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a b s t r a c t

Growth and rupture of aneurysms are driven by micro-structural alterations of the arterial wall yet
precise mechanisms underlying the process remain to be uncovered. In the present work we examine a
scenario when the aneurysm evolution is dominated by turnover of collagen fibers. In the latter case it is
natural to hypothesize that rupture of individual fibers (or their bonds) causes the overall aneurysm
rupture. We examine this hypothesis in computer simulations of growing aneurysms in which
constitutive equations describe both collagen evolution and failure. Failure is enforced in constitutive
equations by limiting strain energy that can be accumulated in a fiber. Within the proposed theoretical
framework we find a range of parameters that lead to the aneurysm rupture. We conclude in a qualitative
agreement with clinical observations that some aneurysms will rupture while others will not.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Aneurysms are abnormal dilatations of vessels in the vascular
system, and they exist in two major forms: fusiform and saccular.
Fusiform aneurysms are found in the human abdominal aorta.
Saccular aneurysms are found in cerebral blood vessels. The Brain
Aneurysm Foundation (http://www.bafound.org/) reports that 2 in
100 people in US have an unruptured brain aneurysm and the
annual rate of rupture is about 8–10 per 100,000 people. There is a
brain aneurysm rupture every 18 minutes. Ruptured brain aneur-
ysms are fatal in about 40% of cases. Of those who survive, about
66% suffer some permanent neurological deficit. Similarly, abdom-
inal aortic aneurysm (AAA) is found in �2% of the elderly
population, with �150,000 new cases diagnosed each year, and
the occurrence is increasing (Bengtsson et al., 1996; Ouriel et al.,
1992). In many cases AAA gradually expands until rupture causing
a mortality rate of 90%. The AAA rupture is considered the 13th
most common cause of death in US (Patel et al., 1995).

Medical doctors consider a surgery option for enlarging AAA,
for example, when its maximum diameter reaches 5.5 cm or/and
expansion rate is greater than 1 cm per year. This simple geome-
trical criterion may possibly underestimate the risks of rupture of
small aneurysms as well as overestimate the risks of rupture of
large aneurysms. Biomechanical approaches to modeling aneur-
ysm failure are desired.

Watton et al. (2004) pioneered mathematical modeling of
enlarging aneurysms. They described evolution of various arterial

constituents including collagen and elastin. An interesting feature
of their work is an explicit notion of the deformation correspond-
ing to fiber recruitment. Most other fiber deformation models do
not account for fiber recruitment explicitly yet introduce the
phenomenon implicitly with the help of U-type (with significant
stiffening) stress-strain curves. Baek et al. (2006) made another
important step in modeling aneurysm growth by introducing a
very convenient description of evolving strain energy density
function – see formula (1) below. Building on the approaches
mentioned above Kroon and Holzapfel (2007) developed aneur-
ysm model which was attractive due to its theoretical and
computational simplicity. The described works influenced further
studies in mathematical modeling of aneurysm growth: Kroon and
Holzapfel (2008; 2009); Chatziprodromou et al. (2007); Watton
et al. (2009); Figueroa et al. (2009); Watton and Hill (2009);
Schmid et al. (2010); Watton et al. (2011); and Martufi and Gasser
(2012) to list a few. Though biomechanical features of intracranial
and abdominal aortic aneurysms have differences (Humphrey and
Taylor, 2008) the mathematical grounds of the G&R description
can be common in both cases. Most mentioned theories consider
turnover of collagen fibers as the main scenario of the aneurysm
evolution.

Despite the success in describing growth and remodeling
all mentioned theories were short of a failure description that
should be a natural component of the theory. Volokh and Vorp
(2008) proposed a new paradigm of Growth–Remodeling–Failure
(G&R&F) by enforcing failure in a description of growth and
remodeling. A failure description was enforced with the help of
the energy limiter constant which provided a saturation value for
the strain energy function (Volokh, 2011; 2013). The new constant
controlled material failure and it could be interpreted as an
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average energy of molecular bonds from the microstructural
standpoint. It is especially noteworthy that the approach of energy
limiters allowed considering strength independently of stiffness.
The latter separation is critical for the aneurysm modeling where
stiffening can be accompanied by the loss of strength.1

