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a b s t r a c t

Aneurysms are abnormal dilatations of vessels in the vascular system that are prone to

rupture. Prediction of the aneurysm rupture is a challenging and unsolved problem.

Various factors can lead to the aneurysm rupture and, in the present study, we examine

the effect of calcification on the aneurysm strength by using micromechanical modeling.

The calcified tissue is considered as a composite material in which hard calcium particles

are embedded in a hyperelastic soft matrix. Three experimentally calibrated constitutive

models incorporating a failure description are used for the matrix representation. Two

constitutive models describe the aneurysmal arterial wall and the third one – the

intraluminal thrombus. The stiffness and strength of the calcified tissue are simulated

in uniaxial tension under the varying amount of calcification, i.e. the relative volume of the

hard inclusion within the periodic unit cell. In addition, the triaxiality of the stress state,

which can be a trigger for the cavitation instability, is tracked. Results of the micro-

mechanical simulation show an increase of the stiffness and a possible decrease of the

strength of the calcified tissue as compared to the non-calcified one. The obtained results

suggest that calcification (i.e. the presence of hard particles) can significantly affect the

stiffness and strength of soft tissue. The development of refined experimental techniques

that will allow for the accurate quantitative assessment of calcification is desirable.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Aneurysms are abnormal dilatations of vessels in the vascu-

lar system. For example, abdominal aortic aneurysm (AAA) is

found in �2% of men aged 65 years (Earnshaw, 2011; Svensjo

et al., 2011). In many cases AAA gradually expands until

rupture causing a mortality rate of 74–90% (Acosta et al.,

2006). Medical doctors consider a surgery option for enlarging

AAA when its maximum diameter reaches 5.5 cm and/or

expansion rate is greater than 1 cm per year. These simplistic
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geometrical criteria may underestimate the risk of rupture of

small aneurysms as well as overestimate the risk of rupture

of large aneurysms. Biomechanical approaches to modeling

aneurysm growth are needed and have been developed

(Watton et al., 2004; Baek et al., 2006; Kroon and Holzapfel,

2007; Chatziprodromou et al., 2007; Watton et al., 2009;

Martufi and Gasser, 2012; Volokh and Vorp, 2008;

Balakhovsky et al., 2014). Despite variety of biomechanical

models we still do not understand the mechanisms of

aneurysm rupture. Even a simple question of whether the
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strength of the aneurysmal arterial wall is lower than the
strength of the healthy arterial wall does not have a simple
answer. On the one hand, there is some experimental
evidence (Humphrey, 2002; Holzapfel and Ogden, 2009;
Pierce et al., 2015) of the similar strength ð � 1:2 MPaÞ in
healthy and aneurysmal arterial walls. Intuitively, it is pos-
sible to explain the strengths' closeness by the fact that the
ultimate stress is controlled by collagen fibers which are
present in both diseased and healthy tissues. On the other
hand, some studies (Vorp, 2007; McGloughlin, 2011) suggest
that the aneurysm strength is lower in ruptured as compared
to unruptured tissues. The latter conclusion may be con-
fronted by other data (Raghavan et al., 2011) suggesting that
both ruptured and unruptured aneurysms have similar
strength. Finally, we mention the most recent work
(Robertson et al., 2015) reporting the test results that suggest
that even the strength of unruptured aneurysms can vary.
We note, however, that the latter finding refers to cerebral
aneurysms and similar results for AAA are not known yet.

In summary, the strength of the aneurysmal wall can
alter. What factors are responsible for the strength altera-
tions? There is no clear answer to this question. Some
authors suggest that calcification can affect mechanical
properties of the arterial wall (Inzoli et al., 1993; Basalyga
et al., 2004; Marra et al., 2006; Speelman et al., 2007; Li et al.,
2008; Maier et al., 2010; Buijs et al., 2013). The most compre-
hensive study of calcified versus non-calcified tissue to date
is presented in (O’Leary et al., 2015) in which actual human
tissue was tested. There is an encouraging correlation
between the experimental results presented in (O’Leary
et al., 2015) and the analyses of the present work, which is
discussed below. The suggestion that mechanical properties
of the artery alter is reasonable because calcification means
the embedment of hard particles into the soft matrix. Such
particles change the stress–strain state of the tissue. Indeed,
the inclusion of hard particles normally leads to the material
stiffening (Lau et al., 2015). Whether the stiffening is accom-
panied by the increase of the material strength? This is the
question we address in the present study.

In order to assess the effect of the increasing volume of
calcification on the strength of an aneurysm for a particular
patient it is necessary to have the data on the specific tissue
microstructure. Unfortunately, such detailed patient-specific
data is still out of our routine reach, while the progress in the
development of experimental techniques is promising – (Irkle
et al., 2015). Thus, consideration of a tissue pattern is una-
voidably qualitative and idealized yet. In the light of the latter
notion we simulate uniaxial tension of an idealized calcified
aneurysmal tissue up to failure, that is we micromechanically
predict its strength. For the latter purpose we combine two
methods: elasticity with energy limiters for the description of
matrix deformation and failure (Volokh, 2011, 2013, 2014), and a
finite strain high-fidelity generalized method of cells (HFGMC)
for micromechanical modeling the matrix-particle composite
(Aboudi et al., 2013; Aboudi and Volokh, 2015). We study the
effect of the varying amount of calcification (10%, 40%, and
70%), i.e. the relative volume of the hard inclusion within the
periodic elementary cell, on the tissue stiffness and strength.
We consider three experimentally calibrated tissue models:
two for the AAA wall and one for the AAA intraluminal
thrombus (ILT). In addition, we track the stress triaxiality,

which is important for the cavitation onset.
We find, in correspondence with the previous studies, that

the increase of the relative volume of calcium particles

unconditionally leads to the stiffening of the tissue. At the

same time the strength does not increase in the most

considered cases; just the opposite, it can significantly

decrease. Our quantitative results emphasize the importance

of the experimental studies of calcification and the pressing

need to improve the experimental techniques which “remain

highly observer-dependent” (Buijs et al., 2013). Not only the

amount of calcification but also the connectivity of the

calcium particles might be of great value in analysis of the

strength of the diseased tissue and possible considerations of

the aneurysm rupture.
2. Methods

2.1. Constitutive modeling

In order to model deformation and failure of a soft tissue

matrix we use a variant of the continuum description of bulk

failure – elasticity with energy limiters (Volokh, 2011, 2013, 2014).

