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Abstract Aneurysm formation and growth is accompanied
by microstructural alterations in the arterial wall. Particu-
larly, the loss of elastin may lead to tissue disintegration and
appearance of voids or cavities at the micron scale. Unstable
growth and coalescence of voids may be a predecessor and
trigger for the onset of macroscopic cracks. In the present
work, we analyze the instability of membrane (2D) and bulk
(3D) voids under hydrostatic tension by using two experi-
mentally calibrated constitutive models of abdominal aortic
aneurysm enhanced with energy limiters. The limiters pro-
vide the saturation value for the strain energy, which indi-
cates the maximum energy that can be stored and dissipated
by an infinitesimalmaterial volume.We find that the unstable
growth of voids can start when the critical stress is consider-
ably less than the aneurysm strength. Moreover, this critical
stressmay even approach the arterialwall stress in the physio-
logical range. This finding suggests that cavitation instability
can be a rational indicator of the aneurysm rupture.

Keywords Aneurysm · Rupture · Instability · Cavitation

1 Introduction

Aneurysms are abnormal dilatations of vessels in the vascular
system, and they exist in two major forms such as fusiform
and saccular. Fusiform aneurysms are found in the human
abdominal aorta. Saccular aneurysms are found in cere-
bral blood vessels. The Brain Aneurysm Foundation (http://
www.bafound.org/) reports that two in 100 people in United
States have an unruptured brain aneurysm, and the annual
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rate of rupture is about 8–10 per 100,000 people. Ruptured
brain aneurysms are fatal in about 40% of cases. Of those
who survive, about 66% suffer some permanent neurologi-
cal deficit. Similarly, abdominal aortic aneurysm (AAA) is
found in∼2% of the elderly population, with∼150,000 new
cases diagnosed each year, and the occurrence is increasing
(Bengtsson et al. 1996; Ouriel et al. 1992). In many cases,
AAA gradually expands until rupture causing a mortality
rate of 90%. The AAA rupture is considered the 13th most
common cause of death in United States (Patel et al. 1995).

Medical doctors consider a surgery option for enlarging
AAA, for example, when its maximum diameter reaches
5.5cm and/or expansion rate is >1cm per year. These sim-
plistic geometrical criteria may underestimate the risk of
rupture of small aneurysms as well as overestimate the risk
of rupture of large aneurysms. Biomechanical approaches
to modeling aneurysm evolution are needed and developed,
Watton et al. (2004), Baek et al. (2006), Kroon and Holzapfel
(2007), Chatziprodromou et al. (2007), Watton et al. (2009),
Figueroa et al. (2009), Watton and Hill (2009), Schmid et al.
(2010) and Martufi and Gasser (2012) to list a few. Most
theories consider the processes of growth and remodeling
while the local failure criteria are assumed to be imposed
on the results of stress analysis in the spirit of strength-of-
materials approach. Alternatively, it is proposed to incorpo-
rate a failure description directly in the constitutive equations
of both healthy arteries and aneurysms, Volokh (2008a, b,
2010a, 2011a), Volokh and Vorp (2008), Balakhovsky et al.
(2014).

Despite the variety of biomechanical models of aneurysm
evolution, we still cannot predict rupture. The main reason
for that is probably the difficulty in in vivo experimental
calibration of theories. This difficulty is obvious and widely
appreciated. Less appreciated is the necessity to comprehend
possible mechanisms of aneurysm rupture. These mecha-
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nisms are not evident, and they need to be uncovered. For
example, mechanical strength of aneurysms is rather close
to the strength of healthy arteries (∼1.2 MPa) for various
arterial locations in human beings and animals (Humphrey
2002; Holzapfel and Ogden 2009; Pierce et al. 2015). The
strengths’ closeness is truly remarkable because aneurysms
undergo significant morphological changes as compared to
healthy artery (Vorp 2007; Humphrey and Holzapfel 2012).
Intuitively, it is possible to explain the strengths’ closeness
by the fact that the ultimate stress is controlled by collagen
fibers that are present in both aneurysms and healthy arteries.
In summary, one cannot claim that the aneurysm rupture is
a result of a dramatic decrease in its strength as compared to
the healthy arterial wall. In the absence of strength decrease,
we should examine failure scenarios related to the presence
of small defects.

