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a b s t r a c t

In this article we couple the previously developed theory of elasticity with energy limiters for modeling
material failure with a description of thermal processes. We present a generalized formulation of the
thermoelasticity with energy limiters. We illustrate the new theory via the analytically tractable
example of uniaxial tension. The theory predicts the existence of the thermoelastic inversion point
observed in experiments. Besides, it predicts the experimentally observed stiffening of rubberlike
materials under heating. We find above all that the tensile strength increases as a result of the stiffening
while the critical rupture stretch is almost unaffected by heating. It is hoped that the developed coupled
theory can be useful for modeling failure in rubberlike solids.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Continuum thermodynamics has a long history yet its formula-
tion is still open to debate [11,21,22,13,29,12,15,7]. We will not
participate in the debate, however. Instead, we will consider the
simplest formulation that couples thermal and mechanical pro-
cesses in the course of large deformations of rubberlike solids. The
latter theory of non-linear thermoelasticity was pioneered by
Chadwick [3] and further considered in Refs. [4,16,14,9,1,17], for
example.

The existing theories of thermo-mechanics of rubberlike solids
consider the intact material behavior, in which the deformation
description does not incorporate mechanical failure. However, real
materials do fail and their constitutive equations should include a
description of failure. In the context of purely mechanical defor-
mation without thermal coupling a very simple account of
material failure in the constitutive laws was proposed in a series
of recent publications: [23,24,25,27,28]. The basic idea was to
introduce an energy limiter in the expression for strain energy.
Such limiter enforces saturation – the failure energy – in the strain
energy function, which indicates the maximum amount of energy
that can be stored and dissipated by an infinitesimal material
volume during rupture. The limiter induces stress bounds in the
constitutive equations automatically.

The mentioned approach of elasticity with energy limiters does
not include the thermo-mechanical coupling. The purpose of the
present work is to fill this gap and propose a variant of the non-
linear thermoelastic formulation with energy limiters. It is worth
emphasizing that such formulation is by no means unique and the

present one can be seen as a starting point. This new formulation
is given in Section 3 after a brief review of non-linear thermo-
elasticity in Section 2. Then the account of thermoelastic incom-
pressibility is given in Section 4. The latter issue was considered
more or less implicitly in the previous literature and it is reason-
able, perhaps, to introduce it explicitly and separately. In Sections
5 and 6 respectively we further specialize the constitutive model
and apply it to the problem of homogeneous uniaxial tension that
is tractable analytically. Discussion in Section 6 summarizes
the work.

We mention, finally, that the developed theory predicts the
existence of the thermoelastic inversion point observed in experi-
ments. Besides, it predicts the experimentally observed stiffening
of rubberlike materials under heating. Remarkably, we find that
the tensile strength increases as a result of the stiffening while the
critical stretch of rupture is almost unaffected by heating. It is
hoped that the developed coupled theory can be useful for
modeling failure in rubberlike solids.

2. Basic finite thermoelasticity

Material point that occupies position x in the reference con-
figuration moves to position yðxÞ in the current configuration of a
deformable body Ω. Deformation in the vicinity of the material
point is described by the deformation gradient tensor

F¼Grad y: ð2:1Þ
The linear and angular momentum balance take the following
forms accordingly:

Div Pþb¼ ρ a; ð2:2Þ
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PFT ¼ FPT ; ð2:3Þ
where the divergence operator is calculated with respect to
referential coordinates x; P is the 1st Piola–Kirchhoff stress tensor;
b is the body force pure unit reference volume; and ρ and a are the
referential mass density and acceleration vector correspondingly.

Balance of linear momentum on the body surface ∂Ω reads

Pn¼ t; ð2:4Þ
where t is a prescribed traction per unit area of the reference
surface with the unit outward normal n.

Alternatively to (2.4) a surface boundary condition can be
imposed on placements

y¼ y; ð2:5Þ
where the barred quantity is prescribed on the surface ∂Ω.