The mentioned work by Volokh and Vorp (2008) used a purely
phenomenological approach and was not guided by micro-structural
considerations. Such considerations are taken into account in the
present work in which we hypothesize that rupture of individual
fibers (or their bonds) causes the aneurysm overall rupture. We
examine this hypothesis in computer simulations of growing aneur-
ysms in which constitutive equations describe both collagen evolu-
tion and failure. Failure is enforced in constitutive equations by
limiting strain energy that can be accumulated in a fiber. Within the
proposed theoretical framework we find a range of parameters that
lead to aneurysm rupture. We conclude in a qualitative agreement
with clinical observations that some aneurysms will rupture while
others will not.

2. Methods

Most models of aneurysm growth and remodeling that appear in the works
cited above, or the references therein, use fiber-based microstructural approaches.
Any of these models can be enhanced with a failure description in the way it is
done in the present paper. Following Humphrey and Rajagopal (2002), Baek et al.
(2006), and, especially, Kroon and Holzapfel (2007) we assume that the aneurysm
can be modeled as a membrane composed of collagen layers with the strain energy
of the ith layer prescribed in the form

ψ iðtÞ ¼
Z t

�1
gðt; tdpÞ _miðtdpÞf iðt; tdpÞdtdp ð1Þ

where _mi is the rate of the collagen fiber production; f i is the strain energy of the
deposited fiber; tdp is the time of the fiber deposition; and the life cycle function
gðt; tdpÞ is defined by the fiber life time tlf with the help of the Heaviside step
functions H as follows

gðt; tdpÞ ¼Hðt�tdpÞ�Hðt�tdp�tlf Þ ð2Þ

In order to define constitutive laws for the rate of the fiber production and the
fiber energy we have, first, to define kinematics of a fiber. We assume that M is a
unit vector in the initial configuration at time t ¼ �1 which defines direction of
fiber deposition in the ith layer. Then, at time t ¼ tdp a new fiber is deposited in
direction

Mdp ¼ FðtdpÞM ð3Þ

where FðtdpÞ is the deformation gradient mapping the initial configuration at time
t ¼ �1 to the configuration at time t ¼ tdp .

The deposited unit fiber Mdp= Mdp

�� �� is further mapped into2

m¼ Mdp

�� ���1FdpMdp ¼ Mdp

�� ���1FdpFðtdpÞM¼ Mdp

�� ���1FðtÞM; ð4Þ

where Fdp ¼ FðtÞF�1ðtdpÞ is the deformation gradient mapping material configura-
tion at the time of the fiber deposition t ¼ tdp to the current configuration at time t.

Besides kinematics we also prescribe a specific form of the
fiber strain energy function in the ith layer that enforces a failure description
(Volokh 2011, 2013).

f iðt; tdpÞ ¼ 0:1 ΦifΓ½0:1;0��Γ½0:1; ðWiðt; tdpÞ=ΦiÞ10�g ð5Þ

where Γ½s; x� ¼ R1
x ts�1expð�tÞ dt is the upper incomplete gamma function; Φi is

the energy limiter for fiber in the ith layer; and Wi is the strain energy of intact
(without failure) fiber in the ith layer.

We further specify constitutive equations as follows

Wiðt; tdpÞ ¼ μðλ2pre mj j2�1Þ3 ð6Þ

_miðtdpÞ ¼ β Mdp

�� ��2α ð7Þ

where μ is a fiber stiffness parameter; λpre is a pre-stretch of the deposited fiber;β
and α are the growth constants.

At this point the constitutive description is accomplished while a structural
description is necessary. We restrict considerations by axisymmetric membranes. A

membrane is in equilibrium when the virtual work of internal forces, δΠ1, is equal
to the virtual work of external forces, δΠ2, or

δΠ ¼ δΠ1�δΠ2 ¼ 0 ð8Þ
The virtual work of the internal forces can be calculated by varying the total strain
energy of the membrane

δΠ1 ¼ δ

Z
ψ dV ð9Þ

where ψ ¼∑iψ i is the strain energy density per unit reference volume V of the
membrane.

