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In previous publications, strain-energy functions with limiters have been introduced for
the prediction of onset of failure in monolithic isotropic hyperelastic materials. In the
present investigation, such enhanced strain-energy functions whose ability to accumulate
energy is limited have been incorporated with a finite strain micromechanical analysis.
As a result, macroscopic constitutive equations have been established which are capable
to predict the onset of loss of static stability in a hyperelastic phase of composite materi-
als undergoing large deformations. The details of the micromechanical analysis, based
on a tangential formulation, for composites with periodic microstructure are presented.
The derived micromechanical analysis includes the capability to model a possible imper-
fect bonding between the composite’s constituents and to provide the field distribution in
the composite. The micromechanical method is verified by comparison with analytical
and finite difference solutions for porous hyperelastic materials that are valid in some
special cases. Results are given for a rubberlike matrix characterized by softening hyper-
elasticity, reinforced by unidirectional nylon fibers. The response of the composite to var-
ious types of loadings is presented up to the onset of loss of static stability at a location
within the hyperelastic rubber constituent, and initial failure envelopes are shown.
[DOI: 10.1115/1.4030351]
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1 Introduction

The prediction of failure of isotropic and standard composite
materials undergoing small deformations received due to its prac-
tical importance great attention. For isotropic materials, failure
characterization by the von Mises, Drucker-Prager, and Coulomb-
Mohr, for example, have been employed, whereas for composite
materials failure criteria such as the maximum stress and strain,
Hill, Tsai-Wu, and Christensen have been established and tested,
see a recent monograph by Christensen [1] and the many referen-
ces cited there. These theories are based on macromechanical con-
siderations according to which the composite is regarded as an
elastic anisotropic material with known elastic properties. There
are however failure theories based on micromechanical analyses
which are based on the fiber and matrix properties as well as their
detailed interaction. The strain invariant failure theory [2] is one
example of such analyses.

The establishment of constitutive equations that govern the
large deformations of composite materials which consist of
hyperelastic phases is necessary for the modeling and analysis of
their behavior. Flexible composites and certain biological tissues
are examples of such finite strain multiphase materials. Tires form
an example of layered multiphase flexible composite structures
that consist of rubbery matrices and stiff reinforcements made of
steel wires or synthetic fibers. The high modulus, low elongation
cords carry most of the load, and the low modulus, high elonga-
tion rubber matrix preserves the integrity of the composite and
transfers the load. The primary objective of this type of composite
is to withstand large deformation and fatigue loading while pro-
viding high load carrying capacity. Another example is the myo-
cardium which is the middle layer in the heart wall, which

consists of parallel muscle fibers that are organized into sheets,
thus forming an orthotropic laminated structure with a trans-
versely isotropic behavior in each lamina [3]. In Aboudi et al. [4],
an entire chapter has been devoted to the establishment by micro-
mechanical analyses of macroscopic finite strain constitutive
equations that govern the behavior of various types of multiphase
composites (elastic, viscoelastic, thermoviscoelastic, and
viscoplastic).

The various strain-energy functions that have been developed
describe the behavior of isotropic materials subjected to large
deformations do not predict failure. Failure prediction of hypere-
lastic materials such as rubbers has been discussed in a recent
review by Volokh [5]. The finite strain-energy functions, from
which constitutive equations can be established, increase monoto-
nously as the applied deformation increases. This behavior is not
realistic since a real material cannot sustain large amount of
strain-energy and deformation without failure. Consequently, in a
series of publications, the concept of an energy limiter has been
introduced, see Volokh [5], for example, and reference cited there.
The energy limiter which limits the amount of energy that can be
accumulated during deformation is incorporated with the constitu-
tive relation itself which has been designated for the description
of the material response. As a result, an enhanced finite strain con-
stitutive equations are obtained which provide the critical values
of the strain-energy at which failure of the material occurs and at
which its static stability is lost. In addition, it has been shown that
the critical values of the modified strain-energy function form a
good indicator of the failure of the material when it is subjected to
a combined loading. This has been shown by Volokh [6,7] for two
types of rubber and for a biological tissue, respectively. It turns
out that this critical value is advantageous over other failure crite-
ria such as the critical stretch, stress, shear stress, or von Mises.

In the present investigation, this approach for the prediction of
initial failure of monolithic hyperelastic materials is utilized in
the micromechanical analysis of composite materials that are
undergoing large deformations. Thus, by employing enhanced

1To Professor Alan Needleman, keen and always engaging.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received August 25, 2014; final
manuscript received April 8, 2015; published online June 3, 2015. Assoc. Editor:
Vikram Deshpande.

Journal of Applied Mechanics JULY 2015, Vol. 82 / 071004-1Copyright VC 2015 by ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 06/04/2015 Terms of Use: http://asme.org/terms



strain-energy functions that include these limiters, the microme-
chanical analysis would provide the critical energy at which a
hyperelastic constituent of the composite would fail. This would
also lead to the occurrence of the loss of static stability of the
composite itself.

In a series of papers, a finite strain micromechanical analysis,
referred to as high-fidelity generalized method of cells (HFGMC),
which is based on the homogenization technique of periodic com-
posites has been developed. It has been implemented for the estab-
lishment of the constitutive behavior of composites which consist
various types of hyperelastic and inelastic constituents, see
Aboudi et al. [4] and references cited there. The reliability and
accuracy of the prediction were extensively examined and verified
by Aboudi and Pindera [8] and Aboudi [9] by comparisons with
exact, finite element, and finite difference solutions. In the frame-
work of HFGMC method, the periodicity of the composite
assumption enables the identification and the analysis of a repeat-
ing unit cell which is divided into several subcells. The strain-
energy variations of each subcell that is filled with a hyperelastic
material are monitored. The first subcell whose strain-energy
reaches the critical value determines the initial failure occurrence
of the composite caused by the loss of stability of its hyperelastic
material at that location.

The present article is organized as follows. Section 2 introduces
the necessary modifications of a given strain-energy function that
are needed to incorporate the limiters. This is followed by the der-
ivation of the tangential formulation of the resulting constitutive
equations of the hyperelastic material. Section 3 presents the finite
strain HFGMC incremental micromechanical method, in conjunc-
tion with a possible imperfect bonding between the composite
constituents. Section 4 presents verifications of the proposed
approach by comparisons of the predicted response by the
HFGMC analysis of porous materials to biaxial loading with exact
and finite difference solutions which are applicable in some spe-
cial cases. Section 5 presents applications of the softening hypere-
lasticity on a rubberlike matrix composite reinforced by
unidirectional nylon fibers. Conclusions and possible future
research are discussed in Sec. 6.