It is realistic to assume that the healthy arterial wall does
not have pronounced defects while the diseased one does.
Such defects in the form of voids can appear at the micron
scale, for example, when elastin degrades. It is reasonable
to assume that the degradation of elastin is accompanied by
microstructural rearrangements leaving very small cavities.
Such cavities can grow and coalesce in big cavities and, ulti-
mately, in macroscopic cracks. The purpose of the present
work was to examine the expansion of small voids in AAA
material. Particularly, we analyze the instability of mem-
brane (2D) and bulk (3D) voids under hydrostatic tension
by using two experimentally calibrated AAA constitutive
models enhanced with energy limiters. The limiters provide
the saturation value for the strain energy, which indicates
the maximum energy that can be stored and dissipated by
an infinitesimal material volume. We find that the unstable
growth of voids can start when the critical stress is consider-
ably less than the aneurysm strength. Moreover, this critical
stressmay even approach the arterialwall stress in the physio-
logical range. This finding suggests that cavitation instability
can be a rational indicator of the aneurysm rupture.

2 Hyperelasticity with energy limiters

A variant in the continuum description of bulk failure—
softening hyperelasticity or elasticity with energy limiters—
was developed by Volokh (2007, 2010b, 2013, 2014). Soft-
ening hyperelasticity is dramatically simpler in formulation
than any existing approach for modeling material failure: its
basic idea is to introduce an energy limiter in the expression
for strain energy. Such limiter enforces saturation—the fail-
ure energy—in the strain energy function, which indicates
the maximum amount of energy that can be stored and dis-
sipated by an infinitesimal material volume during rupture.
The limiter induces the strain softening in the constitutive
equations automatically.

The strain energy function for hyperelastic material with
softening can be written in the following general form

ψ = ψ failure − H(α) ψelastic(C), (2.1)

ψ failure = ψelastic(1), and ψelastic(C) → 0,

when ‖C‖ → ∞, (2.2)

where ψ failure and ψelastic(C) designate a constant bulk fail-
ure energy and an elastic energy, respectively; H(z) is a unit
step function, i.e., H(z) = 0 if z < 0 and H(z) = 1 oth-
erwise; 1 is a second-order identity tensor; C = FTF is the
right Cauchy–Green tensor; F = ∂y(x)/∂x is the deforma-
tion gradient where y is the current placement of a material
point, which occupied position x in a reference configuration;
and ‖C‖ = trC2, for example.

The switch parameter α ∈ (−∞, 0] is defined by the evo-
lution equation

α̇ = −H
(
ε − ψelastic/ψ failure

)
, α(t = 0) = 0, (2.3)

where 0 < ε << 1 is a dimensionless tolerance constant.
The physical interpretation of (2.1)–(2.3) is straight:mate-

rial response is hyperelastic as long as the stored energy is
below its limit, ψ failure. When the latter limit is reached,
then the stored energy remains constant for the rest of
the deformation process, thereby making material healing
impossible. Parameter α works as a switch: if α = 0, the
process is hyperelastic and reversible, and if α < 0, the
material is irreversibly damaged and the stored energy is
dissipated.

Using the dissipation inequality, it is possible to derive
constitutive law in the following form (Volokh 2014)

P = −2H(α)F
∂ψelastic

∂C
, (2.4)

where P is the first Piola–Kirchhoff stress tensor.
The elastic energy can be defined as follows (Volokh

2010b), for example,

ψelastic = Φ

m
Γ

(
1

m
,
Wm

Φm

)
, (2.5)

where Γ (s, x) = ∫ ∞
x t s−1 exp(−t)dt is the upper incom-

plete gamma function; W (C) is the strain energy of intact,
i.e., without failure, material and Φ is the energy limiter,
which can be calibrated in macroscopic experiments; m is a
dimensionless material parameter, which controls sharpness
of the transition to material instability on the stress–strain
curve. Increasing or decreasing m, it is possible to simulate
more or less steep ruptures of the internal bonds accordingly.