Initial conditions are

yðt ¼ 0Þ ¼ y0; vðt ¼ 0Þ ¼ v0; ð2:6Þ
where v is the velocity vector and y0 and v0 are prescribed in Ω.

Equation of the energy balance takes form

_e¼ P : _F�Div QþR; ð2:7Þ
where e is the internal energy per unit reference volume; Q is the
Piola–Kirchhoff heat flux; and R is a heat source.

Instead of the internal energy we use the Helmholtz free
energy per unit reference volume

ψ ðF;θÞ ¼ e�θη; ð2:8Þ
where η is the entropy per unit reference volume and θ is the
absolute temperature.

Differentiating (2.8) with respect to time we obtain

∂ψ
∂F

: _Fþ∂ψ
∂θ

_θ¼ _e� _θη�θ _η: ð2:9Þ

Substitution of the rate of the internal energy from (2.9) into (2.7)
yields the energy balance in the form

θ _η¼ ðP�∂ψ
∂F

Þ : _F�ðηþ∂ψ
∂θ

Þ _θ�Div QþR: ð2:10Þ

Let us restrict further considerations by the following general
constitutive laws:

P¼ ∂ψ
∂F

; ð2:11Þ

η¼ �∂ψ
∂θ

: ð2:12Þ

We note that in this case the entropy rate is

_η¼ � ∂2ψ
∂θ ∂F

: _F�∂2ψ

∂θ2
_θ: ð2:13Þ

Substitution of (2.11)–(2.13) in (2.10) finally yields

c _θ¼ �Div Qþθ
∂2ψ
∂θ ∂F

: _FþR; ð2:14Þ

where

c¼ �θ
∂2ψ

∂θ2 40; ð2:15Þ

is the specific heat capacity.
Balance of energy on the body surface ∂Ω reads

�Qn¼ q; ð2:16Þ
where q is a prescribed heat flux through the unit area of the
reference surface.

Alternatively to (2.16) a surface boundary condition can be
imposed on temperature

θ¼ θ: ð2:17Þ

Initial condition on the temperature might be necessary for the
transition processes

θðt ¼ 0Þ ¼ θ0; ð2:18Þ
where θ0 is prescribed in Ω.

To complete the boundary value problem it remains to for-
mulate the heat conduction equation in the Duhamel form, for
example,

Q ¼ � J F�1κF�TGrad θ; ð2:19Þ
where J ¼ detF and κ is the spatial thermal conductivity tensor.

We note that (2.19) is a generalization of the Fourier's consti-
tutive law of heat conduction – see, for example, Holzapfel [9].

We note also that the second law of thermodynamics (in the
Clausius–Planck form) requires the thermo-elastic processes to
obey the following constraints:

D¼ P : _F� _ψ�η _θZ0; ð2:20Þ

Q UGrad θr0: ð2:21Þ
The first constraint – the dissipation inequality – is obeyed by
constitutive laws (2.11)–(2.12). The second constraint is obeyed by
constitutive law (2.19) in which the spatial thermal conductivity
tensor is positively definite.

3. Finite thermoelasticity with energy limiters

In this section, we incorporate a failure description in the non-
linear thermoelasticity by using energy limiters. We start with one
energy limiter. In this case the Helmholtz free energy per unit
reference volume takes form

ψ ðF;θ;αÞ ¼ψ f �HðαÞ ψ teðF;θÞ; ð3:1Þ

ψ f ¼ψ teð1;θ0Þ; ð3:2Þ

ψ teðF;θÞ-0; when‖F;θ‖-1; ð3:3Þ
where ψ f and ψ teðF;θÞ designate a constant bulk failure energy
and a thermoelastic free energy respectively; HðzÞ is a unit step
function, i.e. HðzÞ ¼ 0 if zo0 and HðzÞ ¼ 1 otherwise; 1 is a second-
order identity tensor; and ‖F;θ‖¼ F : Fþθ2, for example.

The switch parameter αAð�1;0� is defined by the evolution
equation

_α¼ �Hðε�ψ te=ψ f Þ; αðt ¼ 0Þ ¼ 0 ð3:4Þ
where 0oεoo1 is a dimensionless precision constant.