The virtual work of external forces is the virtual work of pressure, p,

�δΠ2 ¼ �p
Z l

0
2π rn � δx ds¼ 2πp

Z l

0
r

dz
ds
δr�dr

ds
δz

� �
ds ð10Þ

where

n¼
cos α

0
sin α

0
B@

1
CA¼

�dz=ds

0
dr=ds

0
B@

1
CA; δx¼

δr
0
δz

0
B@

1
CA ð11Þ

and s is the arc length of the membrane surface – see Fig. 1.
We note that it is possible to transform integral (10) over the current

configuration to the integral over a reference configuration by introducing the
reference arc length, S, in a way that the current arc length is a unique function of
the referential arc length: sðSÞ. After such a transformation we have

�δΠ2 ¼ 2πp
Z L

0
rðz′δr�r′δzÞdS ð12Þ

where primes designate derivatives with respect to the referential arc length and
l¼ sðLÞ.

Remarkably, it is possible to introduce the pressure potential explicitly (Fried,
1982)

�Π2 ¼
Z L

0
γðr; z′Þ dS; γðr; z′Þ ¼ pπ r2z′ ð13Þ

Indeed, varying (13) we get (12)

�δ Π2 ¼
Z L

0

∂γ
∂r
δr� ∂2γ

∂S∂z′
δz

� �
dS¼ 2πp

Z L

0
rðz′δr�r′δzÞ dS ð14Þ

Thus, equilibrium is provided by the stationary state of the total potential

Π ¼Π1�Π2 ¼
Z

ψ dVþpπ
Z L

0
r2z′ dS ð15Þ

This problem is conservative!
In the case of a membrane comprising n thin layers we can further simplify (15)

as follows:

Π ¼ π

Z L

0
2R ∑

n

i ¼ 1
hiψ iþpr2z′

 !
dS ð16Þ

where R is the referential or initial radial coordinate; hi and ψ i are the thickness and
the strain energy of the ith layer accordingly.

We can specify equations written above by describing deformation in principal
stretches

F¼ λ1τ � τ0þλ2ω � ω0þλ3n � n0 ð17Þ
where

λ1 ¼ s′¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r′2þz′2

p
; λ2 ¼

2π r
2π R

¼ r
R
; λ3 ¼

1
λ1λ2

ð18Þ

τ¼
sin α

0
� cos α

0
B@

1
CA¼

dr=ds

0
dz=ds

0
B@

1
CA;

z

0s n

dz ds

dr
r

Fig. 1. Membrane of revolution.

1 Remarkably, continuum damage mechanics theories usually describe failure
through decrease of stiffness while the aneurysms failure is accompanied by
increase of stiffness.

2 See Remark 2 below.
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ω¼ n� τ¼
0
1
0

0
B@

1
CA; n¼

cos α

0
sin α

0
B@

1
CA¼

�dz=ds

0
dr=ds

0
B@

1
CA ð19Þ

τ0 ¼
sin α0

0
� cos α0

0
B@

1
CA¼

dR=dS

0
dZ=dS

0
B@

1
CA;

ω0 ¼ n0 � τ0 ¼
0
1
0

0
B@

1
CA; n0 ¼

cos α0
0

sin α0

0
B@

1
CA¼

�dZ=dS

0
dR=dS

0
B@

1
CA ð20Þ

Eqs. (17)–(20) use current quantities r; z; s;α; τ;ω;n and their referential
counterparts R; Z; S;α0 ; τ0 ;ω0;n0 accordingly.

Besides, we define the referential fiber direction by using fiber angle ϕi of the
ith layer

M¼ cos ϕiτ0þ sin ϕiω0 ð21Þ

Based on (17) and (21) we find

Mdp

�� ��2 ¼ λ21ðtdpÞ cos 2ϕiþλ22ðtdpÞ sin 2ϕi ð22Þ

mj j2 ¼ λ21ðtÞ cos 2ϕiþλ22ðtÞ sin 2ϕi

λ21ðtdpÞ cos 2ϕiþλ22ðtdpÞ sin 2ϕi

ð23Þ

Substituting (22),(23) in (6),(7) we have finally constitutive laws in terms of
principal stretches