The limiters enforce saturation – the failure energy – in the

strain energy function, which indicates the maximum

amount of energy that can be stored and dissipated by an

infinitesimal material volume during rupture. The limiters

bound stresses in the constitutive equations automatically.
The strain energy function can be written in the following

general form

ψ ¼ ψ f �HðαÞψeðFÞ; ð1Þ

ψ f ¼ ψeð1Þ; and ψeðFÞ-0; when
���F���-1; ð2Þ

where ψ f and ψeðFÞ designate a constant bulk failure energy

and an elastic energy respectively; HðzÞ is a unit step function,

i.e. HðzÞ ¼ 0 if zo0 and HðzÞ ¼ 1 otherwise; 1 is a second-order

identity tensor; F¼Grad xðXÞ is the deformation gradient

where x is the current placement of a material point which

occupied position X in a reference configuration; and

‖F‖¼ F : F, for example.
The switch parameter αAð�1; 0� is defined by the evolu-

tion equation

_α¼ �Hðε�ψe=ψ f Þ; αðt¼ 0Þ ¼ 0; ð3Þ

where 0oεoo1 is a dimensionless tolerance constant.
The physical interpretation of (1)–(3) is straightforward:

material response is hyperelastic as long as the stored energy

is below its limit, ψ f . When the latter limit is reached, then

the stored energy remains constant for the rest of the

deformation process, thereby making material healing

impossible. Parameter α is not an internal damage variable

– it works as a switch: if α¼ 0, then the process is hyperelastic

and reversible, and if αo0, then the material is irreversibly

damaged and the stored energy is dissipated.
Using the dissipation inequality it is possible to derive

constitutive law in the following form (Volokh, 2014)



Fig. 2 – Cauchy stress [MPa] versus stretch (ratio of the final
and initial lengths of the tissue sample) for theory (solid line)
and experiment (♦) in uniaxial tension for AAA material
(Volokh, 2015a).
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Fig. 3 – Cauchy stress [MPa] versus stretch (ratio of the final
and initial lengths of the tissue sample) in uniaxial tension
for ILT material (Volokh, 2015b).
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P¼ �HðαÞ ∂ψ
e

∂F
; ð4Þ

where P is the first Piola–Kirchhoff stress tensor.
The elastic energy can be defined as follows (Volokh, 2013),

for example,

ψe ¼ Φ

m
Γ

1
m

;
Wm

Φm

� �
; ð5Þ

where Γðs; xÞ ¼ R1
x ts�1e� t dt is the upper incomplete gamma

function; WðFÞ is the strain energy of intact, i.e. without
failure, material and Φ is the energy limiter, which can be
calibrated by macroscopic experiments; m is a dimensionless
material parameter, which controls sharpness of the transi-

tion to material instability on the stress–strain curve. Increas-
ing or decreasing m it is possible to simulate more or less
steep ruptures of the internal bonds accordingly.

For the human abdominal aortic aneurismal wall we

further employ Yeoh constitutive relation for the intact
material behavior (Volokh, 2015a)

W¼ c1ðI1�3Þ þ c2ðI1�3Þ2; I1 ¼ F : F; detF¼ 1; m¼ 1: ð6Þ

This constitutive model has three material constants
c1; c2;Φ that are fitted to the results of uniaxial tension tests
by using a least squares minimization procedure.

The first model – Fig. 1 – was calibrated in (Volokh and

Vorp, 2008) as follows;

c1 ¼ 0:103 MPa; c2 ¼ 0:18 MPa; Φ¼ 0:402 MPa: ð7Þ

The second model based on the tests reported in
(Raghavan and Vorp, 2000) – Fig. 2 – was calibrated in

(Volokh, 2015a) as follows;

c1 ¼ 0:52 MPa; c2 ¼ 3:82 MPa; Φ¼ 0:255 MPa: ð8Þ

We note that the models are different. The first model
exhibits softer response with smaller critical stress and

greater critical stretch as compared to the second one. We
will further use both models to study the effect of
calcification.

The reader should note that the descending part of the

stress–stretch curve is due to the energy limiter in (5). The
limit point on the curve designates the onset of material
failure. Traditional hyperelastic models of intact materials do
Fig. 1 – Cauchy stress [MPa] versus stretch (ratio of the final
and initial lengths of the tissue sample) for theory (solid line)
and experiment (♦) in uniaxial tension for AAA material
(Volokh and Vorp, 2008).
not show any limit points on the stress–stretch curve and

they are unable to describe failure.
In addition to the models of the aneurysmal wall we also

use a constitutive model of the intraluminal thrombus for

human AAA. ILT is present in about 70% of the developing

abdominal aneurysms and might influence the stress dis-

tribution in the artery (Wang et al., 2001; Humphrey and

Holzapfel, 2012; Tong and Holzapfel, 2015)
For ILT abluminal layer we use (Volokh, 2015b)

W ¼ c3ðI2�3Þ þ c4ðI2�3Þ2;
2I2 ¼ F : F�ðFFTÞ : ðFFTÞ; det F¼ 1; m¼ 10: ð9Þ

This model has three material constants c3; c4;Φ that were

calibrated in (Volokh, 2015b) based on the experimental data

from (Wang et al., 2001)

c3 ¼ 0:0337 MPa; c4 ¼ 0:0347 MPa; Φ¼ 0:184 MPa: ð10Þ

The stress–stretch curve for the uniaxial tension described

by the ILT model is presented in Fig. 3.
Again, the limit point of the stress–stretch curve corre-

sponds to the onset of material instability and failure.
In simulations we assume that the calcium particles do

not fail and the traditional Kirchhoff–Saint-Venant constitu-

tive model can be used for them
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ψ ¼ λ