Substitution of (2.5) in (2.4) yields

P = 2H(α) exp

(
−Wm

Φm

)
F

∂W

∂C
. (2.6)
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Fig. 1 Cauchy stress (MPa) versus stretch in uniaxial tension of NR:
dashed line designates the intact model; solid line designates the model
with energy limiter

Equation (2.5) was specialized for a filled natural rubber
(NR) vulcanizate (Volokh 2010b), for example, in the fol-
lowing form

ψelastic = Φ

10
Γ

(
1

10
,
W 10

Φ10

)
, (2.7)

W =
3∑

k=1

ck(trC − 3)k, J = det F = 1, (2.8)

where c1=0.298MPa, c2=0.014MPa, c3=0.00016MPa,
Φ = 82.0MPa.

The stress–stretch curve for the NR model described by
(2.7)–(2.8) is shown in Fig. 1, where also the results are
shown for the intact model (Φ → ∞). Material failure
occurs at the limit point at critical stretch λcr = 7.12 in
accordance with the experimental data.

Consequences of the formulation presented by (2.7)–(2.8)
are reviewed in Volokh (2013). Here, we only mention two
theoretical predictions that can be compared to the experi-
mental data. Figure 2a presents the critical failure stretches
in a thin sheet of NR undergoing biaxial tension with differ-
ent biaxiality ratios. Predictions based on a softening hyper-
elasticity model are compared to the reported test results.
The theoretical model was calibrated in uniaxial tension dis-
cussed above, and somewhat lower critical stretches in equal
biaxial tension are expected in view of the high imperfection
sensitivity of the experiments. Figure 2b presents a cross
section of a natural rubber specimen in the “poker-chip” test
(Gent and Lindley 1959). The cut was done at the hydro-
static tension of ∼2.7 MPa. The grown spherical cavities are
visible. Softening hyperelasticity model (Volokh 2011b) pre-
dicts the onset of instability and growth of the microscopic
preexisting cavities at the hydrostatic tension of ∼2.4 MPa.
Both comparisons with the experimental data encourage the
use of the methods of energy limiters.

Remark 1 We note that the account of dissipation via step
function in (2.1) is necessary when the material unloading

Fig. 2 a Critical failure stretches in biaxial tension for natural rubber;
b grown cavities in the poker-chip test

is sound as in the case of crack propagation, for example.
Otherwise, the step function can be dropped from equations
as in the subsequent analysis of void growth.

3 AAA constitutive models with energy limiters

In this section, we calibrate two constitutive models of AAA
incorporating the failure description.

Substitution of (2.5) in (2.1)–(2.2) yields

ψ = Φ

m
Γ

(
1

m
, 0

)
− H(α)

Φ

m
Γ

(
1

m
,
Wm

Φm

)
. (3.1)

We further assume

W = c1(trC − 3) + c2(trC − 3)2, det F = 1, (3.2)

m = 1. (3.3)

Substituting (3.2)–(3.3) in (3.1) and ignoring unloading
(see Remark 1 above), we finally get

ψ = Φ − Φ exp
[
−(c1 (trC − 3) + c2(trC − 3)2)/Φ

]
.

(3.4)

This constitutive model has three material constants
c1, c2, Φ that are fitted to the results of uniaxial tension tests
by using a least squares minimization procedure.