2 Failure Modeling by Softening Hyperelasticity

2.1 Constitutive Equations. Let W denote the strain-energy
per unit volume function of isotropic hyperelastic materials. This
function can be expressed, in the framework of the Ogden’s repre-
sentation [10,11] in terms of the principal stretches: k1; k2; k3.
With F denoting the deformation gradient and FT is its transpose,
the right C ¼ FTF Cauchy–Green strain tensor is given in terms
of its eigenvalues by the spectral decomposition by

C ¼
X3

A¼1

k2
ANA � NA; A ¼ 1; 2; 3 (1)

where NA are the principal referential orthonormal directions.
In the principal coordinates in which C is given by Eq. (1), the

second Piola–Kirchhoff stress tensor S of the material is deter-
mined from

SA ¼
1

kA

@W

@kA
; A ¼ 1; 2; 3 (2)

As the applied deformation on the material increases, both the
strain-energy W and the corresponding stress S increase as well.
Theoretically, there are not limits to the increase of these quanti-
ties which obviously is not realistic. In order to limit the capacity
of the material to accumulate strain-energy during deformation,
Volokh [6] introduced the concept of energy limiter. According to
this concept, the strain-energy W is replaced by the new strain-
energy function w.

w ¼ wF � wEðCÞ (3)

where wF and wEðCÞ denote the failure and elastic energies,
respectively. The failure energy (energy of full separation) is
given by

wF ¼ /
m

C
1

m
; 0

� �
(4)

The elastic energy is defined by

wEðCÞ ¼ /
m

C
1

m
;
Wm

/m

� �
(5)

where Cðs; xÞ is the upper incomplete gamma function defined by

Cðs; xÞ ¼
ð1

x

ts�1 expð�tÞdt (6)

with / and m being material parameters. The constant / repre-
sents the energy limiter that describes the limiting value of the
accumulated energy of the material whereas the parameter m con-
trols the sharpness of the transition to material instability. Large
values of m correspond to steep failure. Gradual transition is typi-
cal of some soft biological tissues, whereas rubbers exhibit abrupt
transition. The following properties exist:

wF ¼ wEðIÞ; wEðCÞ ! 0; when jjCjj ! 1 (7)

where I is the second-order unit tensor.
The second Piola–Kirchhoff stress tensor can be determined

from w according to

SA ¼
1

kA

@w
@kA
¼ 1

kA

@W

@kA
exp �Wm

/m

� �
; A ¼ 1; 2; 3 (8)

In Fig. 1(a), the strain-energy w and first Piola–Kirchhoff
T1 ¼ k1S1 are schematically shown against the k1 in a uniaxial
tension test in the one-direction. It can be observed that as the
applied stretch increases, the value of w reaches the failure energy
limit wF. The resulting stress increases from zero to a maximum
value after which it decreases to zero. The corresponding critical
value of the energy w at which the stress reaches this maximum,
is denoted by wc. When w ¼ wc, the static stability of the material
is lost indicating the onset of failure.

The above formulation results in a reversible failure, namely, as
the applied deformation after failure decreases the failed material
unloads along the same loading path thus exhibiting healing. In
order to prevent this unrealistic behavior, Volokh [12] modified
the above equations as follows. Equation (3) is replaced by

w ¼ wF � HðaÞwEðCÞ (9)

where a is a function whose evolution equation is given by

_a ¼ �H �� wE

wF

� �
; aðt ¼ 0Þ ¼ 0 (10)

and H(x) is the Heaviside step function being equal to zero for
x � 0, and equal to one otherwise. In Eq. (10), � is a small dimen-
sionless parameter.

The resulting second Piola–Kirchhoff stress components,
derived from Eq. (9), take the form

SA ¼
1

kA

@w
@kA
¼ �HðaÞ 1

kA

@wE

@kA
¼ 1

kA
HðaÞ @W

@kA
exp �Wm

/m

� �
;

A ¼ 1; 2; 3 (11)
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It can be verified that Eqs. (9)–(11) yield irreversible failure
description of the material when the failure energy wF is reached.
After reaching its maximum, the stress drops rapidly to zero,
where it remains equal to zero upon unloading so that no healing
takes place.

2.2 The Tangential Formulation of the Constitutive
Equations. The finite strain micromechanical analysis that will be
presented in Sec. 3 is based on an incremental procedure which
requires the establishment of the instantaneous tangent tensor at
any stage of loading. It is also based on the use of the first
Piola–Kirchhoff actual stress tensor. To this end, let us express
the second Piola–Kirchhoff stress increments which are obtained
from Eq. (11) in the form

DSA ¼ HðaÞ
X3

B¼1

1

kA

@2W

@kA@kB
� 1

kA

@W

@kA
dAB �

m

/m Wm�1 @W

@kA

@W

@kB

� �

� exp �Wm

/m

� �
DkB (12)

where dAB is the Kronecker delta.
The fourth-order symmetric tangent tensor D in the material

description expresses twice the derivative of the second
Piola–Kirchhoff stress tensor with respect to the right
Cauchy–Green deformation tensor C, namely

D ¼ 2
@S

@C
(13)

It can be determined from the following expression [11]:

D ¼
X3

A¼1

X3

B¼1

1

kB

@SA

@kB
NA � NA � NB � NB

þ
X3

A¼1

X3

B6¼A¼1

SB � SA

ðkBÞ2 � ðkAÞ2
ðNA � NB � NA � NB þ NA � NB

� NB � NAÞ (14)

Thus far, the above expressions for the stresses, stress incre-
ments, and tangent tensors have been referred to the principal
directions NA. A transformation back to the original coordinates,
with respect to which F is referred to, would provide the corre-
sponding transformed tensors which will be herein denoted,
respectively, by S;DS, and D. In particular, the following expres-
sions can be written in the original coordinates:

DS ¼ 1

2
D : DC (15)

which expresses the increment of the second Piola–Kirchhoff
stress tensor in terms of the right Cauchy–Green deformation ten-
sor increment, both of which are referred to the original coordi-
nates (including the fourth-order tangent stiffness tensor D).

Since the micromechanical analysis uses the actual stresses, let
us employ the following relation that provides the first (nonsym-
metric) Piola–Kirchhoff stress tensor T in terms of the second
Piola–Kirchhoff stress tensor S:

Fig. 1 (a) A schematic representation of the stress T1 and strain-energy w variation of a
hyperelastic material with energy limiter. (b) A multiphase composite with doubly periodic
microstructures defined with respect to global initial coordinates in the plane X22X3. (c)
The repeating unit cell is defined with respect to local initial coordinates in the plane Y22Y3.
(d) A characteristic subcell (bc) in which a local initial system of coordinates ( �Y

ðbÞ
2 ; �Y

ðcÞ
3 ) is

introduced the origin of which is located at the center.
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T ¼ S FT (16)

Consequently, the following incremental constitutive law of the
monolithic material is obtained:

DT ¼ R : DF (17)

where R is the current first tangent tensor given by

Rijkl ¼ DirlsFjrFks þ Sildjk (18)

The incremental constitutive equation (17) of the hyperelastic
material with softening will be used in the micromechanical anal-
ysis described in the following to determine the macroscopic finite
strain behavior of fiber-reinforced composites composed of such
constituents.