Wiðt; tdpÞ ¼ μ λ2pre
λ21ðtÞ cos 2ϕiþλ22ðtÞ sin 2ϕi

λ21ðtdpÞ cos 2ϕiþλ22ðtdpÞ sin 2ϕi

�1

 !3

ð24Þ

_miðtdpÞ ¼ β ðλ21ðtdpÞ cos 2ϕiþλ22ðtdpÞ sin 2ϕiÞα ð25Þ

Spatial-temporal discretization is discussed in Appendix A.
We consider two geometries for two sorts of aneurysm.
The first is a circular membrane (fixed at the edge) which mimics saccular

intracranial aneurysm. The membrane has radius R0 ¼ 2:5 mm and thickness
T ¼ 30 μm. It inflates under pressure gradually increasing up to P ¼ 7 KPa and
evolves in accordance with the constitutive law. Other parameters are λpre ¼ 1:02,
t ¼ 200tlf , μ¼ 2� 107Pa, α¼ 2 and βtlf ¼ 0:486. We assume 4 layers of fibers of
uniform thickness Ti ¼ T=4. The fibers are oriented in directions ϕ1 ¼ 0, ϕ2 ¼ π=4,
ϕ3 ¼ π=2 and ϕ4 ¼ 3π=4 in the reference configuration. In choosing the values of
parameters we followed Kroon and Holzapfel (2007) who discussed the choice in
detail and we will not duplicate the discussion here.

The second geometry is a cylinder. The cylindrical axisymmetric membrane
mimics fusiform aneurysm. It has radius R0 ¼ 10 mm, height H¼ 25 mm and
thickness T ¼ 1:0 mm. Pressure used for this model is P ¼ 16 KPa. We slightly
changed the values of parameters to better fit abdominal aortic aneurysms. Other
material parameters are the same as for the circular membrane.

In the absence of precise experimental data and in view of its natural scattering
parametric studies are needed and they are presented in the next section.

Remark 1. Aneurysms start enlarging with degradation of elastin so it is not
unreasonable to assume that collagen dominates aneurysm growth from the start.
Probably, some transition period exists at the beginning of aneurysm growth when
elastin degrades while its presence is still significant. Unluckily, aneurysms are
identified when they are already developed so it is difficult to assess the transition
stage experimentally.

Remark 2. We introduced the energy limiter in the constitutive theory proposed
by Kroon and Holzapfel (2007) who championed simplicity. However, we deviated
from their formulation in Eq. (4), which would originally read m¼ FdpM according
to Kroon and Holzapfel (2007, Eq. (2)). We modified the original formulation
because Fdp and M belong to different configurations:M is defined on configuration
at time t ¼ �1 while Fdp maps configuration at time t ¼ tdp to configuration at
time t.

3. Results

Here we present results of simulations for the analytical model
described in the previous section.

In the absence of energy limiter, i.e. intact material with
f i ¼Wi, the shape of the evolving aneurysms are shown in
Figs. 2 and 3.

Simulations shown in Fig. 2 reproduce results of Kroon and
Holzapfel (2007). It is important to note that in both cases
aneurysms evolved gradually until they reached a steady shape.
Material remained intact during the process.

Now, we enforce a failure description by introducing energy
limiters in accordance with (5). In this case the bounded strain
energy implies existence of a limit point on the stress-strain curve
for fiber. The limit point designates the onset of fiber rupture. The
latter, in its turn, triggers the overall aneurysm failure. A global
indicator of the onset of aneurysm failure is singularity of the
Hessian (the tangent stiffness matrix) of the total potential defined
by (16). We remind the reader that though pressure load is
generally non-conservative we have a conservative problem for
the specific case of axisymmetric membrane. Singularity of the
tangent stiffness matrix means the onset of failure that generally
tends to localize into a crack. However, tracking the crack initiation
and propagation are beyond the scope of the present work and we
consider only the onset of failure.

