: v =
v1(x2)e1, where e1 is a unit base vector – Fig. 3.

Figure 3: Flow between parallel plates

In this case we have

D =
1
2

∂v1

∂x2
(e1⊗ e2 + e2⊗ e1), (20)

D : D =
1
2

(
∂v1

∂x2

)2

, (21)

τττ = τ12(e1⊗ e2 + e2⊗ e1), τ12 = η
∂v1

∂x2
exp

[
− 1

2mφ 2m

(
∂v1

∂x2

)2m
]
, (22)

and the reduced momentum balance (2) takes form

∂τ12

∂x2
= 0. (23)

Substituting (22) in (23) and adding boundary conditions v1(0) = 0 and v1(h) = v
we find the following solution for velocity and stress fields

v1 = vx2/h, (24)

σ11 = σ22 = σ33 =−p; σ12 = σ21 =
η v
h

exp[− v2m

2mh2mφ 2m ]. (25)
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Let us study the linear stability of the obtained solution. We assume that p̃ = 0 and
ṽ = ṽ1(x2)e1. Then we have

D̃ =
1
2

∂ ṽ1

∂x2
(e1⊗ e2 + e2⊗ e1), (26)

σ̃σσ = τ̃ττ = β
∂ ṽ1

∂x2
(e1⊗ e2 + e2⊗ e1), (27)

β = η(1− v2m

2m−1h2mφ 2m )exp[− v2m

2mh2mφ 2m ]. (28)

The momentum balance (15) reduces to

ρ
∂ ṽ1

∂ t
= β

∂ 2ṽ1

∂x2
2
. (29)

We further assume the following modes of the perturbed motion

ṽ1(x2, t) = constant · eω t sin(2
π n
h

x2), n = 1, 2..., (30)

where boundary conditions are: ṽ1(x2 = 0, h) = 0; and ω is a real constant.

Substituting (30) in (29) we find

ω =−4ηπ2n2β

ρ h2 . (31)

The Couette flow is stable when ω is negative and it loses stability when ω = 0
and, consequently, β = 0. The latter condition gives the critical velocity of the top
plate

vcr =

√
2

2m
√

2
hφ . (32)

and the critical Reynolds number

Recr =
hρ vcr

η
=

√
2

2m
√

2
h2ρ φ

η
. (33)

In the case of m = 1 we obtain the result which corrects the one corrupted by a
numerical error in Volokh (2009).

For the limit case of the abrupt failure of viscosity where m→ ∞ we have

Recr = 1.41
h2ρ φ

η
. (34)

It is interesting that in the case of the classical Navier-Stokes model where the fluid
strength is infinite, φ → ∞, the flow is always stable with respect to the lateral
perturbations – see also Romanov (1973), while in the case where strength is finite
the flow can lose stability initiating the transition to turbulence.
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4 Can viscous strength be calibrated in a viscometer/rheometer?

The material constants involved in the constitutive equations of Newtonian or non-
Newtonian (Schowalter, 1978) fluids are usually calibrated in simple rheological
tests. Such a calibration is possible because the material behavior and the specific
flow in the rheometer are stable. Thus, the stability of the process is a requisite for
the model calibration.

Unfortunately, the calibration of the fluid strength is related to the onset of the
material instability and the flow process becomes unstable. Thus, the classical rhe-
ological measurements are not completely adequate for the strength calibration.
Indeed, let us assume that water is placed in a viscometer in the state of simple
shear flow described in the previous section. In that case the breakdown of vis-
cosity would be observed when all fluid particles arrive at the limit point in Fig.
2 simultaneously. That would be a measurable homogenous failure. However, the
fluid material is never perfect and the viscous bonds do not fail simultaneously and
homogeneously. The failure localizes. This localization is generally unpredictable
- some viscous bonds endure while others break. The overall integral resistance
of the flow will not change and the local bond failures will not be sensed by a
viscometer. However, the local failure of viscosity can lead to the onset of the
transition to turbulence. Therefore, the classical rheological tests are not good for
the strength measurement, and experiments which track the onset of turbulence are
better suited.