3 Tangential Formulation of the Finite Strain

HFGMC With Imperfect Bonding Between the Phases

The finite strain HFGMC micromechanical method for multi-
phase materials has been briefly described by Aboudi et al. [4]. In
the present article, this method is extended to incorporate the
effect of imperfect bonding between the constituents and pre-
sented herein in details. This micromechanical analysis is based
on the homogenization technique in which a repeating unit cell of
the periodic composite is identified. In Fig. 1(b), a multiphase
composite with a doubly periodic microstructure defined with
respect to the initial global coordinates of the X2 � X3 plane is
shown together with its repeating unit cell, Fig. 1(c), defined with
respect to the initial material coordinates Y2 � Y3. The repeating
unit cell is divided into Nb and Nc subcells in the Y2 and Y3 direc-
tions, respectively. Each subcell is labeled by the indices ðbcÞ
with b ¼ 1;…;Nb and c ¼ 1;…;Nc and may contain a distinct
homogeneous material. The initial dimensions of subcell ðbcÞ in
the Y2 and Y3 directions are denoted by hb and lc, respectively, see

Fig. 1(d). A local initial coordinates system ð �YðbÞ2 ; �Y
ðcÞ
3 Þ is intro-

duced in each subcell whose origin is located at its center.
In the framework of HFGMC, the increments of the displace-

ment vector DuðbcÞ in subcell ðbcÞ are expanded into second-order
polynomials as follows:

DuðbcÞ ¼ D�F � Xþ DW
ðbcÞ
ð00Þ þ �Y

ðbÞ
2 DW

ðbcÞ
ð10Þ þ �Y

ðcÞ
3 DW

ðbcÞ
ð01Þ

þ 1

2
3 �Y
ðbÞ2
2 �

h2
b

4

 !
DW

ðbcÞ
ð20Þ þ

1

2
3 �Y
ðcÞ2
3 �

l2
c

4

 !
DW

ðbcÞ
ð02Þ

(19)

With D�F denoting the increment of the global (macroscopic) de-

formation gradient, the term D�F � X stands for the increment of
the externally applied loading on the composite. The unknown

coefficient DW
ðbcÞ
ðmnÞ is determined, as shown in the following, from

the satisfaction of the equilibrium equations, interfacial and peri-
odic conditions.

Expansion (19) yields the deformation gradient increment
DFðbcÞ in subcell ðbcÞ which is given by

DFðbcÞ ¼ D�Fþ

0 DW
ðbcÞ
1ð10Þ DW

ðbcÞ
1ð01Þ

0 DW
ðbcÞ
2ð10Þ DW

ðbcÞ
2ð01Þ

0 DW
ðbcÞ
3ð10Þ DW

ðbcÞ
3ð01Þ

2
666664

3
777775

þ 3

0 DW
ðbcÞ
1ð20Þ

�Y
ðbÞ
2 DW

ðbcÞ
1ð02Þ

�Y
ðcÞ
3

0 DW
ðbcÞ
2ð20Þ

�Y
ðbÞ
2 DW

ðbcÞ
2ð02Þ

�Y
ðcÞ
3

0 DW
ðbcÞ
3ð20Þ

�Y
ðbÞ
2 DW

ðbcÞ
3ð02Þ

�Y
ðcÞ
3

2
666664

3
777775 (20)

In the absence of body forces, the equilibrium equations in the
subcell, expressed in terms of the first Piola–Kirchhoff TðbcÞ stress
tensor, can be represented in the form

@T
ðbcÞ
2j

@ �Y
ðbÞ
2

þ
@T
ðbcÞ
3j

@ �Y
ðcÞ
3

¼ 0; j ¼ 1; 2; 3 (21)

By averaging the increments of the equilibrium equations (21)
over the area of the subcell the following relations are obtained:

DI
ðbcÞ
2ð00Þ þ DI

ðbcÞ
3ð00Þ ¼ 0 (22)

where DI
ðbcÞ
2ð00Þ and DI

ðbcÞ
3ð00Þ can be expressed in terms of the surface-

average of the traction increments evaluated along �Y
ðbÞ
2 ¼ 6hb=2

and �Y
ðcÞ
3 ¼ 6lc=2, respectively. Thus,

DI
ðbcÞ
2ð00Þ ¼

1

hb
DT
þðbcÞ
2 � DT

�ðbcÞ
2

h i

DI
ðbcÞ
3ð00Þ ¼

1

lc
DT
þðbcÞ
3 � DT

�ðbcÞ
3

h i (23)

where the surface-average of the traction increments is given by

DT
6ðbcÞ
2 ¼ 1

lc

ðlc=2

�lc=2

DT
ðbcÞ
2

�Y
ðbÞ
2 ¼ 6

hb

2

� �
d �Y
ðcÞ
3

DT
6ðbcÞ
3 ¼ 1

hb

ðhb=2

�hb=2

DT
ðbcÞ
3

�Y
ðcÞ
3 ¼ 6

lc
2

� �
d �Y
ðbÞ
2

(24)

and DT
ðbcÞ
2 and DT

ðbcÞ
3 are defined by

DT
ðbcÞ
2 ¼ DT21;DT22;DT23½ �bcÞ

DT
ðbcÞ
3 ¼ DT31;DT32;DT33½ �bcÞ

(25)

Substitution of Eq. (23) in Eq. (22) yields

1

hb
DT
þðbcÞ
2 � DT

�ðbcÞ
2

h i
þ 1

lc
DT
þðbcÞ
3 � DT

�ðbcÞ
3

h i
¼ 0 (26)

This relation expresses the increments of equilibrium equations
imposed in the average sense within subcell ðbcÞ.

By employing the constitutive relations (17), the following expres-
sions for the components of the surface-average of the traction incre-

ments DT
6ðbcÞ
2 and DT

6ðbcÞ
3 are obtained from Eqs. (20) and (24):

DT
6ðbcÞ
2j ¼ R

ðbcÞ
2jkl D �Fkl þ R

ðbcÞ
2j12 DW

ðbcÞ
1ð10Þ6

3hb

2
DW

ðbcÞ
1ð20Þ

� �

þ R
ðbcÞ
2j22 DW

ðbcÞ
2ð10Þ6

3hb

2
DW

ðbcÞ
2ð20Þ

� �

þ R
ðbcÞ
2j32 DW

ðbcÞ
3ð10Þ6

3hb

2
DW

ðbcÞ
3ð20Þ

� �

þ R
ðbcÞ
2j13DW

ðbcÞ
1ð01Þ þ R

ðbcÞ
2j23DW

ðbcÞ
2ð01Þ þ R

ðbcÞ
2j33DW

ðbcÞ
3ð01Þ;

j; k; l ¼ 1; 2; 3 (27)

DT
6ðbcÞ
3j ¼ R

ðbcÞ
3jkl D �FklþR

ðbcÞ
3j12DW

ðbcÞ
1ð10Þ þR

ðbcÞ
3j22DW

ðbcÞ
2ð10Þ þR

ðbcÞ
3j32DW

ðbcÞ
3ð10Þ

þR
ðbcÞ
3j13 DW

ðbcÞ
1ð01Þ6

3lc
2

DW
ðbcÞ
1ð02Þ

� �

þR
ðbcÞ
3j23 DW

ðbcÞ
2ð01Þ6

3lc
2

DW
ðbcÞ
2ð02Þ

� �

þR
ðbcÞ
3j33 DW

ðbcÞ
3ð01Þ6

3lc
2

DW
ðbcÞ
3ð02Þ

� �
; j;k; l¼ 1;2;3 (28)
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Substitution of Eqs. (27) and (28) in Eq. (26) provides the three
relations

