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a b s t r a c t 

In this paper we develop a new constitutive model to describe the viscoelastic response of elastomers 

subjected to high strain rates. The key and original feature of the model is that it takes into account 

the failure of the material using an energy limiter. We calibrate the constitutive model for various strain 

rates using the experimental data reported by Hoo Fatt and Ouyang (2008) and show the capacity of the 

proposed formulation to describe the rate-dependent behavior of styrene butadiene rubber. In addition, 

we implement the model into ABAQUS/Explicit using a simple scheme for the temporal integration of the 

constitutive equations. Finally, we show sample numerical simulations to illustrate the joint performance 

of the constitutive model and the integration algorithm. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Elastomers are used in tires, isolation bearings, shock absorbers,

oatings etc. They can be exposed to shock, vibrations, blast and

mpact. An elastomer may stretch easily more than 500% under

n applied load. Failure of elastomers is a fundamental issue. The

reakdown of rubber tires because of the catastrophic crack prop-

gation results in more severe loss of capital and life than airplane

ccidents. It is apparent that the correct modeling of failure can

mprove the design of all kinds of parts, components and struc-

ures manufactured with rubber-like materials. 

Complicated mechanical behavior of long molecular chains un-

erlies the macroscopic response of elastomers including their

train rate dependence. The micro-structural mechanism of the

ate-dependence or viscosity is not well understood. Neverthe-

ess, there are various ways to incorporate viscosity in constitu-

ive models of finite elasticity. For example, a plenty of integral

ormulations of nonlinear viscoelasticity started from Green and

ivlin (1957, 1960) . Further developments are reviewed in Lockett

1972) , Carreau et al. (1997) , Hoo Fatt and Ouyang (2007) and

ineman (2009) . There are also numerous differential formula-

ions of nonlinear viscoelasticity based on the introduction of in-

ernal variables and their evolution equations: Lubliner (1985) ;

ion (1996) ; Govindjee and Reese (1997) ; Reese and Govindjee

1998) ; Bergström and Boyce (1998) ; Huber and Tsakmakis (20 0 0) ;

iehe and Keck (20 0 0) and Amin et al. (2006) . 
∗ Corresponding author. 
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All mentioned viscoelasticity theories were developed for rel-

tively low strain rates of about 1 s -1 . High strain rates of 1100–

0 0 0 s -1 for silicone rubber were considered by Yang et al.

20 0 0) and Shim et al. (2004) . Strain rates of about 50 0 0 s -1 for

 filled polybutadiene were studied by Quintavalla and Johnson

2004) . Recently, Hoo Fatt and Ouyang (2008) explored the dy-

amic behavior of styrene butadiene rubber (SBR) and found that

ts rate-dependence is very limited at sufficiently high strain rates.

mportantly and uniquely, experiments by Hoo Fatt and Ouyang

2008) also tracked the changing strength of SBR at varying strain

ates. 

It is worth noting that most theories considered the intact ma-

erial behavior, in which the deformation description did not incor-

orate mechanical failure. However, real materials do fail and their

onstitutive equations should include a description of failure. In

he context of purely elastic deformation (without viscosity) a very

imple account of material failure in the constitutive laws was pro-

osed in a series of recent publications: Volokh (20 04, 20 07, 2010,

011, 2013b, 2014) . The basic idea was to introduce an energy lim-

ter in the expression for strain energy. Such limiter enforces sat-

ration –the failure energy– in the strain energy function, which

ndicates the maximum amount of energy that can be stored by

n infinitesimal material volume prior to rupture. 

The mentioned approach of elasticity with energy limiters does

ot include the viscosity effect. The first attempt to fill this gap

as made in Volokh and Trapper (2008) in a very simple quasi-

inear integral formulation. The latter theory is limited in appli-

ations and more general nonlinear viscoelastic formulation with

nergy limiters is desirable. Thus, in the present paper we: (1) de-

elop a new constitutive model which includes material failure to

http://dx.doi.org/10.1016/j.mechmat.2016.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechmat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2016.10.004&domain=pdf
mailto:cvolokh@technion.ac.il
http://dx.doi.org/10.1016/j.mechmat.2016.10.004
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Fig. 1. Rheological model of the standard solid . 
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describe the viscous response of rubber at high strain rates, (2)

calibrate the model for various strain rates using the experimental

data reported by Hoo Fatt and Ouyang (2008) , (3) implement the

novel constitutive theory into ABAQUS/Explicit via a user subrou-

tine and (4) show the performance of the model in a series of nu-

merical examples. It is worth emphasizing that our formulation is

by no means unique and it has to be understood as a starting point

to provide new insights into the (largely unexplored) rate depen-

dent deformation and failure behavior of rubber like materials. 