The first model—Fig. 3—was calibrated in Volokh and
Vorp (2008) as follows:

c1=0.103MPa, c2=0.18MPa, Φ =0.402MPa. (3.5)

The secondmodel based on theRaghavan andVorp (2000)
tests—Fig. 4—is calibrated here as follows:

c1 = 0.52MPa, c2 = 3.82MPa, Φ = 0.255MPa. (3.6)

We note that the models are different. The first model
exhibits softer response with smaller critical stress and
greater critical stretch as compared to the second one. We
will further use both models to study the void expansion.
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Fig. 3 Cauchy stress (MPa) versus stretch for theory (solid line) and
experiment (filled square) in uniaxial tension for AAA material from
Volokh and Vorp (2008)

Fig. 4 Cauchy stress (MPa) versus stretch for theory (solid line) and
experiment (filled square) in uniaxial tension for AAA material from
Raghavan and Vorp (2000)

It is worth noting also that we use the simplest model (3.2)
to intact material behavior in view of the available experi-
mental data. However, the account of the second principal
invariant can be relevant for soft materials—see Horgan and
Smayda (2012).

Remark 2 Aneurysmal tissues are not ideally isotropic.
Perhaps, more developed aneurysms are more isotropic.
Recently, Pierce et al. (2015) tested healthy and aneurysmal
arterial tissues and calibrated constitutive models in which
anisotropy was presented via angle ϕ that defined direc-
tions of two conjugate families of fibers. Testing a number
of samples they found the median angles ϕT AA = 44.8◦
and ϕAAA = 41.9◦ for the thoracic and abdominal aortic
aneurysms, respectively. These angles are close to ϕ = 45◦,
which manifests the equivalence of circumferential and lon-
gitudinal arterial directions. The latter equivalence is the
characteristic of isotropy. It is interesting to note that the
corresponding angles for the healthy thoracic and abdom-
inal aorta were not much different: ϕT A = 51.0◦ and
ϕAA = 38.8◦.

4 Expansion of bulk (3D) void

Theoretical considerations of the expansion of bulk voids
in various materials have a long history (e.g., Williams and
Schapery 1965; Durban and Baruch 1976; Bassani et al.
1980; Ball 1982; Abeyaratne and Horgan 1985; Gent 1990;
Huang et al. 1991; Hou and Abeyaratne 1992; Horgan and
Polignone 1995; Fond 2001; Lopez-Pamies 2009; Henao
2009; Volokh 2011b). However, nobody (to the best of our
knowledge) considered the aneurysmal or arterial tissues.
The latter consideration is presented below, and it is based
on the approach used in Volokh (2011b).

Assuming that the deformation is centrally symmetric, and
the natural base vectors in spherical coordinates coincide
with the principal directions of stretches, we can write the
deformation law as follows:

r = r(R), ϑ = Θ, ω = Ω, (4.1)

where a material particle occupying position (R,Θ,Ω) in
the initial configuration is moving to position (r, ϑ, ω) in the
current configuration.

Designating the radial direction with index 1 and tangen-
tial directions with indices 2 and 3, we can write the principal
stretches in the form

λ1 = dr

dR
, λ2 = λ3 = r

R
. (4.2)

Since the volume of incompressible material is preserved
during deformation, we have

b3 − a3 = B3 − A3, (4.3)

where A and a are the internal and B and b are the exter-
nal radii of the sphere before and after deformation accord-
ingly. We also notice that any sub-sphere with the internal
or external radius r(R) should also preserve its volume, and
consequently, we get

r3 − a3 = R3 − A3. (4.4)

The principal components of the Cauchy stress are in the
directions of the natural base vectors

σ1 = σrr = −p + λ1
∂ψ

∂λ1

σ2 = σϑϑ = −p + λ2
∂ψ

∂λ2

σ3 = σωω = −p + λ3
∂ψ

∂λ3
, (4.5)

where p is indefinite Lagrange multiplier.
The stresses should obey the only equilibrium equation

dσrr
dr

+ 2
σrr − σϑϑ

r
= 0. (4.6)
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This equation can be integrated as follows:

σrr (b) − σrr (a) = 2

b∫

a

σϑϑ − σrr

r
dr , (4.7)

or

g = 2
∫ b

a

(
λ2

∂ψ

∂λ2
− λ1

∂ψ

∂λ1

)
dr

r
, (4.8)

where boundary conditions have been taken into account

σrr (r = a) = 0, σrr (r = b) = g. (4.9)

We notice that hydrostatic tension g is a function of the
placement of the internal boundary, a, with account of

R(r, a) = 3
√
r3 − a3 + A3. (4.10)

To make the formulation dimensionless with respect to
length, we rewrite (4.8) as follows:

g = 2
∫ b̄

ā
(λ2

∂ψ

∂λ2
− λ1

∂ψ

∂λ1
)
dr̄

r̄
, (4.11)

where

λ1 = R2

r2
= R̄2

r̄2
, λ2 = λ3 = r

R
= r̄

R̄
, (4.12)

r̄ = r

A
, R̄ = R

A
, ā = a

A
, b̄ = b

A
, (4.13)

R̄(r̄ , ā) = 3
√
r̄3 − ā3 + 1. (4.14)

For b̄ >> ā, we have the problem of the expansion of
small void in the infinite medium under the remote hydrosta-
tic tension.1 The graph defined by (4.11) relates the tension
with the void hoop stretch, ā = a/A. The results of the
numerical integration of (4.11) are presented in Figs. 5 and 6
for two AAA constitutive models described by equations
(3.4), (3.5) and (3.4), (3.6), respectively.

The results show that starting from the hydrostatic ten-
sion of 0.38MPa for the first AAA model and 0.81 MPa for
the second one, the void expands unstably—it yields. The
corresponding critical hoop stretches at the void edge are
a/A = 1.6 and a/A = 1.2. It should not be missed that the
unstable yield of the void is a result of the assumption of the
centrally symmetric deformation. This assumption is restric-
tive, of course, and it will be violated for real materials that
are not perfect. The latter will trigger the localization of fail-
ure in the vicinity of the critical yield point. Nonetheless, the
prediction of the critical point of the void instability seems
to be reasonable even in the presence of imperfections.

Remark 3 It is worth emphasizing that there is no general
agreement on the definition of the cavitation instability, and
different authors use different definitions. In the present

1 In computations, we assumed b̄ = 1,000.
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Fig. 5 3D void: hydrostatic tension (MPa) versus hoop stretch for
AAA material from Volokh and Vorp (2008)
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Fig. 6 3D void: hydrostatic tension (MPa) versus hoop stretch for
AAA material from Raghavan and Vorp (2000)

work, we define the cavitation instability as an event when
the increase in the void size does not require further increase
in the load.

5 Expansion of membrane (2D) void

The membrane voids attracted less attention than the bulk
ones (e.g., Durban and Birman 1982; Haughton 1986, 1990;
Xinchun and Changjun 2002; Cohen and Durban 2010;
Volokh 2011b). Again, however, no aneurysmal or arterial
tissues were considered. The latter consideration is presented
below.

We consider biaxial tension of a membrane disk. By using
cylindrical coordinates,we define the referential region occu-
pied by the membrane as follows:

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, −H/2 ≤ Z ≤ H/2. (5.1)

The membrane region after the deformation is

a ≤ r ≤ b, 0 ≤ ϑ ≤ 2π, −h/2 ≤ z ≤ h/2, (5.2)
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1076 K. Y. Volokh

We assume that the deformation is axisymmetric, and a
material particle occupying position (R,Θ, Z) in the refer-
ence configuration moves to position (r, ϑ, z) in the current
configuration in accordance with the following law

r = r(R), ϑ = Θ, z = h(R)

H
Z . (5.3)

Based on (5.3), we calculate the deformation gradient in
cylindrical coordinates

F = dr

dR
er ⊗ ER + r

R
eϑ ⊗ EΘ

+ dh

dR

Z

H
ez ⊗ ER + h

H
ez ⊗ EZ , (5.4)

where {ER,EΘ,EZ } and {er , eϑ , ez} are orthonormal base
vectors for reference and current configurations accordingly.