Assuming that all collagen fibers are similar across the layers
we calibrate the energy limiter value Φi ¼Φ that corresponds
to three different critical rupture stretches defined in uniaxial
tension λcr ¼ 1:05; 1:10; 1:20 for μ¼ 1� 107;2� 107;3�
107½N=m2�–Figs. 4–6. The range of the critical stretch from 1.05
to 1.20 probably covers all possible cases of fiber rupture.
To the best of our knowledge no fibers reach 20% stretch without
rupture. Of course, the considered range can be easily extended if
necessary.

Then, we simulate the saccular (circular) and fusiform (cylind-
rical) aneurysm growth with the described fiber behavior for
varying βtlf ¼ 0:3;0:45;0:6 and fixed α¼ 2 and λpre ¼ 1:02. The

Fig. 3. Evolving cylindrical membrane (fusiform aneurysm).

Fig. 2. Evolving plane membrane (saccular aneurysm).
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choice of βtlf extends the one made by Kroon and Holzapfel (2007)
and it can be explained by some scattering of the data on the
collagen life time in the literature.

Results of the simulation are shown in Tables 1–6. Two
outcomes are observed: the aneurysm ruptures or remains
intact. Inspecting the tables the reader can readily conclude that
both outcomes can happen in accordance with the clinical
observations.

4. Discussion

Most theoretical models describe evolution of aneurysms as a
process dominated by degradation and deposition of collagen
fibers. These models are short of a failure description that should
be intrinsic part of the theory. This gap is amended in the present
work in which failure of individual fibers is enforced by the
method of energy limiters. The latter means that the strain
energy accumulated by an individual fiber cannot exceed a certain

Fig. 5. Stress–stretch curve for individual fiber (μ¼ 2� 107½Pa�).

Fig. 6. Stress–stretch curve for individual fiber (μ¼ 3� 107½Pa�).

Table 1

Individual fiber parameters (μ¼ 1� 107½N=m2�) and saccular aneurysm rupture.

λcr Φ ½Pa� smax ½Pa� βtlf ¼ 0:3 βtlf ¼ 0:45 βtlf ¼ 0:6

1.05 1.30Eþ04 6.05Eþ05 rupture rupture rupture
1.10 1.20Eþ05 2.97Eþ06 rupture rupture rupture
1.20 1.13Eþ06 1.58Eþ07 rupture rupture rupture

Fig. 4. Stress–stretch curve for individual fiber (μ¼ 1� 107½Pa�).

Table 2

Individual fiber parameters (μ¼ 2� 107½N=m2�) and saccular aneurysm rupture.

λcr Φ ½Pa� smax ½Pa� βtlf ¼ 0:3 βtlf ¼ 0:45 βtlf ¼ 0:6

1.05 2.90Eþ04 1.32Eþ06 rupture rupture rupture
1.10 2.35Eþ05 5.85Eþ06 rupture rupture rupture
1.20 3.10Eþ06 2.16Eþ07 rupture intact intact

Table 3

Individual fiber parameters (μ¼ 3� 107½N=m2�) and saccular aneurysm rupture.

λcr Φ ½Pa� smax ½Pa� βtlf ¼ 0:3 βtlf ¼ 0:45 βtlf ¼ 0:6

1.05 4.00Eþ04 2.10Eþ06 rupture rupture rupture
1.10 3.50Eþ05 8.70Eþ06 rupture intact intact
1.20 3.37Eþ06 4.72Eþ07 intact intact intact

Table 4

Individual fiber parameters (μ¼ 1� 107½N=m2�) and fusiform aneurysm rupture.

λcr Φ ½Pa� smax ½Pa� βtlf ¼ 0:3 βtlf ¼ 0:45 βtlf ¼ 0:6

1.05 1.30Eþ04 6.05Eþ05 rupture rupture rupture
1.10 1.20Eþ05 2.97Eþ06 rupture intact intact
1.20 1.13Eþ06 1.58Eþ07 intact intact intact

Table 5

Individual fiber parameters (μ¼ 2� 107½N=m2�) and fusiform aneurysm rupture.

λcr Φ ½Pa� smax ½Pa� βtlf ¼ 0:3 βtlf ¼ 0:45 βtlf ¼ 0:6

1.05 2.90Eþ04 1.32Eþ06 rupture rupture intact
1.10 2.35Eþ05 5.85Eþ06 intact intact intact
1.20 2.21Eþ06 2.16Eþ07 intact intact intact

Table 6

Individual fiber parameters (μ¼ 3� 107½N=m2�) and fusiform aneurysm rupture.