2. Nonlinear viscoelasticity with energy limiters 

2.1. Basic equations 

Consider a material point that occupies position X in the refer-

ence configuration Ω0 of a deformable body. The current position

vector x in the deformed configuration Ω is given by x = χ(X , t ) ,

where χ is a bijective and twice continuously differentiable map-

ping. Deformation in the vicinity of the material point is described

by the deformation gradient tensor F 

F = 

∂x 

∂X 

(1)

The linear and angular momentum balance take the following

forms accordingly 

div σ + b = ρa (2)

σ = σT (3)

where the divergence operator is calculated with respect to the

current coordinates x , σ is the Cauchy stress tensor, b is the body

force per unit of current volume, ρ and a are the current mass

density and acceleration vector correspondingly. 

Balance of linear momentum on the body surface ∂ Ω reads 

σn = ̄t (4)

where t is a prescribed traction per unit area of the surface with

the unit outward normal n . 

Alternatively to (4) a surface boundary condition can be im-

posed on placements 

x = x̄ (5)

where x is prescribed on the surface ∂ Ω . 

Initial conditions are 

x (t = 0) = x 0 , v (t = 0) = v 0 (6)

where v is the velocity vector and x 0 and v 0 are prescribed in Ω . 

2.2. Constitutive model 

In the present work we adapt the Eulerian constitutive frame-

work for large inelastic deformations developed by Volokh (2013a )

for a description of isotropic finite viscoelasticity with energy lim-

iters. We assume that the standard solid rheological model under-

lies the constitutive equations, see Fig. 1 . 

We assume an aditive decomposition of the strain energy func-

tion of the form 

ψ(B , B B , ξ ) = ψ A (B , ξ ) + ψ B (B B , ξ ) (7)

where ψ A is the strain energy function of the spring A which

serves to characterize the thermodynamic equilibrium states of the

elastomer and ψ B is the strain energy function of the spring B

which serves to account for the additional energy storage and non-

equilibrium states. Furthermore, B = FF T is the left Cauchy-Green

strain tensor, B is an (strain like) internal variable of the model
B 
nd ξ is a switch parameter (that will be defined later). We fur-

her impose the following conditions on the strain energy function

f spring A 

 A (B , ξ ) = ψ 

f 
A − H(ξ ) ψ 

e 
A (B ) (8)

 

f 
A = ψ 

e 
A (1 ) (9)

 B ‖ → ∞ ⇒ ψ 

e 
A (B ) → 0 (10)

here ψ 

f 
A 

and ψ 

e 
A 
(B ) designate the constant bulk failure energy

nd the elastic free energy ofthe spring A, respectively. Moreover,

( ξ ) is a unit step function, i.e. H(z) = 0 if z < 0 and H(z) = 1 oth-

rwise; 1 is a second-order identity tensor; and ‖ . . . ‖ is a tensor

orm. 

The switch parameter ξ ∈ (−∞ , 0] is defined by the evolution

quation 

˙ = −H 

(
ε − ψ 

e 
A 

ψ 

f 
A 

)
, ξ (t = 0) = 0 (11)

here 0 < ε � 1 is a dimensionless precision constant. 

The physical interpretation of the strain energy function is

traightforward: the response of the spring A is elastic as long as

he strain energy is below its limit, ψ 

f 
A 

. When the limit is reached,

he strain energy remains constant for the rest of the deformation

rocess, thereby making material healing impossible. The param-

ter ξ is not an internal variable (like in Damage Mechanics); it

orks as a switch: if ξ = 0 then the process is elastic and if ξ < 0

hen the material is irreversibly damaged and the stored energy is

issipated. 

In order to enforce the energy limiter in the strain energy func-

ion, we use the following form of the elastic energy 

 

e 
A (B ) = 

�

m 

Γ

(
1 

m 

, 
W A (B ) m 

�m 

)
(12)

here Γ ( s , x ) = 

∫ ∞ 

x t s −1 e −t dt is the upper incomplete gamma

unction, W A ( B ) is the strain energy of intact material, � is the

nergy limiter and m is a dimensionless material parameter which

ontrols the sharpness of the transition to material failure in the

tress-strain curve. Increasing or decreasing m it is possible to sim-

late more or less steep ruptures of the internal bonds accordingly.