R
ðbcÞ
2j12DW

ðbcÞ
1ð20Þ þ R

ðbcÞ
2j22DW

ðbcÞ
2ð20Þ þ R

ðbcÞ
2j32DW

ðbcÞ
3ð20Þ

þ R
ðbcÞ
3j13DW

ðbcÞ
1ð02Þ þ R

ðbcÞ
3j23DW

ðbcÞ
2ð02Þ þ R

ðbcÞ
3j33DW

ðbcÞ
3ð02Þ ¼ 0;

j ¼ 1; 2; 3 (29)

Just like the surface-average traction increments, the surface-
average displacements increments can be defined by

Du
6ðbcÞ
2 ¼ 1

lc

ðlc=2

�lc=2

DuðbcÞ �Y
ðbÞ
2 ¼ 6

hb

2

� �
d �Y
ðcÞ
3

Du
6ðbcÞ
3 ¼ 1

hb

ðhb=2

�hb=2

DuðbcÞ �Y
ðcÞ
3 ¼ 6

lc
2

� �
d �Y
ðbÞ
2

(30)

In the following, these surface-average increments Du
6ðbcÞ
i , i¼ 1,

2, 3, will be related to the microvariables DW
ðabcÞ
ðmnÞ ; ðmnÞ ¼ 0; 1; 2;

in the expansion (19). To this end, by substituting Eq. (19) in
Eq. (30), the following relations are obtained:

Du
6ðbcÞ
2 ¼ DW

ðbcÞ
ð00Þ6

hb

2
DW

ðbcÞ
ð10Þ þ

h2
b

4
DW

ðbcÞ
ð20Þ

Du
6ðbcÞ
3 ¼ DW

ðbcÞ
ð00Þ6

lc
2

DW
ðbcÞ
ð01Þ þ

l2
c

4
DW

ðbcÞ
ð02Þ

(31)

Manipulations of Eq. (31) by subtractions and additions yield

DW
ðbcÞ
ð10Þ ¼

1

hb
Duþ2 � Du�2
� �ðbcÞ

DW
ðbcÞ
ð01Þ ¼

1

lc
Duþ3 � Du�3
� �ðbcÞ

(32)

and

DW
ðbcÞ
ð20Þ ¼

2

h2
b

Duþ2 þ Du�2
� �ðbcÞ� 4

h2
b

DW
ðbcÞ
ð00Þ

DW
ðbcÞ
ð02Þ ¼

2

l2
c

Duþ3 þ Du�3
� �ðbcÞ� 4

l2c
DW

ðbcÞ
ð00Þ

(33)

The expressions of DW
ðbcÞ
ð00Þ in terms of the surface-average dis-

placements increments Du
6ðbcÞ
2 and Du

6ðbcÞ
3 can be achieved by

substituting Eq. (33) in Eq. (29). This yields a system of three linear

algebraic equations in the three unknowns DW
ðbcÞ
ð00Þ whose solution

expresses these microvariables in terms of Du
6ðbcÞ
2 and Du

6ðbcÞ
3 .

Hence, this solution together with Eqs. (32) and (33) form the
desired expressions which can be formally written as follows:

DWð00Þ

DWð10Þ

DWð01Þ

DWð20Þ

DWð02Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ðbcÞ

¼ S½ �ðbcÞ Du6
2

Du6
3

( )ðbcÞ

(34)

where SðbcÞ are coefficient matrices whose elements are lengthy
and therefore are not given.

Consequently with expressions (34), the following relations can
be established from Eqs. (27) and (28):

DT6
2

DT6
3

( )ðbcÞ

¼ K½ �ðbcÞ Du6
2

Du6
3

� 	ðbcÞ

þ
DV6

2

DV6
3

( )ðbcÞ

(35)

In these equations, the far-field contributions are included in the
vectors DV

6ðbcÞ
2 and DV

6ðbcÞ
3 whose components are defined by

DV
6ðbcÞ
2j ¼ R

ðbcÞ
2jkl D �Fkl

DV
6ðbcÞ
3j ¼ R

ðbcÞ
3jkl D �Fkl; j; k; l ¼ 1; 2; 3

(36)

In Eq. (35), KðbcÞ is a matrix of the 12th-order whose elements
depend on the dimension of the subcell and the instantaneous tan-
gent tensor RðbcÞ of the material filling this subcell.

The continuity conditions of the surface-average traction incre-
ments between neighboring subcells require that

DT
þðbcÞ
2 ¼ DT

�ðbþ1 cÞ
2 ; b ¼ 1;…;Nb � 1; c ¼ 1;…;Nc

DT
þðb cÞ
3 ¼ DT

�ðbcþ1Þ
3 ; b ¼ 1;…;Nb; c ¼ 1;…;Nc � 1

(37)

These conditions provide 3ðNb � 1ÞNc þ 3NbðNc � 1Þ equations.
In the present article, imperfect bonding between the constitu-

ents is allowed. This effect can be modeled by replacing the
requirement that the displacements are continuous at the interface
between the phases with condition that the difference between
these interfacial displacements is proportional to the traction
there. This approach provides perfect bonding and complete sepa-
ration as two special cases of the general imperfect bonding for-
mulation. Accordingly, the following interfacial conditions can be
imposed [4]:

Du
þðbcÞ
21 � Du

�ðbþ1 cÞ
21

Du
þðbcÞ
22 � Du

�ðbþ1 cÞ
22

Du
þðbcÞ
23 � Du

�ðbþ1 cÞ
23

8>><
>>:

9>>=
>>; ¼

r
ðbcÞ
T 0 0

0 r
ðbcÞ
N 0

0 0 r
ðbcÞ
T

2
664

3
775

DT
þðbcÞ
21

DT
þðbcÞ
22

DT
þðbcÞ
23

8>><
>>:

9>>=
>>;
(38)

where b ¼ 1;…;Nb � 1; c ¼ 1;…;Nc and

Du
þðbcÞ
31 � Du

�ðb cþ1Þ
31

Du
þðbcÞ
32 � Du

�ðb cþ1Þ
32

Du
þðbcÞ
33 � Du

�ðb cþ1Þ
33

8>><
>>:

9>>=
>>; ¼

r
ðbcÞ
T 0 0

0 r
ðbcÞ
T 0

0 0 r
ðbcÞ
N

2
664

3
775

DT
þðbcÞ
31

DT
þðbcÞ
32

DT
þðbcÞ
33

8>><
>>:

9>>=
>>;
(39)

where b ¼ 1;…;Nb; c ¼ 1;…;Nc � 1. In these equations, r
ðbcÞ
N

and r
ðbcÞ
T are two parameters that characterize the degree of imper-

fect bonding at the phase interface in the normal and tangential

directions. The values of r
ðbcÞ
N ¼ r

ðbcÞ
T ¼ 0 and r

ðbcÞ
N ¼ r

ðbcÞ
T !1

correspond to perfect bonding and complete separation, respec-

tively. It is also possible to specify r
ðbcÞ
N and r

ðbcÞ
T as evolving func-

tions of the interfacial tractions, see Wang et al. [13], for example,
which results in evolving interfacial damage. Conditions (38) and
(39) provide another 3ðNb � 1ÞNc þ3NbðNc � 1Þ equations.

