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Microscopic voids can irreversibly grow into the macroscopic
ones under hydrostatic tension. To explain this phenomenon, it
was suggested in the literature to use the asymptotic value of the
hydrostatic tension in the plateau yieldlike region on the
stress–stretch curve obtained for the neo-Hookean model. Such an
explanation has two limitations: (a) it relies on analysis of only
one material model and (b) the hyperelasticity theory is used for
the explanation of the failure phenomenon. In view of the men-
tioned limitations, the objective of the present note is twofold.
First, we simulate the cavity expansion in rubber by using various
experimentally calibrated hyperelastic models in order to check
whether the stress–stretch curves have the plateau yieldlike
regions independently of the constitutive law. Second, we repeat
simulations via these same models enhanced with a failure
description. We find (and that was not reported in the literature)
that the process of cavity expansion simulated via hyperelastic
constitutive models exhibiting stiffening, due to unfolding of long
molecules, is completely stable and there are no plateau yieldlike
regions on the stress–stretch curves associated with cavitation. In
addition, we find that the instability in the form of yielding
observed in experiments does appear in all simulations when
the constitutive laws incorporate failure description with energy
limiters. [DOI: 10.1115/1.4032377]
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1 Introduction

Many materials break as a result of growth and coalescence of
small voids or cavities. For example, that is a scenario of ductile
failure in metals. Rubberlike materials are also prone to growth of
microcavities which may trigger macroscopic cracks. Gent and
Lindley [1] performed “poker-chip” tests on natural rubber speci-
mens and observed the yielding of micron-scale cavities into the
visible ones. Globally, the specimen underwent uniaxial tension
while locally the tension was hydrostatic because the specimen
was thin and geometrically restrained.

To explain the experimental observations, Gent and Lindley [1]
used the solution of the cavitation problem for neo-Hookean mate-
rial which exhibited (a) plateau yieldlike region on the
stretch–stress curve and (b) the (asymptotic) maximum magnitude
of hydrostatic tension equal to 5/2 of the initial shear modulus or
5/6 of the initial elasticity (Young) modulus. Based on these
notions, Gent [2–4] pushed forward the idea that the hydrostatic
tension equal to 5/6 of the initial elasticity modulus was univer-
sally critical for cavitation instability in various rubberlike materi-
als independently of the constitutive law. The latter idea is very
attractive, of course, due to its simplicity. However, a closer look
is required at its theoretical foundations based on the

neo-Hookean material model. Indeed, the mentioned constitutive
model derived from the restrictive statistical assumptions [5] is
applicable to moderate stretches not exceeding the range from 1.2
to 1.5. At the same time, the asymptotic value of the critical
hydrostatic tension is reached for stretches which are far beyond
the range of the model applicability. Besides, the hyperelasticity
theory was used for the explanation of the obviously inelastic fail-
ure phenomenon. Some controversy is evident.

Under the circumstances described above, it is natural: (a) to
examine the solution of the cavitation problem for material mod-
els whose range of applicability goes well beyond the simplest
neo-Hookean theory with the valid stretch range from 1.2 to 1.5
and (b) to simulate the hyperelastic material models enhanced
with a failure description.

Particularly, in the present work, we simulate the cavity expan-
sion via seven experimentally calibrated hyperelastic constitutive
models reviewed by Marckmann and Verron [6]. In addition, we
enhance these constitutive models with energy limiters to describe
material failure and again analyze cavitation problem via the
enhanced constitutive models.

The results of the simulations show that the process of cavity
expansion described by hyperelastic constitutive models exhibit-
ing stiffening due to unfolding of long molecules is completely
stable, i.e., without the yieldlike plateau region and the critical as-
ymptotic hydrostatic tension. However, the instability in the form
of yielding, observed in experiments, does appear in simulations
when the constitutive equations incorporate the material failure
description.

The paper is organized as follows: The method of analysis is
described in Sec. 2. The approach of energy limiters which allows
a material failure description is briefly reviewed in Sec. 3. Various
material models and results of the cavitation analysis for them are
given in Sec. 4, and a brief discussion of the results in Sec. 5 com-
pletes the work.

2 Cavitation Analysis

Theoretical considerations of the expansion of bulk cavity in
various materials can be found in Refs. [7–18]. Below, we follow
the work [18].