The failure energy can be calculated as follows 

 

f 
A = ψ 

e 
A (1 ) = 

�

m 

Γ

(
1 

m 

, 
W A (1 ) m 

�m 

)
(13)

Note that the failure energy is a constant that depends on the

wo failure parameters ( �, m) through the gamma function. There

s no need to limit the energy of spring B as long as the failure of

pring A leads to the overall failure. Therefore, we define the strain

nergy function for the spring B as 

 B (B B , ξ ) = H(ξ ) W B (B B ) (14)
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here W B ( B B ) stands for the strain energy without failure. Note

hat this formulation is valid for any pair of strain energies W A 

nd W B used to describe the intact behavior of the material. 

Based on the additive decomposition of the strain energy func-

ion ψ , the Cauchy stress is given by 

= σA + σB (15) 

here 

A = 2I −1 / 2 
3 

∂ψ A 

∂B 

B = 2I −1 / 2 
3 

(
I 3 ψ 3 1 + ( ψ 1 + I 1 ψ 2 ) B − ψ 2 B 

2 
)

(16)

B = 2I −1 / 2 
B3 

∂ψ B 

∂B B 

B B 

= 2I −1 / 2 
B3 

(
I B3 ψ B3 1 + ( ψ B1 + I B1 ψ B2 ) B B − ψ B2 B 

2 
B 

)
(17) 

he principal invariants are given by 

 1 = tr B , 2I 2 = ( tr B ) 
2 − tr ( B ) 

2 
, I 3 = det B (18)

 B1 = tr B B , 2I B2 = ( tr B B ) 
2 − tr ( B B ) 

2 
, I B3 = det B B (19)

nd we use the shot notation ψ i = ∂ ψ/∂ I i and ψ Bi = ∂ ψ/∂ I Bi . 

The constitutive law (flow rule) for the dashpot is written in

he following general form 

B = β1 1 + β2 D B + β3 D 

2 
B (20)

here β i is a function(al), generally, depending on stresses and

trains, and D B is the rate of deformation tensor corresponding to

he dashpot. 

Following Eckart (1948) , Leonov (1976) and Volokh (2013a ), we

ntroduce the following evolution equation which relates B B and

 B 

 

 B + D B B B + B B D B = 0 , B B (t = 0) = 1 (21)

here 

 

 B = 

˙ B B − LB B − B B L 
T (22) 

s the Oldroyd objective rate of the (strain like) internal variable

 B . In previous expression L refers to the velocity gradient tensor

f the whole model. 

.3. Thermodynamic restrictions 

We write the Clausius–Duhem dissipation inequality in the fol-

owing form 

( σA + σB ) : D − I −1 / 2 
3 

∂ψ 

∂B 

: ˙ B − I −1 / 2 
B3 

∂ψ 

∂ B B 

: ˙ B B ≥ 0 (23)

here D is the strain rate measure corresponding to the whole

odel. 

The second and third terms in previous expression can be

ewritten as 

I −1 / 2 
3 

∂ψ 

∂B 

: ˙ B = 2I −1 / 2 
3 

∂ψ 

∂B 

B : D 

(24) 

I −1 / 2 
B3 

∂ψ 

∂B B 

: ˙ B B = 2I −1 / 2 
B3 

∂ψ 

∂B B 

B B : D − 2I −1 / 2 
B3 

∂ψ 

∂B B 

B B : D B (25) 

here the relations ˙ B = LB + BL T and 

˙ B B = B B ( L − D B ) 
T +

( L − D B ) B B (the latter is derived from Eqs. (21) and (22) ) have

een used. 
Substitution of (24) and (25) in (23) yields (
σA − 2I −1 / 2 

3 

∂ψ 

∂B 

B + σB − 2I −1 / 2 
B3 

∂ψ 

∂B B 

B B 

)
: D 

+ 2I −1 / 2 
B3 

∂ψ 

∂B B 

B B : D B ≥ 0 (26) 

Using the constitutive Eqs. (16) and (17) , previous equation re-

uces to 

B : D B ≥ 0 (27) 

Substituting the flow rule (20) in the latter inequality we get

he final thermodynamic restriction 

1 tr D B + β2 tr D 

2 
B + β3 tr D 

3 
B ≥ 0 . (28)

s pointed out by Volokh (2013a ), an alternative formulation for

he constitutive model could be developed using the multiplicative

ecomposition of the deformation gradient tensor into elastic and

iscous parts. Nevertheless, the difference between the present for-

ulation and the alternative based on the multiplicative decompo-

ition of F is mostly formal: the expressions for the stresses remain

nchanged. 