λcr Φ ½Pa� smax ½Pa� βtlf ¼ 0:3 βtlf ¼ 0:45 βtlf ¼ 0:6

1.05 4.00Eþ04 2.10Eþ06 rupture intact intact
1.10 3.50Eþ05 8.70Eþ06 intact intact intact
1.20 3.37Eþ06 4.72Eþ07 intact intact intact

K. Balakhovsky et al. / Journal of Biomechanics 47 (2014) 653–658656
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limit. Such limit characterizes the failure or bond energy. The
existence of the energy bound implies a critical limit point on the
stress‐strain curve designating the onset of failure or rupture –

Figs. 4–6. Thus, enforcing the energy limiter in the strain energy
function we introduce a material failure description. The energy
limiter approach can be applied to any model of growing intact
aneurysm described in the literature. We chose the model pro-
posed by Kroon and Holzapfel (2007) as the simplest one and
modified it to include failure.

We applied the enhanced Kroon‐Holzapfel model to simula-
tions of evolving saccular and fusiform aneurysms. The former
were modeled as circular axisymmetric membranes while the
latter as the cylindrical axisymmetric ones. In the absence of
reliable patient-specific data we performed parametric studies by
varying the fiber stiffness, critical rupture stretch, deposition rate
and lifetime. We tracked the singularity of the Hessian (the global
tangent stiffness matrix) of the total potential. The singularity
indicated the onset of the rupture process (crack formation and
propagation), which was not tracked, however.

We found a range of parameters within which aneurysms stay
intact or rupture. In choosing the range for parametric studies we
stemmed from the data used by Kroon and Holzapfel (2007). We
refer the reader to the latter paper for a detailed discussion which
we do not duplicate here. It should not be missed also that our
examples illustrate how the model works qualitatively. We neither
make nor pretend making any specific quantitative predictions.
Our purpose is to examine the possibility of modeling failure of
growing aneurysms by using the proposed approach.

It is interesting to note that according to the obtained numer-
ical results rupture occurs very quickly if it occurs at all. This
qualitative result has experimental support. For example, Mitchell
and Jakubowski (2000) conclude based on statistical analyses
that cerebral aneurysms tend to rupture after a short period of
intensive growth and those that survive are much less prone to
rupture for a long period. Mathematically, fast rupture is a result of
the assumption of constant energy limiter. Physically, it means that
collagen fibers have the same constant strength during their life
time and overall aneurysm rupture occurs due to the massive
rupture of individual collagen fibers.

However, another scenario is possible and, probably, takes place
for abdominal aortic aneurysm (Humphrey, 2002; Sakalihasan et al.,
2005). In this case inter-fiber joints fail rather than individual fibers.
Mathematically, it means that the energy limiter should be inter-
preted as an indicator of the inter-fiber joint strength, which should
evolve during the aneurysm development (cf. Volokh and Vorp,
2008). Physically, it means that the overall aneurysm rupture is
caused by disintegration of the fiber net rather than failure of
individual fibers.

The present work explored a very simple model of aneurysm
growth, remodeling, and failure. Obviously, this model can be
further refined by including more constituents and considering
realistic (patient-specific) geometries. Needless to say the present
model can be incorporated in truly sophisticated theories account-
ing for the fluid-structure interaction. It was important here to
show how a failure description can be a part of the constitutive
theory and, thus, integrated in ‘first principles’ calculations. At
the same time there is no doubt that experimental assessment of
the micro-structure of the ruptured aneurysm could essentially
guide further development of the macroscopic mathematical
framework.
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Appendix A. Discretization

In this Appendix we discretize the problem in space and time.
We partition the membrane into finite elements of equal length le
and approximate functions within the eth element according to