2
ðtrEÞ2 þ μE : E; ð11Þ

where E¼ ðFTF�1Þ=2 is the Green strain tensor; 1 is the
second-order identity tensor; and Lame parameters can be
defined via engineering constants as follows

μ¼ E
2ð1þ νÞ ; λ¼ Eν

ð1þ νÞð1�2νÞ : ð12Þ

In simulations the elasticity modulus and the Poisson
ratio take the following values

E¼ 10 GPa; ν¼ 0:25: ð13Þ
We note that in the case of small strains Eq. (11) coincides

with the generalized Hooke law. However, the use of the
Green strain suppresses the effect of the rigid body motion
and, thus, it is preferable in calculations. We also note that
the specific magnitude of the elasticity modulus of calcium
particles is of no importance because the elasticity modulus
Fig. 4 – (a) A doubly-periodic array of fiber-reinforced composite
X2�X3; (b) the repeating unit cell is defined with respect to loca
subcell ðβγÞ in which a local initial system of coordinates ðYðβÞ

2 ;Y
ð
3

(d) A triply-periodic array of particulate composite defined with
repeating unit cell is defined with respect to local initial coordina
initial system of coordinates ðYðαÞ

1 ;Y
ðβÞ
2 ;Y

ðγÞ
3 Þ is introduced the orig
of the soft matrix is lower by orders of magnitude and,
therefore, the calcium particles can be considered as essen-
tially rigid inclusions.

2.2. High-fidelity generalized method of cells
micromechanics analysis

The details of the HFGMC micromechanics analysis for
doubly-periodic composites at finite strains have been pre-
sented in (Aboudi and Volokh, 2015). Its generalization to the
triply-periodic case which is needed for the modeling of
particulate composites can be performed in the same man-
ner. Presently, it is not necessary to derive the details of these
analyses but they are briefly described in the following. Both
micromechanical analyses are based on the homogenization
technique in which a repeating unit cell of the periodic
composite is identified.
defined with respect to global initial coordinates in the plane
l initial coordinates in the plane Y2�Y3; (c) a characteristic
γÞÞ is introduced the origin of which is located at the center;
respect to global initial coordinates in X1;X2;X3; (e) the
tes Y1;Y2;Y3; (f) a characteristic subcell ðαβγÞ in which a local
in of which is located at the center.
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In Fig. 4(a), a fiber-reinforced composite thus forming a
doubly periodic array, defined with respect to the initial
global coordinates of the X2�X3 plane, is shown. Its repeating
unit cell, defined with respect to the initial material coordi-
nates Y2�Y3, is shown in Fig. 4(b). The repeating unit cell is
divided into Nβ and Nγ subcells in the Y2 and Y3 directions,
respectively. Each subcell is labeled by the indices ðβγÞ with
β¼ 1; :::;Nβ and γ¼ 1; :::;Nγ and may contain a distinct homo-
geneous material. The initial dimensions of subcell ðβγÞ in the
Y2 and Y3 directions are denoted by hβ and lγ , respectively, see
Fig. 4(c). A local initial coordinate system ðY ðβÞ

2 ;Y
ðγÞ
3 Þ is intro-

duced in each subcell whose origin is located at its center.
In the framework of the doubly periodic HFGMC, the

increments of the displacement vector ΔuðβγÞ in subcell ðβγÞ
are expanded into second-order polynomials as follows

ΔuðβγÞ ¼ΔFXþΔWðβγÞ
ð00Þ þ Y

ðβÞ
2 ΔWðβγÞ

ð10Þ þ Y
ðγÞ
3 ΔWðβγÞ

ð01Þ

þ1
2

3Y
ðβÞ2
2 � h2

β

4

 !
ΔWðβγÞ

ð20Þ þ
1
2

3Y
ðγÞ2
3 � l2γ

4

 !
ΔWðβγÞ

ð02Þ: ð14Þ

where ΔF denotes the increment of the global (macroscopic)
deformation gradient. The term ΔFX stands for the increment
of the externally applied loading on the composite. The
unknown coefficient ΔWðβγÞ

ðmnÞ are determined, as shown in
(Aboudi and Volokh, 2015), from the satisfaction of the
equilibrium equations, interfacial and periodic conditions.

Next, consider a particulate periodic composite, described
with respect to the initial global coordinates ðX1;X2;X3Þ, see
Fig. 4(d). Fig. 4(e) shows a repeating unit cell, defined with
respect to initial local coordinates ðY1;Y2;Y3Þ, of the periodic
composite. Presently, the parallelepiped repeating unit cell of
the composite is divided into Nα;Nβ and Nγ subcells in the
Y1;Y2 and Y3 directions, respectively. Each subcell is labeled
by the indices ðαβγÞ with α¼ 1; :::;Nα, β¼ 1; :::;Nβ and γ ¼ 1; :::;Nγ .
The dimensions of subcell ðαβγÞ in the Y1;Y2 and Y3 directions
are denoted by dα;hβ and lγ , respectively. A local coordinate
system ðYðαÞ

1 ;Y
ðβÞ
2 ;Y

ðγÞ
3 Þ is introduced in each subcell whose

origin is located at its center, see Fig. 4(f).
In the framework of the triply periodic HFGMC, the incre-

ments of the displacement vector ΔuðαβγÞ in the subcell ðαβγÞ
are expanded into second-order polynomials as follows

ΔuðαβγÞ ¼ΔFXþ ΔWðαβγÞ
ð000Þ þ Y

ðαÞ
1 ΔWðαβγÞ

ð100Þ þ Y
ðβÞ
2 ΔWðαβγÞ

ð010Þ

þ Y
ðγÞ
3 ΔWðαβγÞ

ð001Þ

þ1
2

3Y
ðαÞ2
1 � d2α

4

 !
ΔWðαβγÞ

ð200Þ þ
1
2

3Y
ðβÞ2
2 � h2

β

4

 !
ΔWðαβγÞ

ð020Þ

þ1
2

3Y
ðγÞ2
3 � l2γ

4

 !
ΔWðαβγÞ

ð002Þ ð15Þ

where ΔFX consists of the externally applied loading, and the
coefficients ΔWðαβγÞ

ðlmnÞ are determined by implementing the
equilibrium equations together with the interfacial condi-
tions. In addition, periodic conditions must be imposed to
ensure that the tractions and displacements are equal at the
opposite sides of the repeating unit cell.