The physical interpretation of (3.1)–(3.4) is straight: material
response is thermoelastic as long as the free energy is below its
limit, ψ f . When the limit is reached, then the free energy remains
constant for the rest of the deformation process, thereby making
material healing impossible. Parameter α is not an internal
damage variable (like in damage mechanics) and it functions as
a switch: if α¼ 0 the process is thermoelastic, and if αo0, the
material is irreversibly damaged and the thermoelastic energy is
dissipated.

In presence of the switch parameter α, the free energy incre-
ment reads

_ψ ðF;θ;αÞ ¼ ∂ψ
∂F

: _Fþ∂ψ
∂θ

_θþ∂ψ
∂α

_α: ð3:5Þ

The last term in (3.5) can be calculated based on (3.1)

∂ψ
∂α

_α¼ �δðαÞ _αψ te; ð3:6Þ

where δðαÞ is the Dirac delta.
We notice that (3.6) in fact vanishes for all values of α. The case

of αa0 follows immediately from the definition of Dirac's delta. In
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the case of α¼ 0, we note that the relation α¼ R
_α dt ¼ 0 along

with the definition of _α as a step function imply _α� 0 since a non-
positive integrand must be identically zero for the integral to
vanish.

Thus, we have

∂ψ
∂α

_α¼ �δðαÞ _αψ te ¼ 0; ð3:7Þ

and all formulae presented in the previous section remain valid
and do not require corrections concerning the switch parameter.

In order to enforce the energy limiter in the free Helmholtz
energy function, we use the following expression for thermoelastic
free energy:

ψ teðF;θÞ ¼Φm�1Γðm�1;WmðF;θÞΦ�mÞ; ð3:8Þ
where Γðs; xÞ ¼ R1

x ts�1e� tdt is the upper incomplete gamma
function; WðF;θÞ is the thermoelastic free energy of intact (with-
out failure) material;Φ is the energy limiter, which is calibrated in
macroscopic experiments; and m is a dimensionless material
parameter, which controls sharpness of the transition to material
failure on the stress–strain curve. Increasing or decreasing m it is
possible to simulate more or less steep ruptures of the internal
bonds accordingly.

The failure energy can be calculated via (3.2) as follows:

ψ f ¼Φm�1Γðm�1;Wmð1;θ0ÞΦ�mÞ: ð3:9Þ

Substitution of (3.8)–(3.9) in (3.1) and (2.9)–(2.10) yields

P¼ �HðαÞ∂ψ te

∂F
¼ expð�WmΦ�mÞHðαÞ∂W

∂F
; ð3:10Þ

η¼HðαÞ∂ψ te

∂θ
¼ �expð�WmΦ�mÞHðαÞ∂W

∂θ
: ð3:11Þ

For the sake of illustration and for the mechanical process at
the room temperature we mention the following specialization of
(3.10) for a filled Natural Rubber (NR) vulcanizate [30,22]

W ¼
X3
k ¼ 1

ckðI1�3Þk; I1 ¼ F : F; J ¼ 1; m¼ 10; ð3:12Þ

where c1 ¼ 0:298 MPa, c2 ¼ 0:014 MPa, c3 ¼ 0:00016 MPa,
Φ¼ 82:0 MPa.

The Cauchy stress (σ¼ J�1PFT )–stretch curve for the NR model
described by (3.9) and (3.12) is shown in Fig. 1, where also the
results are shown for the intact model (Φ-1). Material failure
occurs at the limit point at critical stretch λcr ¼ 7:12 in accordance
with experimental data by Hamdi et al. [8].