Finally, the periodicity conditions that require the equality of
the surface-average displacement and traction increments at the
opposite sides of the repeating unit cell are

Du2 DT2½ ��ð1cÞ¼ Du2 DT2½ �þðNb cÞ; c ¼ 1;…;Nc

Du3 DT3½ ��ðb1Þ¼ Du3 DT3½ �þðb NcÞ; b ¼ 1;…;Nb

(40)

which form additional 6Nb þ 6Nc equations.
Consequently, Eqs. (37)–(40) form a system of 12NbNc alge-

braic equations in the same number of the surface-average dis-
placement increments Du6ðbcÞ in the entire repeating unit cell
(namely the composite). The solution at a current loading incre-
ment establishes the fourth-order instantaneous stress concentra-
tion tensor AðbcÞ, which relates the increment of the local
deformation gradient (in the subcell) DFðbcÞ to the current
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externally applied far-field global deformation gradient increment
D�F, namely,

DFðbcÞ ¼ AðbcÞ : D�F (41)

The average stress increments in the composite are given by

D�T ¼ 1

HL

XNb

b¼1

XNc

c¼1

hblcDTðbcÞ (42)

Substituting the incremental constitutive equation (17) for DTðbcÞ

and employing Eq. (41) establishes in the macroscopic (global)
incremental constitutive equation of the composite

D�T ¼ R� : D�F (43)

where R� is the effective instantaneous fourth-order first tangent
tensor of the composite which is given by

R� ¼ 1

HL

XNb

b¼1

XNc

c¼1

hblc RðbcÞ AðbcÞ (44)

In conclusion, the HFGMC micromechanical method has estab-
lished the macroscopic constitutive equations, which govern the
behavior of multiphase composites that are composed of hyperelas-
tic material characterized by softening effects which lead to loss of
static stability. This loss of static stability in a subcell which is filled
by a hyperelastic material affects the composite response and indi-
cates the occurrence of the initiation of failure in the composite.

4 Verification of the HFGMC Micromechanical

Prediction: Axisymmetric Loading

The reliability of the finite strain HFGMC predicted macro-
scopic response has been verified in Refs. [8,9], by considering a
hollow cylinder under externally applied radial stretch and zero
axial deformation for which exact analytical solutions can be
developed for several types of nonlinearly elastic materials with
substantially different stiffening and softening behavior. These
hyperelastic materials include two harmonic materials discussed
by Ogden [10] and Jafari et al. [14], henceforth called Ogden and
JAH materials, Varga material discussed by Haughton [15], and
Blatz and Ko [16] material. These analytical solutions have been
summarized and reviewed by Horgan [17,18].

The employed cylindrical geometry and loading correspond to
the response of the concentric cylinder assemblage (CCA) model
proposed by Hashin and Rosen [19] which in the present context
represents a porous composite with a dilute axial pore content
subjected to large axisymmetric deformations. In the framework
of this model, the radial stress–radial stretch (TRR � kRR) response
of the outer surface of a single hollow cylinder subjected to axi-
symmetric loading coincides with that of the effective response
( �TRR � �kRR) of the entire porous composite subjected to the same
type of loading. The hollow core accounts for only 5% of the total
cross-sectional area transverse to the reinforcement direction,
allowing a direct comparison with the present micromechanical
model predictions based on the repeating unit cell with 5% void
fraction subjected to biaxial tension �F22 ¼ �F33 that provides
�T22 ¼ �T33. A direct comparison between �TRR and �T22 ¼ �T33 pro-
vides information about the accuracy of the micromechanical pre-
diction. It should be emphasized that the offered reliability
verification is meaningful because although the CCA problem is
one-dimensional, the present micromechanical doubly periodic
model is two-dimensional. The specific discretization of the
repeating unit cell that mimics the circular character of the central
void surrounded by the nonlinear material is given in Ref. [8].
The two approaches differ also in the sense that whereas the finite

strain HFGMC analysis is based on a tangential formulation, the
CCA equations shown in the following are based on the total
value of the field variables rather than their increments.

In the present case of a hyperelastic material with a limiter
namely, with a strain-energy function of the form given by
Eq. (3), these analytical solutions are not valid anymore. They are
applicable only in the case of /!1. With the axisymmetric
loading of cylindrical geometry, it is possible however to solve
the one-dimensional equilibrium equations for these materials by
a two-point finite difference procedure and compare the resulting
solution with the HFGMC prediction to verify its accuracy. This
approach is discussed in the following.

4.1 Axisymmetric Loading of a Hollow Cylinder. Consider
the plane strain deformation of a hollow cylinder under a uniform
radial stretch at the outer radius and zero tractions at the inner
radius. Let R and H denote the polar coordinates of a material par-
ticle in the initial configuration, where A � R � B; 0 � H � 2p
with A and B denoting the inner and outer radii, respectively. The
current location of this particle is given by r and h such that the
deformation is described by r(R) and h ¼ H, where a � rðRÞ � b
and a and b denote the current inner and outer radii.

For this type of deformation, the deformation gradient is
given by

F ¼ diag
drðRÞ

dR
;
rðRÞ

R
; 1

� �
(45)

and the principal stretches k1, k2, and k3 are given by

k1 ¼
drðRÞ

dR
; k2 ¼

rðRÞ
R

; k3 ¼ 1 (46)

The equilibrium equations reduce to the single equation

dTRR

dR
þ TRR � THH

R
¼ 0 (47)

where TRR and THH are the components of the first
Piola–Kirchhoff stress tensor. With the enhanced strain-energy
function w given by Eq. (3), these components are given by

TRR ¼
@W

@k1

exp �Wm=/mð Þ; THH ¼
@W

@k2

exp �Wm=/mð Þ (48)

Consequently, Eq. (47) reduces to the nonlinear ordinary differen-
tial equation

@2W

@k2
1

� @W

@k1

� �2 m

/m Wm�1

" #
d2r

dR2
þ @2W

@k1k2

� @W

@k1

@W

@k2

m

/m Wm�1

� �

� 1

R

dr

dR
� r

R2

� �
þ 1

R

@W

@k1

� @W

@k2

� �
¼ 0 (49)

The solution for r(R), which depends on the particular form of the
strain-energy W, is obtained subject to the traction-free condition
at the inner radius, and specified deformation at the outer radius in
the current configuration, i.e.,

TRR ¼ 0; R ¼ A

rðBÞ ¼ b ¼ �kRRB; R ¼ B
(50)

where �kRR is the prescribed radial stretch.
The determination of r(R) leads to the determination of the

stresses, including the radial stress TRR at the outer surface R¼B.
The use of the average stress theorem (for example see Ref. [4])
produces the average radial stress �TRR for the entire hollow cylin-
der, namely, �TRR ¼ TRRðR ¼ BÞ. Consequently, the effective
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stress–deformation relationship of the porous material, with the
initial volume concentration of pores given by A2=B2 < 1, sub-
jected to the specified plane strain axisymmetric loading by
�kRR ¼ b=B, is established.