Assuming that the deformation is centrally symmetric and the
natural base vectors in spherical coordinates coincide with the
principal directions of stretches, we can write the deformation law
as follows:

r ¼ rðRÞ; # ¼ H; x ¼ X (1)

where a material particle occupying position ðR; H; XÞ in the ini-
tial configuration is moving to position ðr; #; xÞ in the current
configuration.

Designating the radial direction with index 1 and tangential
direction with indices 2 and 3, we can write the principal stretches
in the form

k1 ¼
dr

dR
; k2 ¼ k3 ¼

r

R
(2)

Since the volume of incompressible material is preserved dur-
ing deformation, we have

b3 � a3 ¼ B3 � A3 (3)

where A and a are the internal and B and b are the external radii of
the sphere before and after deformation accordingly. We also note
that any subsphere with the internal or external radius rðRÞ should
also preserve its volume and, consequently, we get

r3 � a3 ¼ R3 � A3 (4)

The principal components of the Cauchy stress are in the direc-
tions of the natural base vectors
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r1 ¼ rrr ¼ �pþ k1

@w
@k1

r2 ¼ r## ¼ �pþ k2

@w
@k2

r3 ¼ rxx ¼ �pþ k3

@w
@k3

(5)

where p is the indefinite Lagrange multiplier.
The stresses should obey the only equilibrium equation

drrr

dr
þ 2

rrr � r##
r

¼ 0 (6)

This equation can be integrated as follows:

rrr bð Þ � rrr að Þ ¼ 2

ðb

a

r## � rrr

r
dr (7)

or

g ¼ 2

ðb

a

k2

@w
@k2

� k1

@w
@k1

� �
dr

r
(8)

where boundary conditions have been taken into account

rrrðr ¼ aÞ ¼ 0; rrrðr ¼ bÞ ¼ g (9)

We note that the hydrostatic tension g is a function of the place-
ment of the internal boundary, a, with account of

Rðr; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 � a3 þ A33

p
(10)

For b� a, we have the problem of the expansion of small cav-
ity in the infinite medium under the remote hydrostatic tension (In
computations, we assume: b¼ 1000 A).

Remark 1. The analysis presented above is based on the
assumption of central symmetry. We emphasize that such assump-
tion correlates well with the experimental data. Indeed, the experi-
mental data presented in Ref. [1] show that the visible voids
remain spherical after the growth and unloading. No pronounced
localization of failure into cracks is observed.

3 Hyperelasticity With Energy Limiters

A variant of the continuum description of bulk failure—soften-
ing hyperelasticity or elasticity with energy limiters—was devel-
oped in Refs. [19–24]. Softening hyperelasticity is dramatically
simpler in formulation than any existing approach for modeling
material failure: its basic idea is to introduce an energy limiter in
the expression for strain energy. Such limiter enforces saturation—
the failure energy—in the strain energy function, which indicates
the maximum amount of energy that can be stored and dissipated
by an infinitesimal material volume during rupture. The limiter
induces stress bounds in the constitutive equations automatically.

The strain energy function for hyperelastic material with soften-
ing can be written in the following general form:

w ¼ wf � HðaÞweðCÞ (11)

wf ¼ weð1Þ and

weðCÞ ! 0; when kCk ! 1
(12)

where wf and weðCÞ designate a constant bulk failure energy and
an elastic energy, respectively; HðzÞ is a unit step function, i.e.,
HðzÞ ¼ 0 if z < 0 and HðzÞ ¼ 1 otherwise; 1 is a second-order
identity tensor; C ¼ FTF is the right Cauchy–Green tensor; F ¼
Grad y is the deformation gradient, where y is the current place-
ment of a material point which occupied position x in a reference
configuration; and kCk ¼ trC, for example.

The switch parameter a 2 ð�1; 0� is defined by the evolution
equation

_a ¼ �Hðe� we=wf Þ; aðt ¼ 0Þ ¼ 0 (13)

where 0 < e� 1 is a dimensionless tolerance constant.
The physical interpretation of Eqs. (11) and (12) is straight: ma-

terial response is hyperelastic as long as the stored energy is
below its limit, wf . When the latter limit is reached, then the
stored energy remains constant for the rest of the deformation pro-
cess, thereby making material healing impossible. Parameter a
works as a switch: if a ¼ 0, the process is hyperelastic and revers-
ible, and if a < 0, the material is irreversibly damaged and the
stored energy is dissipated. We emphasize that the switch parame-
ter is not an internal variable like in damage mechanics.