Both micromechanical analyses ultimately establish at the
current loading increment the 4th-order instantaneous con-
centration tensor AðαβγÞ which relates the increment of the
local deformation gradient (in the subcell) ΔFðαβγÞ to the
current externally applied far-field global deformation
gradient increment ΔF, namely

ΔFðαβγÞ ¼AðαβγÞ : ΔF: ð16Þ

For the three hyperelastic strain energy functions dis-
cussed above, it is possible to establish the first Piola–Kirchh-
off stress tensor PðαβγÞ and the corresponding fourth-order
tangent tensor RðαβγÞ in the form

ΔPðαβγÞ ¼ RðαβγÞ : ΔF: ð17Þ

The increment of the average stress in the composite is
given by

ΔP ¼ 1
DHL

XNα

α ¼ 1

XNβ

β ¼ 1

XNγ

γ ¼ 1

dαhβlγΔPðαβγÞ ð18Þ

Substituting the incremental constitutive Eq. (17) for ΔPðαβγÞ

and employing Eq. (16) establishes in the macroscopic (global)
incremental constitutive equation of the composite

ΔP ¼R� : ΔF; ð19Þ

where R� is the effective instantaneous 4th order first tangent
tensor of the composite which is given by

R� ¼ 1
DHL

XNα

α ¼ 1

XNβ

β ¼ 1

XNγ

γ ¼ 1

dαhβlγRðαβγÞ : AðαβγÞ: ð20Þ

In conclusion, the HFGMC micromechanical method for
both doubly-periodic and triply-periodic composites can
establish the macroscopic constitutive equations which gov-
ern the behavior of composites that are composed of hyper-
elastic materials characterized by softening effects which
lead to loss of static stability. This loss of static stability in
a subcell which is filled by a hyperelastic material affects the
composite response and indicates the occurrence of the
initiation of failure in the composite.

The reliability of the finite strain doubly-periodic HFGMC
macroscopic response has been verified in (Aboudi and
Volokh, 2015) by considering a hollow cylinder subjected to
externally applied radial stretch and zero axial deformation.
In the absence of softening effects, exact analytical solutions
can be developed for several types of hyperelastic materials
with substantially different stiffening and softening behavior.
In the presence of softening however, finite-difference solu-
tions have been established. Both solutions have been
employed for comparisons with the predicted HFGMC
response and excellent agreements observed. For the triply-
periodic HFGMC the same approach for verifications can be
followed, see (Aboudi and Arnold, 2000) where the less
accurate HFGMC predecessor micromechanical model was
verified.
3. Results

In this section we present results of micromechanical simu-
lations of the calcified tissues in uniaxial tension. Our soft-
ware is an in-house one and it is based on the detailed
description of the micromechanical analysis given by Aboudi,
Arnold and Bednarcyk (Aboudi et al., 2013). For the simulation
we use the approaches discussed above which include a
failure description of soft hyperelastic matrix and a micro-
mechanical account of the hard inclusions. Three types of
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composites are examined. The first one is described by the
constitutive Eqs. (6) and (7) for the aneurysmal tissue and it is
called from now the Aneurysm model – 1 (A-1). The second
one is described by the constitutive Eqs. (6) and (8) for the
aneurysmal tissue and it is referred to as the Aneurysm
model – 2 (A-2). The third one is described by the constitutive
Eqs. (9) and (10) for the intraluminal thrombus and it is called
the ILT model. The soft matrix is enhanced with hard
inclusions which are assumed to be distributed periodically
and placed in the center of unit cells as shown in Fig. 4.
Doubly-periodic (2D) and triply-periodic (3D) micromechani-
cal modeling are performed for every composite. In the 2D
case the hard inclusion is cylindrical and in the 3D case the
hard inclusion is cubic. We note that the shape of real
calcium particles can vary and, consequently, we are inter-
ested in different shapes of inclusions for our idealized
studies. Constitutive Eqs. (11)–(13) describe the mechanical
behavior of the hard inclusions.

We emphasize that the constitutive description of the soft
matrix includes failure – the limit points in Figs. 1–3. When
the limit point is passed locally during loading then static
equilibrium is lost and failure initiates, localizes, and propa-
gates through the material. In the present study (and using
the approaches described above) we only track the initiation
of failure which is the material strength in uniaxial tension.
Thus, we simulate the whole quasi-static loading path
including the failure onset, namely, the strength. Twenty
four simulation cases are presented in Figs. 5–8. The results
for 2D models with the cylindrical inclusions and 3D models
with cubic inclusions appear on the left and right sides of the
figures accordingly. The stress–stretch curves are generated
up to the starred failure points for the varying amount of
calcification. We used the whole scale variation of the
calcification including 10%, 40%, and 70%. We should remind
the reader that the amount of calcification is equal to the
relative volume of the hard inclusion in the unit material cell.
The graphs present uniaxial Cauchy stress versus stretch (the
Aneurysm m2D