The second-order nonlinear ordinary differential equation,
Eq. (49), and the boundary conditions, Eq. (50), form a two-point
boundary value problem. As stated before, for the above four types
of hyperelastic materials exact solutions can be derived, when
/!1 only. Solutions of this equation in the general case can be
obtained by employing a finite-difference procedure for two-point
boundary value problems. According to this method, the interval
A � R � B is divided into several subintervals and the derivatives
are replaced by their corresponding finite differences in these inter-
vals. As a result, a system of nonlinear algebraic equations is
obtained which is solved by an iterative procedure until conver-
gence is achieved up to a pre-assigned degree of accuracy.

4.2 Ogden Harmonic Material. Results are given herein
for the following strain-energy function that was proposed by
Ogden [10]:

W ¼ 2� � l
27

ðk1 þ k2 þ 1Þ3 þ � � �ðk1k2 þ k1 þ k2Þ þ lk1k2

(51)
with the material constants � ¼ 1 MPa and l ¼ �4.

In the special case, when /!1 the exact of Eq. (49) is given
by

rðRÞ ¼ PRþ Q

R
(52)

where P and Q are coefficients that can be determined from the
boundary conditions (50).

In Fig. 2(a), the first Piola–Kirchhoff stress variations with
deformation gradient, caused by the application of simple tension
in the two-direction of the monolithic material, are shown for
/!1 and / ¼ 5 MPa, m¼ 10. The effect of the limiters addi-
tion is clearly exhibited. In Fig. 2(b), comparisons between the
stresses based on the exact CCA solution given by Eq. (52), the
finite difference solution of Eq. (49) and HFGMC prediction of
the porous material are shown in the absence of a limiter, i.e.,
/!1. Excellent agreements between the three methods are
noticed. Finally, a comparison between the finite difference solu-
tion and HFGMC predictions of the porous material are shown in
Fig. 2(c). The HFGMC prediction, which is based on tangential
formulation, can be seen to be valid up to the critical point of wc

of the the strain-energy w where it coincides with the CCA finite
difference solution. On the other hand, the finite difference
solution, based on a total formulation, is capable to predict the
solution a little farther.

Fig. 2 (a) The response of the monolithic Ogden harmonic material to simple tension in the
two-direction. (b) The macroscopic response of porous Ogden material subjected to a biaxial
loading. Comparison between the HFGMC, exact CCA, and finite difference solutions for
/! ‘. (c) The macroscopic response of porous Ogden material subjected to a biaxial load-
ing. Comparison between the HFGMC and finite difference solutions for / 5 5 MPa and m 5 10.
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4.3 JAH Harmonic Material. This harmonic material is
characterized by the strain-energy function which has been speci-
fied by Jafari et al. [14] as

W ¼ 2l
ðk1 þ k2Þ2

2
þ k1 þ k2

� � 1

2

k1 þ k2

� ��
þ 1þ �

1� � � k1k2

" #
;

� 	 0; � 6¼ 1; k1 þ k2 > 0 (53)

with the material constants l ¼ 1 MPa and � ¼ 1:5. Here too the
solution of Eq. (49) for /!1 is given by Eq. (52). As in the
previous case, Figs. 3(a)–3(c) exhibit the monolithic material
response in simple tension, the porous material response when
/!1 and its response for / ¼ 1 MPa and m¼ 10. Excellent
agreements between the solutions are clearly observed.

4.4 Blatz and Ko Material. The final verification is pre-
sented for the Blatz and Ko material [16], which is characterized
by the strain-energy function

W ¼ l
2

k�2
1 þ k�2

2 þ 2k1k2 � 4
� �

(54)

with the material constant l ¼ 1 MPa. In the limiting case of
/!1, the solution of Eq. (49) has been derived from that pre-
sented by Chung et al. [20] for the finite deformation of internally
pressurized cylinder which was modified in Ref. [8] for the

boundary conditions given by Eq. (50). The monolithic material
behavior under simple tension in the two-direction with and with-
out limiter is shown in Fig. 4(a), and the resulting comparisons of
the porous material responses are shown in Figs. 4(b) and 4(c) for
/!1 and / ¼ 0:2 MPa, m¼ 10.

5 Applications

Applications are given herein for filled natural rubber rein-
forced by unidirectional nylon fibers. The rubber matrix was char-
acterized by Hamdi et al. [21] by employing Yeoh [22]
hyperelastic strain-energy function which is given by

W ¼
X3

k¼1

Ck k2
1 þ k2

2 þ k2
3 � 3


 �k
(55)

where the constants are: C1 ¼ 0:298 MPa;C2 ¼ 0:014 MPa;
and C3 ¼ 0:00016 MPa. In addition, Hamdi et al. [21] observed
that failure of the material in simple tension in the one-direction
occurs when the value of the stretch is k1 ¼ 7:12. The resulting
response was calibrated by Ref. [6] to determine the values of /
and m in Eqs. (4) and (5). The recommended values / ¼ 82 MPa
and m¼ 10 have been chosen in the present article. This value of
/ has been obtained by a fit with the uniaxial tension test of
Hamdi et al. [21]. The corresponding critical strain-energy is
wc ¼ 63:1 MPa, and the energy of separation which is given by
Eq. (4) is 78 MPa.

Fig. 3 (a) The response of the monolithic JAH harmonic material to simple tension in the
two-direction. (b) The macroscopic response of porous Ogden material subjected to a biaxial
loading. Comparison between the HFGMC, exact CCA, and finite difference solutions for
/! ‘. (c) The macroscopic response of porous JAH material subjected to a biaxial loading.
Comparison between the HFGMC and finite difference solutions for / 5 1 MPa and m 5 10.
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The failure of rubber and abdominal aortic aneurysm have been
discussed by Volokh [6,7], respectively. It turned out that failure
based on the critical value wc of the strain-energy w is advanta-
geous over other criteria such as the critical stretch, stress, shear
stress, or von Mises. Therefore, this energy based criterion at

which static stability is lost is adopted in the present article as an
indicator for the onset of failure.

Equation (55) represents an incompressible material in which
J ¼ k1k2k3 ¼ 1. It is more convenient to employ a compressible
version of Eq. (55) which is given by

Fig. 4 (a) The response of the monolithic Blatz and Ko material to simple tension in the two-
direction. (b) The macroscopic response of porous Blatz and Ko material subjected to a biaxial
loading. Comparison between the HFGMC, exact CCA, and finite difference solutions for
/! ‘. (c) The macroscopic response of porous Blatz and Ko material subjected to a biaxial
loading. Comparison between the HFGMC and finite difference solutions for / 5 0:2 MPa and
m 5 10.