Since the membrane is thin, we use the deformation gra-
dient averaged over thickness

〈F〉 = 1

H

H/2∫

−H/2

FdZ = dr

dR
er ⊗ ER

+ r

R
eϑ ⊗ EΘ + h

H
ez ⊗ EZ . (5.5)

We notice that the transition from (5.3) to (5.4) brings a
great simplification since the directions of the base vectors
in cylindrical coordinates coincide with the average prin-
cipal stretches. Based on (5.5) and designating the radial,
tangential, and lateral directions with indices 1, 2, and 3,
respectively, we can write the average principal stretches in
the form

λ1 = dr

dR
, λ2 = r

R
, λ3 = h

H
. (5.6)

The constitutive equations relate the average stretches to
the components of the 1st Piola–Kirchhoff stress tensor P,
as follows:

P1 = Pr R = ∂ψ

∂λ1
− pλ−1

1

P2 = PϑΘ = ∂ψ

∂λ2
− pλ−1

2

P3 = PzZ = ∂ψ

∂λ3
− pλ−1

3 , (5.7)

where p is the indefinite Lagrange multiplier enforcing the
incompressibility condition

λ1λ2λ3 = 1. (5.8)

Since the membrane faces are stress-free, PzZ = 0, we
can exclude the Lagrange multiplier from (5.7)

P1 = Pr R = ∂ψ

∂λ1
− λ3

λ1

∂ψ

∂λ3

P2 = PϑΘ = ∂ψ

∂λ2
− λ3

λ2

∂ψ

∂λ3
(5.9)

It is worth reminding again that the principal values of the
first Piola–Kirchhoff stress tensor correspond to the thickness
average stretches.

Now, the equilibrium equations with respect to referential
coordinates (Volokh 2006) reduce to

dP1
dR

+ P1 − P2
R

= 0. (5.10)

This equation is completed by the conditions at the mem-
brane edges

P1(A) = 0, P1(B)λ1(B) = g, (5.11)

where g is the value of the hydrostatic tension.
Normalizing the length scale by the radius of the initial

cavity, we introduce

λ1 = dr̄

dR̄
= dr

dR
, λ2 = r̄

R̄
= r

R
,

λ3 = h̄

H̄
= h

H
, (5.12)

r̄ = r

A
, R̄ = R

A
, h̄ = h

A
, H̄ = H

A
, Ā = 1,

B̄ = B

A
. (5.13)

Substituting (5.12)–(5.13) in (5.10)–(5.11), we obtain the
two-point boundary value problem

dP1
dR̄

+ P1 − P2
R̄

= 0, (5.14)

P1(1) = 0, P1(B̄)λ1(B̄) = g, (5.15)

where the principal stresses are defined in (5.9) and principal
stretches are defined in (5.12) with account of the incom-
pressibility condition (5.8).

Equation (5.14) and boundary conditions (5.15) can be
solved numerically for r̄(R̄) with account of (5.8), (5.9), and
(5.12). In the case of B̄ >> 1, we have the problem of the
expansion of small void in the infinite membrane under the
biaxial tension.2

Since our purpose was to track the stress–stretch curve,
there is no need to solve the two-point boundary value prob-
lem for the given hydrostatic tension, g. Instead, it is reason-
able to solve a simpler initial value problem defined by the
following conditions at point Ā = 1:

r̄(1) = a

A
,

dr̄

dR̄
(1) = β. (5.16)

Here, β is defined from (5.15)1 by solving the algebraic
equation

∂ψ

∂λ1
− λ3

λ1

∂ψ

∂λ3
= 0, (5.17)