10%

40%

70%

Fig. 5 – Cauchy stress [MPa] versus stretch in uniaxial tension f
calcification.
ratio of a fiber length after and before deformation). Figs. 5–7

present stress–stretch curves for two aneurysmal matrix

models and thrombus matrix model with hard inclusions of

calcium particles. (In the 2D case the direction is transverse

to the direction of the cylinder, namely, in the X2 direction.)
Observation of the results for the first calcified aneurysmal

model – Fig. 5 – suggests that the increase of the amount of

calcified particles unconditionally leads to the increase of the

material stiffness in all simulated cases. This result perfectly

corresponds with our knowledge of the mechanical behavior

of composite materials as a whole. Indeed, hard particles

always stiffen the matrix material. More subtle is the obser-

vation of the influence of calcification on the strength of the

composite. The uniaxial strength of the matrix material is

about 1.1 MPa – Fig. 1. The uniaxial strength of the composite

– stars in Fig. 5 – is from 20% to 40% lower as compared to the

pure matrix strength. It is interesting to note that in the case

of cubic inclusions the strength monotonically decreases

with the increase of calcification. In the case of cylindrical

inclusions the strength decrease is not monotonic and 40%

calcified tissue has higher relative strength that 10% and 70%

calcified ones.
Observation of the results for the second calcified aneur-

ysmal model – Fig. 6 – suggests that the increase of the

amount of calcified particles again leads to the increase of the

material stiffness in all simulated cases, as expected. The

uniaxial strength of the matrix material is about 1.3 MPa –

Fig. 1. The uniaxial strength of the composite – stars in Fig. 6 –

alters in different ways for different amounts of calcification

and different inclusion types. For example, the strength

decreases to 1.2 MPa only for the cylindrical inclusions with

40% and 70% of calcification, while the decrease is more

drastic (0.8 MPa) for the 10% calcification. The strength

decreases to 1.0 MPa for cubic inclusions with 10% and 70%

of calcification, while the strength slightly increases to

1.4 MPa for the 40% calcification.
odel -1
3D

10%
40%

70%

or the 1st aneurysmal material model with varying
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2D 3D

10%
10%

40%
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Fig. 6 – Cauchy stress [MPa] versus stretch in uniaxial tension for the 2nd aneurysmal material model with varying
calcification.

Intraluminal thrombus2D 3D

10%
10%

40%
40%

70% 70%

Fig. 7 – Cauchy stress [MPa] versus stretch in uniaxial tension for the ILT material model with varying calcification.
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The results presented in Figs. 5 and 6 were obtained for an

idealized calcified aneurysm tissue and they cannot be

directly compared to the available experimental data. Never-

theless, some qualitative comparisons with the experimental

data from (O’Leary et al., 2015) can be drawn. Indeed, O’Leary

et al. (O’Leary et al., 2015) report that “a statistically signifi-

cant difference was found between the fibrous and partially

calcified group for failure stress, i.e. 1:2070:33 MPa versus

0:8770:32 MPa…” Some correlation between these numbers

and failure strength for 10% calcification in Figs. 5 and 6 is

evident yet it should not be overstated because of the

difference in the considered calcification distribution in

(O’Leary et al., 2015) and the present study.
Observation of the results for intraluminal thrombus
model – Fig. 7 – eventually shows that the increase of the
amount of calcified particles leads to the increase of the
material stiffness in all simulated cases. The uniaxial
strength of the ILT material is about 0.55 MPa – Fig. 3. The
uniaxial strength of the composite – stars in Fig. 7 – is lower
as compared to the pure matrix strength. In the case of cubic
inclusions the strength monotonically decreases with the
increase of calcification. In the case of cylindrical inclusions
the strength decrease is not monotonic and 40% calcified
tissue has higher relative strength that 10% and 70% calcified
ones. There is some qualitative resemblance between the
strengths of the calcified ILT tissue and the first calcified
aneurysmal tissue presented in Figs. 5 and 7.
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A - 1 A - 1
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Fig. 8 – Cauchy stress [MPa] versus stretch in uniaxial tension for the porous materials.

Fig. 9 – Triaxiality ratio distribution for 10% calcification for
aneurysm model-1 at the failure load.
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The simulations presented above have been done for hard

particles embedded in a soft matrix. It is of interest also to

generate the uniaxial stress–stretch curves for porous mate-

rials in which the hard particles are removed leaving empty

voids. The simulation results for cylindrical (2D) and cubic

(3D) voids with 10% porosity are presented in Fig. 8 for all

material models. It is interesting that a drastic decrease of the

material strength is observed for all models with cylindrical

voids. For cubic voids, only the second aneurysmal model

exhibited a significant strength decrease while two other

models kept the strength level unaltered.
The simulations of porous materials described above were

performed under the assumption of a significant amount of

large (10% volume fraction) pre-existing voids. Such big voids

do not necessarily exist in real tissues. However, the micro-

scopic voids on the micron scale can exist. Indeed, the

formation of thrombus and the development of the aneur-

ysmal arterial wall are accompanied by significant morpho-

logical alterations that can leave microscopic voids inside

tissues. Such voids can dramatically increase in diameter –

cavitation phenomenon – and, then, coalesce forming macro-

scopic crack. The cavitation occurs under hydrostatic tension

and it can cause a significant decrease of tissue strength

(Volokh, 2015a, 2015b). We emphasize that cavitation

requires the state of hydrostatic tension and the inclusion

of hard particles in soft tissue can produce such a state. It is

commonly accepted in the literature to measure the state of

hydrostatic Cauchy stress by using the triaxiality ratio

κ¼ tr r

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þr0 : r0

p ; ð21Þ

where the prime designates the deviatoric parts of the stress

tensor.
To track the triaxiality ratio we generated the maps of κ for

the three models of soft tissue defined above and enhanced

with 10% cylindrical calcium particles. The maps presented in

Figs. 9–11 correspond to the loads close to the critical failure

loads – near the starred strength points in Figs. 5–7.
The material points with high triaxiality ratio are circled in

Figs. 9–11. This points appear at the vertical poles of the

inclusion. The latter is reasonable, of course, because tension

is applied in the vertical direction and deformations at the

points near the poles are the most restrained ones. Indeed,

the underlying hard inclusion does not allow the soft mate-

rial at the poles to freely extend in the vertical direction and,

thus, the inclusion creates the state of hydrostatic tension.