Fig. 5 The response of the monolithic matrix described by Eq. (56) to simple tension in the
one-direction. (a) Piola–Kirchhoff stress T1 and (b) strain-energy w.
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Fig. 6 (a) Stress–deformation gradient response of the nylon/rubberlike composite to
uniaxial stress loading in the fibers direction and (b) the induced deformation gradient in
the transverse direction. (c) Stress–deformation gradient response of the composite to
uniaxial stress loading in the transverse direction and (d) the induced deformation gradi-
ent in the other transverse direction. (e) The distribution in the repeating unit cell
0 £ Y2=H £ 1; 0 £ Y3=L £ 1 of the strain-energy w when w 5 wc 5 63:1 MPa.
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W ¼
X3

k¼1

Ck
�k2

1 þ �k2
2 þ �k2

3 � 3

 �k þ jðJ � 1Þ2 (56)

where �kk ¼ kk=J1=3 and j represent the bulk modulus such that a
nearly incompressible material is obtained for large values of j.
In the characterization of Yeoh material by the compressible ver-
sion given by Eq. (56), the value of j ¼ 1GPa has been chosen
which turns out to yield a determinant of the deformation gradient
which is very close to unity during the deformation process.
Figure 5 exhibits the variations of the Piola–Kirchhoff stress and
the strain-energy w for / ¼ 82 MPa and m¼ 10 caused by the
application of a simple tension in the one-direction.

Remark. It should be noted that the strain-energy (56) can be
also represented in the form

W ¼
X3

k¼1

Ck
�I1 � 3ð Þk þ jðJ � 1Þ2 (57)

where �I1 ¼ I1=J2=3; I1 ¼ trðCÞ being the first invariant of the right
Cauchy–Green strain tensor C and J ¼ detðFÞ. The enhanced
strain-energy function is given by Eq. (9). By evaluating the first
and second derivatives of �I1 and J with respect to the components
of C and by using the relation @w=@W ¼ exp �Wm=/mð Þ, the tan-
gent tensor D in Eq. (13) can be established according to

Dijkl ¼ 4
@2w

@Cij@Ckl
; i; j; k; l ¼ 1; 2; 3 (58)

from which Eqs. (15)–(18) follow.
The nylon fibers are assumed to be linearly elastic and isotropic

(although the HFGMC method allows combinations with one or
more different hyperelastic materials) with Young’s modulus and
Poisson’s ratio given by 2 Gpa and 0.4, respectively.

Let the rubberlike matrix be reinforced by unidirectional fibers.
The fibers are oriented in the X1-direction which is referred to as
the axial direction. The volume fraction of the fibers is chosen as
vf ¼ 0:05 which is characteristic of fiber-reinforced rubber. As in
the three verifications discussed above, the repeating unit cell has
been discretized into 36� 36 subcells appropriately dimensioned
to mimic a void in porous materials and a circular fiber in a fiber-
reinforced composite.

5.1 Perfect Bonding Between Fibers and Matrix. In
Figs. 6(a) and 6(b), the composite response to uniaxial stress load-
ing is shown by the macroscopic first Piola–Kirchhoff stress �T11

and global transverse deformation gradient �F22 against the global
axial deformation gradient �F11, respectively. As expected, the uni-
axial stress loading of the composite in the fibers direction gener-
ates a linear macroscopic response, since the fibers which are
much stiffer that the rubber matrix carries most of the loading.

Fig. 7 (a) Stress–deformation gradient response of the unreinforced matrix caused by the
application of a biaxial loading. (b) Macroscopic axial stress and (c) transverse stress against
deformation gradient of the nylon/rubberlike composite. The composite is subjected to equal
axial and transverse loading while keeping all other global stress components equal to zero.
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The failure of the composite occurs when the strain-energy in a
matrix subcell reaches the aforementioned critical value
wc ¼ 63:1 MPa at which �F11 ¼ 6:8. The value of the induced
stress within the fiber subcells at �F11 ¼ 6:8 is about 12 GPa. This
value far exceeds the ultimate stress of the nylon fibers which is in
the range of 80� 185 MPa. Hence, the fibers will be broken at a
strain of about 0.1, see Assaad and Arnold [23].

The composite response to uniaxial transverse stress loading
exhibits, on the other hand, an entirely different behavior which is
shown in Figs. 6(c) and 6(d). These two figures show the macro-
scopic first Piola–Kirchhoff transverse stress �T22 and deformation
gradient �F33 against the applied global transverse deformation
gradient �F22. The resulting much lower stress values up to failure
occurrence at �F22 ¼ 4:7 (where the strain-energy in a matrix
reaches its critical value) reflects the matrix deformation domi-
nance in the present type of loading. It is interesting to exhibit in
the present case of uniaxial transverse loading the resulting distri-
bution of the strain-energy w in the repeating unit cell
0 � Y2=H � 1; 0 � Y3=L � 1 at the failure point, where the criti-
cal value w ¼ 63:1 MPa is reached. This distribution is shown in

Fig. 6(e). It can be readily observed that the highest values of w
are detected in the same locations where the largest stress concen-
trations are expected. It should be noted that the induced stresses
within the fibers at the instant of failure do not reach their ultimate
stress value. Thus, the fibers remain intact when the first matrix
subcell fails.

Let us consider a biaxial loading of the composite in the axial
and transverse directions while keeping the stress in the other nor-
mal direction equal to zero (i.e., �T33 ¼ 0) as well all other shear
stresses. Figure 7(a) shows the stress behavior of the monolithic
(unreinforced) matrix to this type of loading. The critical failure
value wc ¼ 63:1 MPa occurs at F11 ¼ F22 ¼ 5 (rather than at 7.12
in the simple tension case). The corresponding composite
response to this type of loading is shown in Figs. 7(b) and 7(c).
These figures exhibit the macroscopic stresses �T11 and �T22 in the
axial and transverse directions. Here, the failure of a matrix sub-
cell occurs at �F11 ¼ �F22 ¼ 3:6 which is quite lower than the criti-
cal stretch of the unreinforced matrix. This lower value results
from the combined system of stresses which act on the matrix
advancing its initial failure.

Fig. 9 Stress–deformation gradient response of the nylon/
rubberlike composite to biaxial loading in both transverse
directions

Fig. 10 Axial response to off-axis unidirectional nylon/rubber-
like composite. The rotation h around three-direction denotes
the angle between the fibers (oriented in the one-direction) and
loading (applied in the X-direction).

Fig. 8 Biaxial loading of nylon/rubberlike composite. (a) Initial failure envelope in the plane
�F11 2 �F22. (b) Initial failure envelope in the plane �T11 2 �T22.
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It should be useful to generate initial failure envelopes when
the composite is subjected to a combined biaxial loading such that

D �F11 ¼ A cos x; D �F22 ¼ A sin x; 0 � x � p=2 (59)

where A is an amplitude value which incrementally increases until
failure in a matrix subcell occurs. Just like the previous case, the
macroscopic stress �T33 and all other shear stresses are kept equal
to zero. Figures 8(a) and 8(b) show the resulting initial failure
envelopes in the planes of the global deformation gradients
�F22 � �F11 and stresses �T22 � �T11, respectively. Additional two
points in these graphs have been added from axial and transverse
uniaxial stress loading cases. It should be noted that due to the
very strong directivity of the stress envelope shown in Fig. 8(b),
the scale ratio is taken as 1 : 40. Figure 8(b) well exhibits the
effect of reinforcement on the composite response in this type of
combined loading. The corresponding case of a combined loading
applied on the unreinforced rubber exhibits a circular envelope in
the stretch plane k1 � k2 of a radius of 7.12 [6].