It is useful to set up an analogy between material failure in fluids and solids. Mate-
rial failure in solids is a much better (yet not completely) understood phenomenon
than material failure in fluids. Remarkably, the calibration of strength in solids dis-
plays similar difficulties to the calibration of strength in fluids. Indeed, a slab of
concrete never fails homogeneously in biaxial tension tests where the stress-strain
state is homogeneous – the failure localizes into cracks. It is impossible to predict
where cracks should appear. It is only possible to find the critical stress at which
cracks are expected to appear – the strength. Solids have shape, so the appearance
of cracks is visible. Unfortunately, this is not the case for fluids. They have no
shape, and so the localized failure of viscous bonds is invisible. However, the lo-
calized failure of viscous bonds can manifest itself in the onset of the transition to
turbulence where viscosity is insignificant – see Landau’s remark above.

5 Calibration of viscous strength: flow in a pipe

To track the onset of turbulence in order to find the viscous strength we consider
the axisymmetric flow in a pipe – Fig. 4 – aiming at the calibration of the failure
parameter: φ .
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Figure 4: Flow in a pipe

We use the cylindrical coordinates (r,ϕ,z)with the unit base vectors

gr =

 cosϕ

sinϕ

0

 , gϕ =

 −sinϕ

cosϕ

0

 , gz =

 0
0
1

 . (35)

We assume the axisymmetric distribution of velocities

v = vz(r)gz, (36)

which obeys (1).

In this case we have

D =
1
2

∂vz

∂ r
(gr⊗gz +gz⊗gr), (37)

D : D =
1
2

(
∂vz

∂ r

)2

, (38)

τττ = τrz(gr⊗gz +gz⊗gr), τrz = η
∗ ∂vz

∂ r
, η

∗ = η exp

[
− 1

2mφ 2m

(
∂vz

∂ r

)2m
]
,

(39)

and the momentum balance (2) takes form

∂

r∂ r

{
rη
∗ ∂vz

∂ r

}
+α = 0, (40)

α =−∂ p
∂ z

. (41)
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Differential equation (40) is transformed into a two-point boundary value problem
by adding boundary conditions in the form

v(r = d/2) = 0,
∂vz

∂ r
(r = 0) = 0. (42)

When (∂vz/∂ r)2/2 < φ 2, we have η∗ = η and we obtain the classical parabolic
distribution of velocity by solving (40) and (42) analytically

vz =
d2−4r2

16η
α. (43)

We assume now that the transition to turbulence takes place when the viscous
bonds break and the solution of the flow problem (40)-(42) starts deviating from
the parabolic law (43). The latter happens at the critical magnitude of the pressure
gradient αcr when the velocity gradient takes the form

∂vz

∂ r
=− r

2η
α

cr, (44)

and

(D : D)cr =
1
2

(
rαcr

2η

)2

. (45)

The maximum on the right hand side of (45) is reached at the wall of the pipe

(D : D)cr
max =

1
2

(
dαcr

4η

)2

. (46)

The latter equation allows us to derive the strength parameter following (7) and Fig.
1

φ =
√
(D : D)cr

max =
dαcr

4
√

2η
. (47)

It only remains to find the critical pressure gradient αcr for the given diameter d of
the pipe.

At this point the experimental data is necessary. Usually, the Reynolds number,

Re =
vmρ d

η
, (48)

is calculated based on the experimental data on the onset of turbulence under the
flow with mean velocity vm and mass density ρ .
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Formula (48) with the critical Reynolds number, Recr, of the onset of turbulence
can be used to calculate the critical mean velocity

vcr
m =

η

ρ d
Recr. (49)

On the other hand, the critical mean velocity is related to the critical pressure gra-
dient as follows

α
cr =

32η

d2 vcr
m . (50)

Substituting (49) in (50) we can find the critical pressure gradient in the form

α
cr =

32η2

ρ d3 Recr. (51)

Finally, substituting (51) in (47) we get

φ =
8η√
2ρ d2

Recr, (52)

where for water we have

ρ = 103(kg/m3), η = 10−3(N · s/m2). (53)