Our finding corresponds well to the experimental results

obtained for filled rubbers in which cavitation was observed

near rigid inclusions (Gent, 2004, 2012). We also mention that

we showed the triaxiality ratios for the 10% calcification

where the points with hydrostatic tension are pronounced.

However, we also generated maps for 40% and 70% calcifica-

tion. The latter maps are not shown because no significant

hydrostatic tension was observed. Thus, the smaller amounts



Fig. 10 – Triaxiality ratio distribution for 10% calcification for
aneurysm model-2 at the failure load.

Fig. 11 – Triaxiality ratio distribution for 10% calcification for
ILT model at the failure load.
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of calcification are more dangerous than the larger ones as a

potential trigger of cavitation.
4. Discussion

This theoretical study appears to be the first report on the

influence of calcification on the strength (and stiffness) of the

aneurysmal arterial wall including intraluminal thrombus.

Novel modeling techniques have been developed in this

study. First, hyperelasticity with energy limiters was used to
describe deformation and failure of soft matrix material and

three experimentally calibrated constitutive laws for the

aneurysmal arterial wall and thrombus were applied. Second,

the finite strain high-fidelity generalized method of cells

(HFGMC) was used for the micromechanical modeling of the

soft matrix–calcium particle composite. Combining these
techniques it became possible to perform full-scale micro-
mechanical simulations of uniaxial tension in calcified tis-
sues. These simulations allowed for generating stress–stretch
curves including the point of the onset of mechanical failure –

the strength. The stress–stretch curves were generated for 18
different cases of the aneurysmal composite materials con-
taining cylindrical or cubic inclusions at various amounts of
calcification: 10%, 40%, and 70%. In addition, the maps of the
stress triaxiality ratio distribution were generated which
indicated the locations of the possible occurrence of cavita-
tion that might trigger the initiation of cracks.

Based on the simulation results we found that any
amount of calcification leads to the aneurysm stiffening. This
finding is in a good qualitative agreement with the similar
findings for composite materials in general and calcified
human cartilage tissue in particular (Lau et al., 2015). While
the stiffening effect of the embedded hard particles is well
documented in the literature on composite materials, the
study of the strength (not stiffness) alterations is quite
unusual. Such an asymmetry in results on stiffness and
strength is not surprising, of course. The problem is that
the constitutive description of the traditional material mod-
els does not include failure and, consequently, no strength
predictions can be made. That is not the case of our study,
however. We did include a material failure description in the
constitutive model for soft matrix and, thus, we were able to
study the strength of the composite.

Our simulations of the strength of the calcified tissue
showed various outcomes. The strength may not alter or it
may even increase as compared to the regular non-calcified
tissue. The variability of the outcome of numerical simula-
tions can be explained by the variability of the models and
there is no one clear behavioral pattern that can be explained
by one clear reason. Everything is case-dependent. However,
in the majority of the considered cases the decrease of the
strength with calcification was observed. Quantitatively, the
strength decrease could vary from 10% to 40% and more. The
reader might find it contrary to intuition that the strength can
decrease while the stiffness always increases with calcifica-
tion. This interesting finding emphasizes the difference
between the concepts of stiffness and strength which is not
always appreciated. The strength of a composite is signifi-
cantly affected by the locally inhomogeneous state of defor-
mation. Small hard particles rather than big ones can be
stress concentrators amplifying the likelihood of the local
material failure. Also the hard particles restrain deformation
in their vicinity creating the state of hydrostatic tension
which, in its turn, may trigger cavitation with the subsequent
fracturing.

The obtained results have limitations, two of which we
should mention. Firstly, it was assumed in our studies that
the calcium particles were uniformly distributed within the
tissue. That was an idealization, of course. Distribution of
calcium is highly aneurysm-specific. Moreover, the calcium
particles can be interconnected which may significantly
affect the mechanical response of the composite tissue. The
latter problem was considered in the recent study of the
cartilage calcification presented in (Lau et al., 2015). Unfortu-
nately, the lack of the experimental data and the difficulty of
the calcium counting (Buijs et al., 2013) prevented us from the
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more patient-specific simulations. There is no doubt, never-
theless, that the modeling approach considered in our work
can be readily adapted to any patient-specific simulation
based on the available experimental data. Secondly, we
completely ignored possible compliance and failure proper-
ties of the matrix–particle interface. Such interface can be of
importance as it can affect both overall stiffness and strength
of the composite (Aboudi and Volokh, 2015). Strictly speaking,
it is necessary to develop and calibrate a cohesive surface
model for the matrix–particle interface. Unfortunately, no
experimental data on the matrix–particle debonding in calci-
fied aneurysms is available to do the calibration. When the
test data is available then a cohesive surface model can be
calibrated and the high-fidelity generalized method of cells
(HFGMC) can be properly modified to incorporate the inter-
face failure description (e.g. Aboudi and Volokh, 2015).
Despite the mentioned limitations, we believe that the results
presented in our study are valuable and give a qualitative
assessment of the effect of calcification on the aneurysm
strength.

Remark 1. The present study focused on the calcification
effect in aneurysms. However, we should mention works
(Maldonado et al., 2012; Cunnane et al., 2014) devoted to the
studies of the calcification effect on the mechanical proper-
ties of atherosclerotic plaques. In these works a strength
reduction in the plaques with the increasing volume of
calcification was reported. Results of our numerical simula-
tions echo the results for the atherosclerotic plaques.

Remark 2. Tissue stiffness inevitably increases with calcifi-
cation under condition of the complete bonding between the
particles and soft matrix. If the bonding is incomplete then
the stiffness can obviously decrease. The latter situation
cannot be excluded in the process of gradual calcification.