Consequences of the elasticity with energy limiters formulation
are reviewed in [27]. Here, we only mention two theoretical

predictions that can be compared to the experimental data.
Fig. 2a presents the critical failure stretches in a thin sheet of NR
undergoing biaxial tension with different biaxiality ratios. Predic-
tions based on the softening hyperelasticity model are compared
to the reported test results. The theoretical model was calibrated
in uniaxial tension discussed above and somewhat lower critical
stretches in equal biaxial tension are expected in view of the high
imperfection sensitivity of the experiments. Fig. 2b presents a
cross-section of a natural rubber specimen in the “poker-chip” test
[6]. The cut was done at the hydrostatic tension of �2.7 MPa. The
grown spherical cavities are visible. Softening hyperelasticity
model [26] predicts the onset of instability and growth of the
microscopic pre-existing cavities at the hydrostatic tension of
�2.4 MPa. Both comparisons with the experimental data encou-
rage the use of the methods of energy limiters.

In the case where more than one energy limiter is necessary
[28] the free energy function can be split into a sum as follows:

ψ ¼
XN
n ¼ 1

ψn; ð3:13Þ

ψnðF;θ;αnÞ ¼ψ f ;n�HðαnÞ ψ te;nðF;θÞ; ð3:14Þ

_αn ¼ �Hðεn�ψ te;n=ψ f ;nÞ; αnðt ¼ 0Þ ¼ 0; ð3:15Þ

where the nth component represents a constituent, characteristic
direction etc.

We note that according to (3.13)–(3.15) failure of the nth
constituent does not lead to overall failure.

It is possible to modify the formulation in such a way that
failure of any constituent will lead to the overall failure. This can
be achieved for instance as follows:

ψ ¼
XN
n ¼ 1

βnψn; βn ¼ ∏
N

j ¼ 1
ja n

HðαjÞ; ð3:16Þ

Therefore, we can derive the corresponding constitutive equa-
tions

P¼ � ∏
N

j ¼ 1
HðαjÞ

XN
n ¼ 1

∂ψ te;n

∂F
; ð3:17Þ

η¼ ∏
N

j ¼ 1
HðαjÞ

XN
n ¼ 1

∂ψ te;n

∂θ
: ð3:18Þ

Remark 1

We note that the account of dissipation via step function is
necessary when the material unloading is sound as in the case of
crack propagation, for example. Otherwise, the step function can
be dropped from equations.

4. Thermoelastic incompressibility

In this section, we discuss the thermoelastic incompressibility
constraint. The assumption of thermoelastic incompressibility can
be written in the following form:

J ¼ detF¼ gðθÞ; ð4:1Þ

gðθ0Þ ¼ 1; ð4:2Þ
which means that material is incompressible in the reference state
and all volumetric changes are produced by the temperature
alterations.

2 4 6 8 10 12
0

100

200

300

400

λ

σ

Fig. 1. Cauchy stress [MPa] versus stretch in uniaxial tension of NR: dashed line
designates the intact model; solid line designates the model with energy limiter.
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The time increment of this constraint takes form

∂g
∂θ

_θ� J F�T : _F¼ 0: ð4:3Þ

Here multipliers ∂g=∂θ and � J F�T represent workless entropy
and stress accordingly, which can be scaled by arbitrary factor Π.
With account of (4.3) we modify constitutive Eqs. (2.11) and (2.12)
as follows:

P¼ ∂ψ
∂F

� J F�TΠ; ; ð4:4Þ

η¼ �∂ψ
∂θ

þ∂g
∂θ
Π: ð4:5Þ

For example, a general non-linear constraint obeying (4.2) can be
defined as

g¼ exp½3γ0ðθ�θ0Þ�; ð4:6Þ

∂g
∂θ

¼ 3γ0exp½3γ0ðθ�θ0Þ�; ð4:7Þ

where γ0 is a constant thermal expansion coefficient.
We note finally that the explicit notion of thermoelastic

incompressibility is useful for analytical solutions of boundary
value problems. When a numerical solution is required the
thermoelastic incompressibility should be handled by different
approaches. For example, it can be penalized by large bulk
modulus and the like.