.4. Specialization to incompressible and compressible materials 

In this section we specialize the constitutive formulation to in-

ompressible and (slightly) compressible materials. The hypothesis

f incompressibility is used in Section 3 to approach analytically

he uniaxial tension problem and calibrate the constitutive model.

ompressibility of the material is taken into account in Section 4 to

ntegrate the constitutive equations and implement the model into

 finite element code. 

.4.1. Incompressible formulation 

The incompressibility condition implies that det B = 1 ,

et B B = 1 and tr D B = 0 . The constitutive laws for the springs

16) –(17) are written as follows 

A = −p A 1 + 2 ( ψ 1 + I 1 ψ 2 ) B − 2 ψ 2 B 

2 (29)

B = −p B 1 + 2 ( ψ B1 + I B1 ψ B2 ) B B − 2 ψ B2 B 

2 
B (30)

here p A and p B are undefined Lagrange multipliers enforcing in-

ompressibility. 

The constitutive law for the dashpot (20) is written in the fol-

owing simple form 

1 = 

1 

3 

tr σB , β2 = η2 , β3 = 0 (31)

here η2 is the only viscosity parameter or function. 

Substitution of (31) in (20) leads to 

B = 

1 

3 

( tr σB ) 1 + η2 D B (32) 

Substitution of (32) in (27) yields 

2 tr D 

2 
B ≥ 0 (33) 

This dissipation inequality is obeyed imposing the following re-

triction on the viscosity 

2 ≥ 0 (34) 

.4.2. Compressible formulation 

Material compressibility is required to implement the constitu-

ive equations into a numerical code. The constitutive laws for the

prings (16) –(17) are written as follows 

A = 2I −1 / 2 
3 

(
( I 3 a − b ) 1 + ( ψ 1 + I 1 ψ 2 ) B − ψ 2 B 

2 
)

(35) 
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Table 1 

Material parameters for SBR rubber. 

Spring A 

μ1 [MPa] α1 μ2 [MPa] α2 m �[MPa] 

0 .391 1 .045 2 .162 −3 . 065 30 7 .5 

Spring B 

μB1 [MPa] αB1 μB2 [MPa] αB2 

3 .99 0 .382 2 .868 −11 . 295 

Dashpot B 

C 1 [MPa.s] C 2 C 3 [MPa.s] 

23 .095 7 . 421 · 10 −8 −8 . 458 · 10 −7 

C 4 C 5 C 6 C 7 
−872 . 52 −7975 . 595 22150 . 457 27310 . 182 
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t  

A  
σB = 2I −1 / 2 
B3 

(
( I B3 a B − b B ) 1 + ( ψ B1 + I B1 ψ B2 ) B B − ψ B2 B 

2 
B 

)
(36)

where a, b and a B , b B are the penalizing bulk moduli for springs A

and B, respectively (see Trapper and Volokh, 2010 ). 

We note that the bulk moduli are not independent and they

should obey the conditions of zero stress for B = B B = 1 and D = 0

0 = a − b + ψ 1 + 2 ψ 2 , 0 = a B − b B + ψ B1 + 2 ψ B2 (37)

Thus, choosing (for B = B B = 1 and D = 0 ) 

a ≈ b � ψ 1 + 2 ψ 2 , a B ≈ b B � ψ B1 + 2 ψ B2 (38)

it is possible to enforce incompressibility in computations. 

Following Reese and Govindjee (1998) , we write the constitu-

tive law for the dashpot as 

β1 = 

3 η1 − 2 η2 

9 η1 

tr σB , β2 = η2 , β3 = 0 (39)

where η1 and η2 are two viscosity parameters or functions. 