Avila et al (2011) reported that they observed transition to turbulence in a small
pipe with the following parameters2

d = 4 ·10−3(m), Recr ≈ 2400. (54)

Substituting (53)-(54) in (52) we get

φ =
8 · 10−3 ·2400√
2 · 103 ·16 · 10−6

= 848.5(s-1), (55)

and the viscous fluid strength in (13) gets magnitude

|τcr
12|=

√
2 ·10−3 ·848.5 = 1.2(Pa). (56)

Of course, the accuracy of the results given in (55) and (56) should not be over-
estimated because the precise evaluation of the critical Reynolds number is not a
simple problem. Nevertheless, the order of the predicted viscous strength of water
seems to be reasonable when compared, for example, to the strength of concrete
∼106 Pa. It should not be overlooked in this comparison that stresses are triggered
by different mechanisms in water and concrete. The latter does not matter. Regard-
less of cause the maximal stress must be bounded in any material, fluid or solid!
2 Probably, a lower Reynolds number of the onset of so-called "puffs", which can then be interpreted

as the localized zones of material failure, should be used.
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6 Discussion

In the present work we introduced a generalized Navier-Stokes constitutive model
that allows for a description of the failure of viscous bonds through a parameter φ ,
which is a material constant. This parameter means the maximum local ‘equivalent’
velocity gradient that can be reached before the viscous friction breaks. The intro-
duction of the viscosity failure in the constitutive description of water was largely
motivated by the desire to explain the subcritical transitions to turbulence based
on material failure considerations. Particularly we showed based on the proposed
model that shear flow between parallel plates can lose its stability under infinites-
imal lateral perturbation in contrast to the classical Navier-Stokes considerations
where such instability cannot occur in principle (Romanov, 1973).

It is crucial to emphasize that we not only proposed a new model with viscous
strength but also calibrated it. For the latter purpose we considered flow in a pipe
where the maximal velocity gradient takes place near the wall. We assumed that
the onset of the flow instability observed in the experiments of Avila et al (2011)
was triggered by the loss of viscosity near the wall and we found the corresponding
magnitude of parameter φ – Eq. (55). Moreover, for the found parameter we
estimated the maximal shear stress – fluid strength – that a layer of water can bear
in a stable mode – Eq. (56). This viscous strength of water is of the order of
one Pascal. The calibration of the model completes it for the purpose of future
numerical simulations.

The proposed generalized Navier-Stokes model bounds the maximal stress that the
viscous bond can sustain suppressing the pathological stress singularities at corner
points that can appear in the traditional model.

The proposed generalized Navier-Stokes model also uncovers new prospects for
the explanation of the remarkable phenomenon of the delay of the transition to tur-
bulence due to the addition of a small amount of long polymer molecules in water.
Indeed, the delay of the transition to turbulence can be qualitatively explained by
the increase of the fluid strength due to the addition of the polymer. These polymer
molecules create additional centers of attraction for water molecules. It can be as-
sumed that polymers used in small amounts do not change the water viscosity as
considerably as they change the water strength. Evolving parameter φ depending
on the polymer concentration is a good candidate to describe the delay of the onset
of the flow instability.

Finally, it cannot be overemphasized that the central idea behind the generalized
Navier-Stokes model presented above is the requirement to bound stress by the
constitutive law. Indeed, there is no material which can develop arbitrarily large
stresses. This notion must be incorporated into constitutive models of fluids, thereby
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setting bounds of viscous interlayer friction. Such augmented models will in turn
account for material instability. This instability refines the current view, which
surmises that kinematic instabilities are the sole mechanism of transition to turbu-
lence. Thus, we get a new scheme of transition to turbulence through the instability
triggered by material failure.

The somewhat new ideas concerning the equations of hydrodynamics presented in
this work should be further examined via numerical simulations of various flows.
Such broad studies could validate or pinpoint the applicability of the new model.
We hope that the proposed calibrated model could attract the attention of numerical
analysts and encourage them to implement it in computer simulations.
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