Biaxial loading of the composite in both transverse directions,
i.e., �F22 ¼ �F33 (with the global stresses in all other directions are
kept equal to zero) reveals a quite different situation. The result-
ing equal macroscopic transverse stresses �T22 ¼ �T33 are shown in
Fig. 9. First failure of the matrix is seen to take place at

�F22 ¼ �F33 ¼ 1:75 which is quite low indicating that the ability of
the composite to sustain loading in this case is limited as com-
pared to the previous loadings.

The next illustration is presented in the case of off-axis loading.
Here, the material coordinates with respect to which the fibers of
the unidirectional composite are oriented in the one-direction, is
rotated around the three-direction by an angle h. As a result, a
new system of coordinates (X, Y, Z) is obtained such that Z¼X3.
A uniaxial stress loading is applied in the X-direction which is at
angle h with respect to the fibers direction. With respect to the ma-
terial coordinates, this results into a combined loading acting on
the composite. Referring to this new system of coordinates, the
composite is loaded by the application of the deformation gradient
�FXX, and all components of the stress TX, referred to the new
coordinate system, are kept equal to zero (except of course �TXX).
In particular, h ¼ 0 deg and 90 deg correspond to axial and
transverse uniaxial stress loading, respectively, that have been
discussed in Fig. 6. Figure 10 shows the resulting response to off-
axis uniaxial stress loading at various off-axis angles h. The end
point in every curve corresponds to the failure of the first matrix
subcell. It can be observed that initial failure can be delayed by
increasing the off-axial angle but with lower ability to sustain
high stresses. Multidirectional reinforcements by lamination
would improve of course the composite effectiveness.

Fig. 11 Nylon/rubberlike composite in the presence of imperfect bonding of
rN 5 rT 5 531026 m=MPa. (a) Stress–deformation gradient response of the nylon/rubberlike
composite to uniaxial stress loading in the fibers direction and (b) the induced deformation
gradient in the transverse direction. (c) Stress–deformation gradient response of the compos-
ite to uniaxial stress loading in the transverse direction and (d) the induced deformation gradi-
ent in the other transverse direction.
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5.2 Imperfect Bonding Between Fibers and Matrix. The
previous results were generated by assuming that perfect bonding
between the fibers and rubberlike matrix constituents exists (i.e.,
rN ¼ rT ¼ 0 in Eqs. (38) and (39)). In the following, results are
given in the case of a weak bonding caused by manufacturing,
thermal treatment, fabrication process, or during service. In
Fig. 11, the response of the composite to uniaxial stress loading in
the axial and transverse directions is shown by assuming that the
compliance parameters are: rN ¼ rT ¼ 5� 10�6 m=MPa. This
figure is the counterpart of Fig. 6 with perfect bonding. A compar-
ison between the two figures reveals that this degree of imperfec-
tion caused a tremendous deterioration of the composite’s
reinforcing capability. The failure of the composite loaded in fiber
direction reduced both global deformation gradient and macro-
scopic stress by about 0.5. It should be noted that here too, the ny-
lon fibers would reach their ultimate stress at a strain of about 0.1.
In the uniaxial transverse loading case, the reductions of deforma-
tion gradient and stress with respect to the perfect bonding case
are about 0.5 and 0.2, respectively. This implies that the effect of
imperfect bonding in this case is more severe.

The corresponding to the initial failure envelopes that were
shown in Fig. 8 are given in the present case in Fig. 12. These
envelopes have been generated by applied a series of biaxial load-
ing in the axial and transverse directions, Eq. (59), with vanishing
other stress components. As in Fig. 8, two additional points were
taken from the previous axial and transverse loading cases. A
comparison of this figure with Fig. 8 illustrates the effect of the
present degree of imperfection on the composite response.

Finally, it should be emphasized that the stress–strain response
for perfect and imperfect bonding is different not only quantita-
tively but also qualitatively. Indeed, the bottom left curve in
Fig. 6 is typical of rubber behavior because it exhibits stiffening
(due to unfolding of long molecules). Thus, the rubber dominates
the deformation. To the contrary, the bottom left curve in Fig. 11
is much straighter because the interface compliance affects the de-
formation significantly.

6 Conclusions

By the incorporation of hyperelastic strain-energy functions
with limiters with the finite strain HFGMC micromechanical
method, macroscopic constitutive equations which govern the
behavior of composites undergoing large deformations have been
established. The resulting micromechanical analysis is capable of

predicting the onset of local loss of static stability in the hypere-
lastic constituent which leads to the composite initial failure. Fail-
ure initiation is based on the critical value of the strain-energy
function to which the local strain-energy is approached. Various
types of loading have been examined and initial failure envelope
has been presented. In addition, the capability of modeling weak
bonding between fibers and matrix has been included, and the
resulting effect on the composite response and initial failure enve-
lope has been illustrated.

It should be emphasized that HFGMC method does not only
predicts the effective moduli of linearly elastic composites and
establishes the macroscopic constitutive equations of composites
undergoing large deformations, but it also provides the field distri-
bution in the entire repeating unit cell (e.g., Fig. 6(e)). This distri-
bution enables in the present problems the monitoring of the
strain-energy function w and its growth at each location to its criti-
cal value. The first location at which the critical value is reached
indicates the loss of static stability and failure initiation.

Generalizations of the present methodology to the analysis of
composite plate and shells that are composed of softening hypere-
lastic materials reinforced in various orientations are possible. In
such generalizations, the micromechanically established macro-
scopic constitutive equations are applied at every integration point
of a finite element analysis.

Biological tissues form multiphase composites which are com-
posed of various types of hyperelastic constituents. The arterial
wall, for example, consists of intima, media, and adventitia layers
which can be modeled as distinct hyperelastic materials, for exam-
ple, see Gasser et al. [24]. Standard hyperelastic energy functions
have been incorporated with the finite strain HFGMC method and
then coupled to a finite element solver by Kim [25] and Kim et al.
[26] to investigate the behavior of various tissue materials including
the human arterial wall layers and porcine aortic valves leaflets.
Such an investigation can be extended to incorporate hyperelastic
energy functions with limiters to be applied for the establishment of
the macroscopic constitutive equations and for the prediction of
failure initiation in this type of composite materials. In the case of
monolithic (unreinforced) biological materials, failure prediction
has been implemented by Volokh [7] and Balakhovsky et al. [27].
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Fig. 12 Biaxial loading of nylon/rubberlike composite in the presence of imperfect bonding
of rN 5 rT 5 5310�6 m=MPa. (a) Initial failure envelope in the plane �F112�F22. (b) Initial failure
envelope in the plane �T112�T22.
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