4.1. Remark 2

Chadwick and Scott [5] found that one of four solutions for the
problem of the propagation of a plane acoustic wave in a
constrained thermoelastic material was physically unreasonable.
Based on this observation the authors concluded that the whole
theory of constrained thermoelasticity was questionable. Such a
conclusion is open to debate. Among formal mathematical solu-
tions there can always be physically unreasonable and they should
be filtered out. The classical example in solid mechanics is a
solution for axisymmetric bending of a thin circular plate. When
solved in polar coordinates the bi-harmonic equation describing
the plate bending possesses a singular solution (logarithmic
singularity). This solution is filtered out and not the theory
underlying it.

It is interesting to note that Scott [18] reformulated the
constrained thermoelastic theory in order to exclude the physi-
cally unreasonable solution in advance. It was remarkable that the
revised formulation, based on the deformation-entropy constraint,
allowed for only three (instead of four) solutions of the coupled
problem. Unfortunately, the revised formulation required aban-
doning the natural use of the temperature in the thermoelastic
constraint. The latter price (in the present author's opinion) is
probably too high to be paid for filtering out the physically
unreasonable solution.

5. Model specialization

In this section, we specialize a coupled constitutive model with
energy limiter for natural rubber vulcanizate. Thermoelastic free
energy is defined as

ψ te ¼ 0:1Φ Γð0:1;W10 Φ�10Þ; ð5:1Þ

W ¼ θ
θ0

X3
k ¼ 1

ckðI1�3Þkþc0 θ�θ0�θ ln
θ
θ0

� �
; ð5:2Þ

where c1 ¼ 0:298 MPa, c2 ¼ 0:014 MPa, c3 ¼ 0:00016 MPa,
Φ¼ 82:0 MPa from the purely mechanical model described above
and c0 is a positive and constant specific heat capacity.

The derivatives of the Helmholtz free energy can be calculated
now

∂ψ
∂F

¼ 2HðαÞexp �Wm

Φm

� �
θ
θ0

ðc1þ2c2ðI1�3Þþ3c3ðI1�3Þ2ÞF; ð5:3Þ

∂ψ
∂θ

¼ �HðαÞexp �Wm

Φm

� �
1
θ0

X3
k ¼ 1

ckðI1�3Þk�c0 ln
θ
θ0

 !
; ð5:4Þ

∂2ψ
∂θ ∂F

¼ 2HðαÞ c1þ2c2ðI1�3Þþ3c3ðI1�3Þ2
n o

exp �Wm

Φm

� �

� 1
θ0

1�θ
mWm�1

Φm
1
θ0

X3
k ¼ 1

ckðI1�3Þk�c0 ln
θ
θ0

 !( )
F;

ð5:5Þ

Fig. 2. (a) Critical failure stretches in biaxial tension for natural rubber and (b) grown cavities in the poker-chip test.
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∂2ψ

∂θ2 ¼HðαÞexp �Wm

Φm

� �
1
θ

c0þ
mWm�1

Φm
1
θ0

X3
k ¼ 1

ckðI1�3Þk�c0 ln
θ
θ0

 !2
8<
:

9=
;:

ð5:6Þ
Thus, constitutive Eqs. (4.4)–(4.5) accounting for thermoelastic
incompressibility take forms

P¼ 2HðαÞexp �Wm

Φm

� �
θ
θ0

ðc1þ2c2ðI1�3Þþ3c3ðI1�3Þ2ÞF� J F�TΠ;

ð5:7Þ

η¼HðαÞexp �Wm

Φm

� �
1
θ0

X3
k ¼ 1

ckðI1�3Þk�c0 ln
θ
θ0

 !
þ∂g
∂θ
Π: ð5:8Þ

We further assume that the spatial thermal conductivity tensor is
spherical for isotropic material

κ¼ κ0ðθÞ1; ð5:9Þ

where κ0ðθÞ is a scalar thermal conductivity.
Consequently, the constitutive equation of heat conduction

(2.19) takes form

Q ¼ � Jκ0 ðFTFÞ�1Grad θ: ð5:10Þ

6. Uniaxial tension

We consider uniaxial tension without heat sources (R¼ 0) and
with spatially homogeneous temperature and deformations fields.
The latter notion has strong implications. Indeed, in the absence of
spatial gradient of the temperature field: Grad θ¼ 0; there is no
heat flux