5. Conclusion

Results of the present study show an increase of the stiffness
and a possible decrease of the strength of the calcified
aneurysmal tissue as compared to the non-calcified one.
The observation that calcification (i.e. the presence of hard
particles) can significantly affect the stiffness and strength
suggests the necessity to develop refined experimental tech-
niques for the accurate quantitative and qualitative assess-
ment of the calcification effect.
Acknowledgments

Both authors acknowledge support from the Israel Science
Foundation, ISF-198/15. The second author was also grateful
for the support of the German-Israel Foundation (GIF) under
Contract no. 1166-163.

r e f e r e n c e s

Acosta, S., Ogren, M., Bengtsson, H., Bergqvist, D., Lindblad, B.,
Zdanowski, Z., 2006. Increasing incidence of ruptured
abdominal aortic aneurysm: a population-based study. J. Vasc.
Surg. 44, 237–243.

Aboudi, J., Arnold, S.M., 2000. Micromechanical modeling of the
finite deformation of thermoelastic multiphase composites.
Mech. Math. Solids 5, 75–99.

Aboudi, J., Arnold, S.M., Bednarcyk, B.A., 2013. Micromechanics of
Composite Materials: A Generalized Multiscale Analysis
Approach. Elsevier, Oxford.

Aboudi, J., Volokh, K.Y., 2015. Failure prediction of unidirectional
composites undergoing large deformations. J. Appl. Mech. 82,
071004.

Baek, S., Rajagopal, K.R., Humphrey, J.D., 2006. A theoretical
model of enlarging intracranial fusiform aneurysms. J. Bio-
mech. Eng. 128, 142–149.

Balakhovsky, K., Jabareen, M., Volokh, K.Y., 2014. Modeling rup-
ture of growing aneurysms. J. Biomech. 43, 653–658.

Basalyga, D., Simionescu, D., Xiong, W., Baxter, B., Starcher, B.,
Vyavahare, N., 2004. Elastin degradation and calcification in
an abdominal aorta injury model: role of matrix metallopro-
teinases. Circulation 110, 3480–3487.

Buijs, R., Willems, T., Tio, R., Boersma, H., Tielliu, I., Slart, R.,
Zeebregts, C., 2013. Calcification as a risk factor for rupture of
abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 46,
542–548.

Chatziprodromou, I., Tricoli, A., Poulikakos, D., Ventikos, Y., 2007.
Hemodynamic and wall remodeling of a growing cerebral
aneurysm: a computational model. J. Biomech. 40, 412–426.

Cunnane, E.M., Mulvihill, J.J.E., Barrett, H.E., Healy, D.A., Kava-
nagh, E.G., Walsh, S.R., Walsh, M.T., 2014. Mechanical, biolo-
gical and structural characterization of human atherosclerotic
femoral plaque tissue. Acta Biomater. 11, 295–303.

Earnshaw, J., 2011. Doubts and dilemmas over abdominal aortic
aneurysm. Br. J. Surg. 98, 607–608.

Gent, A.N., 2004. Elastic instabilities in rubber. Int. J. Non-Linear
Mech. 40, 165–175.

Gent, A.N., 2012. Engineering with Rubber: How to Design Rubber
Components, 3rd ed. Hanser, Cincinnati.

Humphrey, J.D., 2002. Cardiovascular Solid Mechanics: Cells,
Tissues, and Organs. Springer, New York.

Holzapfel GA, Ogden RW (eds.), 2009. Biomechanical Modelling at
the Molecular, Cellular and Tissue Levels. Springer, New York.

Humphrey, J.D., Holzapfel, G.A., 2012. Mechanics, mechanobiol-
ogy, and modeling of human abdominal aorta and aneurysms.
J. Biomech. 45, 805–814.

Inzoli, F., Boschetti, F., Zappa, M., Longo, T., Fumero, R., 1993.
Biomechanical factors in abdominal aortic aneurysm rupture.
Eur. J. Vasc. Surg. 7, 667–674.

Irkle, A., Vesey, A.T., Lewis, D.Y., Skepper, J.N., Bird, J.L.E., Dweck, M.
R., Joshi, F.R., Gallagher, F., Warburton, E.A., Bennett, M.R.,
Brindle, K.M., Newby, D.E., Rudd, J.H., Davenport, A.P., 2015.
Identifying active vascular microcalcification by 18F-sodium
fluoride positron emission tomography. Nat. Commun. 6, 7495.

Kroon, M., Holzapfel, G.A., 2007. A model of saccular cerebral
aneurysm growth by collagen fiber remodeling. J. Theor. Biol.
247, 775–787.

Li, Z., U-King-Im, J., Tang, T., Soh, E., See, T., Gillard, J., 2008.
Impact of calcification and intraluminal thrombus on the
computed wall stresses of abdominal aortic aneurysm. J. Vasc.
Surg. 47, 928–935.

Lau, A.G., Kindig, M.W., Salzar, R.S., Kent, R.W., 2015. Microme-
chanical modeling of calcifying human costal cartilage
using the generalized method of cells. Acta Biomater. 18,
226–235.

Martufi, G., Gasser, T.C., 2012. Turnover of fibrillar collagen in soft
biological tissue with application to the expansion of
abdominal aortic aneurysms. J. R. Soc. Interface 9, 3366–3377.

McGloughlin, T., 2011. Biomechanics and Mechanobiology of
Aneurysms. Springer, Berlin.

http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref1
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref1
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref1
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref1
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref4
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref4
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref4
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref3
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref3
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref3
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref2
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref2
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref2
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref5
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref5
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref5
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref6
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref6
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref7
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref7
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref7
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref7
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref8
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref8
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref8
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref8
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref9
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref9
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref9
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref10
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref10
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref10
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref10
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref11
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref11
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref12
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref12
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref13
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref13
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref14
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref14
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref15
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref15
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref15
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref16
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref16
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref16
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref17
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref17
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref17
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref17
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref17
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref18
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref18
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref18
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref19
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref19
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref19
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref19
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref20
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref20
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref20
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref20
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref21
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref21
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref21
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref22
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref22


j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 5 7 ( 2 0 1 6 ) 1 6 4 – 1 7 4174
Marra, S., Daghlian, C., Fillinger, M., Kennedy, F., 2006. Elemental
composition, morphology and mechanical properties of cal-
cified deposits obtained from abdominal aortic aneurysms.
Acta Biomater. 2, 515–520.