2 In computations, we assumed B̄ = 1,000.
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Fig. 7 2D void: hydrostatic tension (MPa) versus hoop stretch for
AAA material from Volokh and Vorp (2008)

where

λ1 = β, λ2 = a

A
, λ3 = 1

λ1λ2
. (5.18)

By the direct calculation, we obtain

∂ψ

∂λ1
= ∂ψ

∂W

∂W

∂λ1
= ∂ψ

∂W
2λ1

2∑
k=1

kck
(
λ21+λ22+λ23 − 3

)k−1
,

(5.19)

∂ψ

∂λ3
= ∂ψ

∂W

∂W

∂λ3
= ∂ψ

∂W
2λ3

2∑
k=1

kck
(
λ21+λ22+λ23 − 3

)k−1
.

(5.20)

Substituting (5.19)–(5.20) in (5.17), we get

λ21 = λ23, (5.21)

Finally, substituting (5.18) in (5.21), we have

β =
√

A

a
. (5.22)

Now, the solution of (5.14) and (5.16) can be gener-
ated numerically for varying a, and g is the outcome of the
calculation—Figs. 7 and 8.

The results show that starting from tension of 0.46 MPa
for the first AAA model and 0.8 MPa for the second one, the
void expands in the unstable mode.

6 Discussion

This study is a step toward clarification of a possible mecha-
nismof aneurysm rupture.Classical approaches formodeling
aneurysm are based on the stress analysis of evolving tissue.
In the ideal case of larger aneurysm diameter and smaller
thickness, as compared to the healthy artery, the wall stress

Aa /

g
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Fig. 8 2D void: hydrostatic tension (MPa) versus hoop stretch for
AAA material from Raghavan and Vorp (2000)

should significantly increase. However, the real wall evolu-
tion is accompanied by the formation of thrombus and other
morphological changes that lead towall thickening and stress
reduction (e.g.,Vorp2007). Thus, generally the existingmod-
els might fail to reveal the process of mechanical rupture. It
is remarkable that experiments with aneurysmal tissue show
strength similar to healthy arteries (∼1.2 MPa). Therefore,
it is hardly possible to directly connect the aneurysm failure
to the tissue degradation. Indeed, collagen fibers—the main
load-bearing part of the arterial wall—are present in both
healthy and diseased tissue. This situation requires account
of microscopic defects in order to understand the mechanics
of aneurysm failure.

In thepresentwork,weassumed that degradationof elastin
was accompanied by microstructural rearrangements leav-
ing very small cavities in aneurysmal tissue. Such cavities
can grow and coalesce in big cavities and, ultimately, in
macroscopic cracks. We analyzed the instability of mem-
brane (2D) and bulk (3D) cavities under hydrostatic tension
by using two experimentally calibrated AAA constitutive
models enhanced with energy limiters. The limiters provided
the saturation value for the strain energy, which indicated the
maximum energy that could be stored and dissipated by an
infinitesimal material volume.

We found that the unstable growth of cavities could
start when the critical stress was considerably less than the
aneurysm strength. For example, the critical stress for the
3D cavity of the first AAA model (∼0.4 MPa) approaches
the arterial wall stress in the physiological range (∼0.2MPa)
(Humphrey et al. 2014).Of course, this result is verymaterial-
specific: some cavities might be prone to unstable expansion
at stresses close to the physiological range while others not.

We should finally note that the proposed failure mech-
anism is not necessarily unique, and other factors can be
important. For example, microcalcification can be important
because it creates stiff particles inside soft tissue. Such parti-
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cles can lead to the overall tissue stiffening while locally they
can produce high stress/strain concentration. Actually, three-
dimensional hydrostatic tension triggering void growth can
occur in the vicinity of rigid inclusions. In the presence of
rigid particles, the particle–tissue deboning mechanism can
also become sound. All mentioned mechanisms, as well as
fatigue, take place in materials varying from ductile metals
to soft rubbers, and they also should be examined with regard
to soft biological tissues including aneurysms.
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