Q ¼ 0: ð6:1Þ

In this case the energy balance Eq. (2.10) reduces to

_η¼ 0; η¼ constant: ð6:2Þ

Assuming also that the body and inertia forces vanish and with
account of the homogeneous deformation field we conclude that
the first Piola–Kirchhoff stress is also homogeneous. Indeed, the

deformation can be written as follows:

F¼ λ e1 � e1þðJ=λÞ1=2ðe2 � e2þe3 � e3Þ; ð6:3Þ
where λ is the axial stretch and f e1; e2; e3g are Cartesian base
vectors.

Then, we obtain

I1 ¼ λ 2þ2J=λ; ð6:4Þ
and the constitutive equation for stresses (5.7) takes form

P1 ¼ 2exp �Wm

Φm

� �
θ
θ0

c1þ2c2ðλ 2þ2J=λ�3Þ�
þ3c3ðλ 2þ2J=λ�3Þ2Þλ�Π

J
λ

P2 ¼ P3 ¼ 2exp �Wm

Φm

� �
θ
θ0

ðc1þ2c2ðλ 2þ2J=λ�3Þ

þ3c3ðλ 2þ2J=λ�3Þ2ÞðJ=λÞ1=2� JΠðJ=λÞ�1=2; ð6:5Þ
where Pis are the axial (and principal) components of the 1st
Piola–Kirchhoff stress tensor and the free energy of the intact
material is

W ¼ θ
θ0

X3
k ¼ 1

ckðλ 2þ2J=λ�3Þkþc0 θ�θ0�θ ln
θ
θ0

� �
: ð6:6Þ

We note that we do not consider unloading in this section and,
thus, the step function is dropped from the equations for the sake
of simplicity.

Since the lateral stresses vanish in uniaxial tension we can find
the Lagrange parameter Π by equating (6.5)2 to zero

Π ¼ 2
λ
exp �Wm

Φm

� �
θ
θ0

½c1þ2c2ðλ 2þ2J=λ�3Þþ3c3ðλ 2þ2J=λ�3Þ2�:

ð6:7Þ
Then, substituting the found Lagrange parameter in (6.5)1 we

obtain

P ¼ P1 ¼ 2exp �Wm

Φm

� �
θ
θ0

ðc1þ2c2ðλ 2þ2J=λ�3Þ

þ3c3ðλ 2þ2J=λ�3Þ2Þ λ� J

λ2

� �
; ð6:8Þ

or in terms of Cauchy stress

σ ¼ λ
J
P: ð6:9Þ

In the limit case of θ¼ θ0 we obtain J ¼ gðθ0Þ ¼ 1 and the stress–
stretch curve (6.9) is presented in Fig. 1.

The constitutive equation for entropy (5.8) takes the following
form, with account of (6.7),

η¼ exp �Wm

Φm

� �(
1
θ0

X3
k ¼ 1

ckðλ 2þ2J=λ�3Þk�c0 ln
θ
θ0

þ3γ0exp½3γ0ðθ�θ0Þ�
2
λ
θ
θ0

½c1þ2c2ðλ 2þ2J=λ�3Þ

þ3c3ðλ 2þ2J=λ�3Þ2�g: ð6:10Þ
We further specify thermal constants as follows:

θ0 ¼ 293:15 ½K� ð20 3CÞ; γ0 ¼ 22:333U10�5 ½1=K�;
c0 ¼ 2:2 ½MPa=K�: ð6:11Þ
Fixing entropy in (6.10) it is possible to find the relationship between
stretches and temperature. Such a relationship is shown graphically in
Fig. 3. The entropy magnitude was set η¼ 0:399314 ½KPa=K� to fit the
room temperature to the reference state without stretches.