Maier, A., Gee, M., Reeps, C., Eckstein, H., Wall, W., 2010. Impact of
calcifications on patient-specific wall stress analysis of
abdominal aortic aneurysms. Biomech. Model. Mechanobiol.
9, 511–521.

Maldonado, N., Kelly-Arnold, A., Vengrenyuk, Y., Laudier, D.,
Virmani, R., Fallon, J.T., Cardoso, L., Weinbaum, S., 2012. A
mechanistic analysis of the role of micro-calcifications in
vulnerable plaque rupture. Am. J. Physiol. Heart Circ. Physiol.
303, H619–H628.

O’Leary, S.A., Mulvihill, J.J., Barret, H.E., Kavanagh, E.G., Walsh, M.
T., McGloughlin, T.M., Doyle, B.J., 2015. Determining the
influence of calcification on the failure properties of abdom-
inal aortic aneurysm (AAA) tissue. J. Mech. Behav. Biomed.
Mater. 42, 154–167.

Pierce, D.M., Maier, F., Weisbecker, H., Viertler, C., Verbrugge, P.,
Famaey, N., Fourneau, I., Herijgers, P., Holzapfel, G.A., 2015.
Human thoracic and abdominal aortic aneurysmal tissue:
damage experiments, statistical analysis and constitutive
equations. J. Mech. Behav. Biomed. Mater. 41, 92–107.

Raghavan, M.L., Vorp, D.A., 2000. Toward a biomechanical tool to
evaluate rupture potential of abdominal aortic aneurysm:
identification of a finite strain constitutive model and eva-
luation of its applicability. J. Biomech. 33, 475–482.

Raghavan, M.L., da Silva, E.S., 2011. Mechanical properties of AAA
tissue. In: McGloughlin, T. (Ed.), Biomechanics and Mechan-
obiology of Aneurysms. Springer, Berlin.

Robertson, A.M., Duan, X., Aziz, K.M., Hill, M.R., Watkins, S.C.,
Cebral, J.R., 2015. Diversity in the strength and structure of
unruptured cerebral aneurysms. Ann. Biomed. Engng. 43,
1502–1515.

Speelman, L., Bohra, A., Bosboom, E., Schurink, G., Vosse, F.,
Makaroun, M., Vorp, D., 2007. Effects of wall calcifications in
patient-specific wall stress analyses of abdominal aortic
aneurysms. J. Biomech. Eng. 129, 105–109.
Svensjo, S., Bjorck, M., Gurtelschmid, M., Gidlund, K. Djavani,
Hellberg, A., Wanhainen, A., 2011. Low prevalence of abdom-
inal aortic aneurysm among 65-year-old Swedish men indi-
cates a change in the epidemiology of the disease. Circulation
124, 1118–1123.

Tong, J., Holzapfel, G.A., 2015. Structure, mechanics, and histol-
ogy of intraluminal thrombi in abdominal aortic aneurysms.
Ann. Biomed. Eng. 43, 1488–1501.

Volokh, K.Y., Vorp, D.A., 2008. A model of growth and rupture of
abdominal aortic aneurysm. J. Biomech. 41, 1015–1021.

Vorp, D.A., 2007. Biomechanics of abdominal aortic aneurysm. J.
Biomech. 40, 1887–1902.

Volokh, K.Y., 2011. Modeling failure of soft anisotropic materials
with application to arteries. J. Mech. Behav. Biomed. Mater. 4,
1582–1594.

Volokh, K.Y., 2013. Review of the energy limiters approach to
modeling failure of rubber. Rubber Chem. Technol. 86,
470–487.

Volokh, K.Y., 2014. On irreversibility and dissipation in hypere-
lasticity with softening. J. Appl. Mech. 86, 470–487.

Volokh, K.Y., 2015a. Cavitation instability as a trigger of aneurysm
rupture. Biomech. Model. Mechanobiol. 14, 1071–1079.

Volokh, K.Y., 2015b. Thrombus rupture via cavitation. J. Biomech.
48, 2186–2188.

Wang, D.H.J., Makaroun, M., Webster, M.W., Vorp, D.A., 2001.
Mechanical properties and microstructure of intraluminal
thrombus from abdominal aortic aneurysm. J. Biomech. Eng.
123, 536–539.

Watton, P.N., Hill, N.A., Heil, M., 2004. A mathematical model for
the growth of the abdominal aortic aneurysm. Biomech.
Model. Mechanobiol. 3, 98–113.

Watton, P.N., Ventikos, Y., Holzapfel, G.A., 2009. Modeling the
growth and stabilization of cerebral aneurysm. Math. Med.
Biol. 26, 133–164.

http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref23
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref23
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref23
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref23
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref24
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref24
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref24
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref24
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref25
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref25
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref25
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref25
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref25
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref26
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref26
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref26
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref26
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref26
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref27
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref27
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref27
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref27
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref27
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref30
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref30
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref30
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref30
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref28
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref28
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref28
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref29
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref29
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref29
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref29
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref32
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref32
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref32
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref32
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref31
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref31
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref31
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref31
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref31
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref33
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref33
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref33
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref34
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref34
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref35
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref35
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref38
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref38
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref38
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref36
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref36
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref36
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref37
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref37
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref39
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref39
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref40
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref40
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref43
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref43
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref43
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref43
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref41
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref41
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref41
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref42
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref42
http://refhub.elsevier.com/S1751-6161(15)00430-0/sbref42

	Aneurysm strength can decrease under calcification
	Introduction
	Methods
	Constitutive modeling
	High-fidelity generalized method of cells micromechanics analysis

	Results
	Discussion
	Conclusion
	Acknowledgments
	References