Reðξ; tÞ ¼
1
2
ξðξ�1ÞRe1ðtÞþð1�ξ2ÞRe2ðtÞþ

1
2
ξðξþ1ÞRe3ðtÞ ðA:1Þ

reðξ; tÞ ¼ 1
2
ξðξ�1Þre1ðtÞþð1�ξ2Þre2ðtÞþ

1
2
ξðξþ1Þre3ðtÞ ðA:2Þ

zeðξ; tÞ ¼
1
2
ξðξ�1Þze1ðtÞþð1�ξ2Þze2ðtÞþ

1
2
ξðξþ1Þze3ðtÞ ðA:3Þ

∂ξreðξ; tÞ ¼ ξ�1
2

� �
re1ðtÞ�2ξre2ðtÞþ ξþ1

2

� �
re3ðtÞ ðA:4Þ

∂ξzeðξ; tÞ ¼ ξ�1
2

� �
re1ðtÞ�2ξ re2ðtÞþ ξþ1

2

� �
ze3ðtÞ ðA:5Þ

where ξA ½�1;1� is a local coordinate; and ReiðtÞ; reiðtÞ; zeiðtÞ are the
time-dependant nodal values of Reðξ; tÞ; reðξ; tÞ; zeðξ; tÞ accordingly.

Noticing that

dS¼ ledξ; ð:::Þ′¼ 1
le
∂ξð:::Þ ðA:6Þ

we calculate

r′eðξ; tÞ ¼
1
le

ξ�1
2

� �
re1ðtÞ�2ξ re2ðtÞþ ξþ1

2

� �
re3ðtÞ

� �
ðA:7Þ

z′eðξ; tÞ ¼
1
le

ξ�1
2

� �
ze1ðtÞ�2ξ ze2ðtÞþ ξþ1

2

� �
ze3ðtÞ

� �
ðA:8Þ

The squared stretches of the membrane element (18)1,2 take form

λ21eðξ; tÞ ¼ r′2e ðξ; tÞþz′2e ðξ; tÞ; λ22eðξ; tÞ ¼ r2e ðξ; tÞ=R2
e ðξ; tÞ ðA:9Þ

Then, the total energy of the element can be written as follows

Π ¼∑
e
Πe ðA:10Þ

Πe ¼ π

Z 1

�1
ð2Re ∑

n

i ¼ 1
hieψ ieþpr2e z′eÞle dξ ðA:11Þ

Integrating the previous expression at two Gauss points: ξ1 ¼
�1=

ffiffiffi
3

p
and ξ2 ¼ 1=

ffiffiffi
3

p
we get the spatial approximation

ΠeðtÞ � πlef2Reðξ1; tÞ ∑
n

i ¼ 1
hieψ ieðξ1; tÞþpr2e ðξ1; tÞz′eðξ1; tÞg

þπlef2Reðξ2; tÞ ∑
n

i ¼ 1
hieψ ieðξ2; tÞþpr2e ðξ2; tÞz′eðξ2; tÞg ðA:12Þ

It remains only to discretize the element potential in time. For this
purpose we consider the discrete time increments Δtj ¼ tj�tj�1

and approximate the strain energy of the element of the ith layer
by the sum

ψ ieðξν; tkÞ ¼ ∑
k

j ¼ k�nn

_mieðξν; tjÞf ieðξν; tk; tjÞΔtj ðA:13Þ

where ν¼ 1;2 and nn is the number of the time discretization
points of the life cycle tlf .

We assume that the loading and remodeling start at k¼ 0.
Thus, we have for j40:

_mieðξν; tjÞ ¼ β fλ21eðξν; tjÞ cos 2ϕiþλ22eðξν; tjÞ sin 2ϕigα ðA:14Þ

Wieðξν; tk; tjÞ ¼ μ λ2pre
λ21eðξν; tkÞ cos 2ϕiþλ22eðξν; tkÞ sin 2ϕi

λ21eðξν; tjÞ cos 2ϕiþλ22eðξν; tjÞ sin 2ϕi

�1

( )3

ðA:15Þ
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There is no stretching for jr0:

_mieðξν; tjÞ ¼ β ðA:16Þ

Wieðξν; tk; tjÞ ¼ μfλ2preðλ21eðξν; tkÞ cos 2ϕiþλ22eðξν; tkÞ sin 2ϕiÞ�1g3

ðA:17Þ
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