It is interesting to observe in Fig. 3 the appearance of the
thermoelastic inversion point at λinv ¼ 1:062 which was first
discovered experimentally by Joule [10]. Though comparison
of Joule's results with the theoretical prediction is very

Fig. 3. Temperature versus stretch for constant entropy: thermoelastic inversion
point at λinv ¼ 1:062; filled squares show the Joule experimental data (taken from
[9]).
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encouraging it should not be overstated. Indeed, to calibrate the
theoretical model we used the experimental data for material
from Hamdi et al. [8] while Joule, most likely, used a different
material.

Now, fixing temperature in (6.8)–(6.9) it is possible to find the
relationship between stresses and stretches. Such relationships are
shown graphically in Fig. 4 for varying temperature.

It is readily seen in Fig. 4 that heating leads to material
stiffening. This effect is well-known experimentally and its
mechanism is related to rotations of bonds and molecular con-
formations at the microscopic level: Anthony et al. [2]; Treloar
[20]; Chadwick [3]; Saccomandi and Ogden [17]. As a result of the
stiffening, we observe the increase of the tensile strength – the
limit points in Fig. 4. While the strength increases the correspond-
ing critical stretch is almost constant. No experiments are known
to us which consider strength under heating. It is reasonable to
assume, nevertheless, that the critical stretch related to the length
of unfolded molecular chains should not be affected by heating. It
is hoped that the mentioned predictions concerning the strength
alterations will encourage and guide experiments.

7. Concluding remarks

In the present work, we developed a new formulation of the
constitutive equations for finite thermoelasticity of rubberlike
solids. The main feature of this formulation is an account of failure
processes via introduction of energy limiters in the Helmholtz free
energy function. The introduction of the energy limiters gives a
natural way to bound the thermoelastic energy that a material
volume can store and dissipate. The latter also automatically limits
stresses that can develop at a material point and, therefore,
suppresses unphysical singularities typical of the traditional for-
mulations of solid mechanics.

We extended a sample constitutive model with failure (that
was experimentally calibrated for both intact deformation and
rupture at the room temperature) to the thermoelastic range.
Considering the uniaxial tension problem with heating we found
that the model can reproduce the experimentally observed phe-
nomenon of the thermoelastic inversion point and also it repro-
duces stiffening under the temperature increase. Besides, we
found that the stiffening leads to the increase of the tensile
strength while the rupture stretch practically does not change.
No experimental data is available (to the best of our knowledge)
yet on the latter issue while this theoretical finding is, probably,
intuitively reasonable. Indeed, the stiffening is a result of the

changing conformations of molecular chains that can be affected
by heating. Rupture, on the other hand, is caused by the straigh-
tening of molecular chains whose unfolded length is not expected
to alter under heating. Thus, the critical stretch of rupture does not
change while the critical stress (strength) does.

We should note finally that the thermo-mechanical coupling
might also have a regularizing effect on computer simulations of
crack propagation where bulk failure tends to localize in thin
bands. In the purely mechanical setting the failure may localize
into zones whose thickness is dictated by the characteristic size of
the spatial discretization – “mesh sensitivity” (e.g. [19]). Thus, the
mesh size might affect the solution of a physical problem. That is
undesirable, of course. In the case of thermoelastic coupling,
however, the energy balance equation may create a regularization
effect as long as heat flows. From the mathematical standpoint, the
term with the divergence of the heat flux increases the order of
the differential equations and allows for a solution of the
boundary-layer type. Such boundary layer can naturally introduce
the thickness of the localized damage zone (the crack). Impor-
tantly, the heat flux is still possible when the material failure
process is already active. This circle of problems is very interesting
yet requires numerical simulations that would go well beyond the
scope of the present work.
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The sign of the second term on the right-hand side of Eq. (4.5) should be reversed:
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The sign of the right-hand side of Eqs. (5.4), (5.6), (5.8) and (6.10) should be reversed and the second term in the braces should be
multiplied by θ in Eq. (5.6):
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The latter correction means that the graph in Fig. 3 is generated for the entropy ⎡⎣ ⎤⎦η = − 0.399314 K Pa/K .
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