Using the dissipation inequality, it is possible to derive consti-
tutive law in the following form [21]:

r ¼ � 2H að Þ
J

F
@we

@C
FT (14)

where J ¼ detF.
The elastic energy can be defined as follows [21], for example:

we ¼ U
m

C
1

m
;

Wm

Um

� �
(15)

where Cðs; xÞ ¼
Ð1

x ts�1e�t dt is the upper incomplete gamma
function; WðCÞ is the strain energy of intact material, i.e., without
failure; U is the energy limiter, which can be calibrated in macro-
scopic experiments; and m is a dimensionless material parameter,
which controls sharpness of the transition to material instability
on the stress–strain curve. Increasing or decreasing m it is possible
to simulate more or less steep ruptures of the internal bonds
accordingly.

Substitution of Eq. (15) in Eq. (14) yields

r ¼ 2H að Þ
J

exp �Wm

Um

� �
F
@W

@C
FT (16)

We note, finally, that the account of dissipation via step func-
tion in Eq. (11) is necessary when the material unloading is sound
as in the case of crack propagation, for example. Otherwise, the
step function can be dropped from equations as in the subsequent
analysis of cavity expansion.

4 Results

In what follows, we use the seven experimentally calibrated
hyperelastic models of rubber taken from Marckmann and Verron
[6]. The reader is advised to refer the mentioned review for
details.

In order to calibrate the energy limiters we assume, following
experimental observations, that the material rupture is abrupt and
m ¼ 10; and the energy limiter is fitted to the critical rupture
stretch kcr ¼ 7:0 in uniaxial tension for all cases. This critical
stretch corresponds to the experimental data for the natural rubber
vulcanizate [25].

We start with the neo-Hookean model for the intact material

W ¼ l
2

I1 � 3ð Þ (17)

l ¼ 0:4 MPa (18)

and the results of analysis are presented in Fig. 1.
The uniaxial tension curve for this material model without

(dashed) and with (solid) energy limiters is presented on the left
in Fig. 1. The hydrostatic tension versus hoop stretch curves are
presented on the right in Fig. 1 accordingly.

The Biderman model for the intact material is defined as
follows:
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W ¼ c10ðI1 � 3Þ þ c20ðI1 � 3Þ2

þ c30ðI1 � 3Þ3 þ c01ðI2 � 3Þ (19)

c10 ¼ 0:208 MPa; c20 ¼ �0:0024 MPa

c30 ¼ 0:0005 MPa; c01 ¼ 0:0233 MPa
(20)

and the results of analysis are presented in Fig. 2.
The Yeoh–Fleming model for the intact material is defined as

follows:

W ¼ a

b
Im� 3ð Þ 1� exp � I1� 3

Im� 3
b

� �
�c10 Im� 3ð Þln 1� I1� 3

Im�3

� ��

(21)

a ¼ 0:0519 MPa; b ¼ 4:03; Im ¼ 82:8; c10 ¼ 1:127 MPa

(22)

and the results of analysis are presented in Fig. 2.
The Isihara model for the intact material is defined as follows:

W ¼ c10ðI1 � 3Þ þ c20ðI1 � 3Þ2 þ c01ðI2 � 3Þ (23)

c10 ¼ 0:171MPa; c20 ¼�0:00024 MPa; c01 ¼ 0:00489 MPa

(24)

and the results of analysis are presented in Fig. 2.
The Ogden model for the intact material is defined as follows:

W ¼
X3

n¼1

ln

an
kan

1 þ kan

2 þ kan

3 � 3
� �

(25)

l1 ¼ 0:63 MPa; a1 ¼ 1:3

l2 ¼ 0:0012 MPa; a2 ¼ 5

l3 ¼ �0:01 MPa; a3 ¼ �2

(26)

and the results of analysis are presented in Fig. 3.
The Gent model for the intact material is defined as follows:

W ¼ �E

6
Im � 3ð Þln 1� I1 � 3

Im � 3

� �
(27)

E ¼ 0:978 MPa; Im ¼ 96:4 (28)

and the results of analysis are presented in Fig. 3.
The Arruda–Boyce (8-chain) model for the intact material is

defined as follows:

W ¼ nkTffiffiffiffi
N
p 1

2
I1 � 3ð Þ þ 1

20N
I2
1 � 9

� �
þ 11

1050N2
I3
1 � 27

� ��

þ 19

7000N3
I4
1 � 81

� �
þ 519

673750N4
I5
1 � 243

� ��
(29)

nkT ¼ 0:28 MPa; N ¼ 25:4 (30)

and the results of analysis are presented in Fig. 3.
Remark 2. Ball’s formula [10] for the onset of cavitation can

also be applied directly to all the strain energy functions. In the
cases with energy limiters, in which the energy is bounded, the
Ball formula provides results close to the yield stresses presented
in our analyses above. In the cases of the stored energies without
limiters, Ball’s formula generally diverges. In addition, we should
note that Ball [10] predicts the critical hydrostatic tension of the
onset of cavitation in materials without pre-existing voids. The
critical tension in the latter case is the bifurcation point after
which the material behavior is not tracked. In the present analysis,
on the contrary, it is assumed that the microscopic voids exist in
advance and they expand under hydrostatic tension up to the criti-
cal yield point without any bifurcation.

5 Discussion

Experiments with rubberlike materials exhibit the possibility
for microcavities to dramatically expand in hydrostatic tension—
they become visible. Traditional explanation of this phenomenon
relates the unstable expansion of voids—cavitation—to the pla-
teau yieldlike regions on hoop stretch–hydrostatic tension curves
observed for the hyperelastic neo-Hookean model. It was sug-
gested that the asymptotic maximum value of the hydrostatic ten-
sion was the critical cavitation load. This load was equal to 5/2 of
the initial shear modulus or 5/6 of the initial elasticity (Young)

Fig. 1 Cauchy stress versus stretch in uniaxial tension (left)
and hydrostatic tension versus hoop stretch in cavity expan-
sion (right) for the neo-Hookean model

Fig. 2 Hydrostatic tension versus hoop stretch in cavity
expansion for the Biderman, Yeoh–Fleming, and Isihara models

Fig. 3 Hydrostatic tension versus hoop stretch in cavity
expansion for the Ogden, Gent, and Arruda–Boyce models
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modulus. Moreover, it was suggested to use these critical numbers
as universal indicators for cavitation in any rubberlike solid.

The weakness of the mentioned approach is twofold. First, the
neo-Hookean model, which underlies it, is applicable to moderate
stretches merely. Second, the hyperelastic theory cannot explain
the obviously inelastic failure phenomenon in principle.

In order to address the mentioned points, we analyzed the cav-
ity expansion problem by using seven experimentally calibrated
hyperelastic constitutive models of rubber. The neo-Hookean
model indeed showed yieldlike behavior in the cavitation prob-
lem. However, this model is generally inapplicable in the range of
stretches where the yield starts because it cannot describe material
stiffening observed in rubberlike solids. On the other hand, the
models that describe material stiffening due to unfolding of long
molecules—Biderman, Ogden, Gent, Yeoh–Fleming, Isihara, and
Arruda–Boyce (8-chain)—did not show any yieldlike behavior in
the problem of cavity expansion.

In addition, we enhanced all the mentioned hyperelastic consti-
tutive models via material failure description by using the energy
limiters. The limiters were introduced based on the assumption
that materials fail in uniaxial tension at the stretch ratio equal to 7.
Such an assumption is reasonable for the natural rubber vulcani-
zate. Simulations of the cavitation problem with the enhanced
constitutive models showed clear yielding (due to material failure)
for all the enhanced hyperelastic models including those with
stiffening. Certainly, the cavity expansion gets unstable when the
hydrostatic tension reaches a critical magnitude—no further load
increase is necessary to provide the dramatic void growth.

We conclude that the cavitation problem is related to the dam-
age of rubberlike solids and it can be predicted theoretically by
using constitutive models enhanced with a failure description.
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