Substitution of (39) in (20) leads to 

σB = 

3 η1 − 2 η2 

9 η1 

(tr σB ) 1 + η2 D B (40)

Substitution of (40) in (27) yields 

6 η1 − 4 η2 

27 η1 

( tr σB ) 
2 + η2 tr D 

2 
B ≥ 0 (41)

This dissipation inequality is obeyed imposing the following re-

strictions on the viscosities 

η2 ≥ 0 , 3 η1 > 2 η2 (42)

Furthermore, to enhance incompressibility we can impose

η1 � η2 . 

3. Calibration of the constitutive model 

In this section the (incompressible) constitutive model is cali-

brated to describe the mechanical behavior of styrene butadiene

rubber. For the calibration we use dynamic tensile tests for various

stretch rates performed by Hoo Fatt and Ouyang (2008) . Therefore,

we restrict our attention to the case when then material undergoes

uniaxial tension 

x = λX 1 e 1 + λ−1 / 2 (X 2 e 2 + X 3 e 3 ) (43)

The left Cauchy-Green tensor B and the internal variable B B ad-

mit the spectral representations 

B = λ2 e 1 � e 1 + λ−1 (e 2 � e 2 + e 3 � e 3 ) (44)

B B = λ2 
B e 1 � e 1 + λ−1 

B (e 2 � e 2 + e 3 � e 3 ) (45)

which fulfill the incompressibility conditions: det B = 1 and

det B B = 1 . 

Consequently, the stress-stretch curve, σ ∼ λ , is given by the

following equation 

σ = 2 

(
λ2 − λ−1 

)(
ψ 1 + λ−1 ψ 2 

)
+ 2 

(
λ2 

B − λ−1 
B 

)(
ψ B1 + λ−1 

B ψ B2 

)
(46)

where, λB ( t ) is given by the following evolution equation 

˙ λB = 

˙ λλ−1 λB − 4 λB 

3 η2 

(
λ2 

B − λ−1 
B 

)(
ψ B1 + λ−1 

B ψ B2 

)
λB (t = 0) = 1 (47)

In the case of steady stretching λ = 1 + 

˙ λt , with constant ˙ λ, the

evolution equation can be rewritten as follows 

d λB 

d λ
= λ−1 λB − 4 λB 

3 η2 ̇
 λ

(
λ2 

B − λ−1 
B 

)(
ψ B1 + λ−1 

B ψ B2 

)
λB (λ = 1) = 1 (48)
v  
We use the formulation proposed by Lopez-Pamies (2010) for

he intact strain energy functions 

 A (B ) = 

3 

1 −α1 

2 α1 

μ1 

(
I α1 

1 
− 3 

α1 

)
+ 

3 

( 1 −α2 ) 

2 α2 

μ2 

(
I α2 

1 
− 3 

α2 

)
(49)

 B ( B B ) = 

3 

1 −αB1 

2 αB1 

μB1 

(
I αB 1 

B1 
− 3 

αB 1 

)
+ 

3 

( 1 −αB 2 ) 

2 αB 2 

μB2 

(
I αB2 

B1 
− 3 

αB2 

)
(50)

The viscosity function is taken from Hoo Fatt and Ouyang

2008) 

2 = ( C 1 ( 1 − exp ( C 2 (I 1 − 3) ) ) + C 3 ) 
(
C 4 I 

3 
B1 + C 5 I 

2 
B1 + C 6 I B1 + C 7 

)
(51)

Thus, the proposed model contains 17 parameters: six for

pring A ( μ1 , μ2 , α1 , α2 , m, �), four for spring B ( μB1 , μB2 , αB1 , αB2 )

nd seven for the dashpot (C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 ), see Table 1 .

he calibration process developed in this paper consists on two

tages. In the first stage, the 15 visco-elastic parameters are de-

ermined by fitting simultaneously the experimental data reported

y Hoo Fatt and Ouyang (2008) for various stretch rates: 76 s −1 ,

10 s −1 , 150 s −1 , 300 s −1 , 370 s −1 and 450 s −1 . The genetic algorithm

nd the non-linear unconstrained minimization algorithm (fmin-

earch) inbuilt in the MATLAB Optimization Toolbox have been

sed for this task. It is important to note that this method does not

arrantee a global optimal solution. Nevertheless, the agreement

etween the model and the experimental results is very good. In

he second stage, the energy limit � is directly determined from

he failure stretch and the parameter m is selected depending on

he desired sharpness of the transition to material failure in the

tress-strain curve. 

A salient feature of the energy limiter formulation is its sim-

licity and applicability to already existing visco-elastic models.

ote that the calibration of the two failure parameters is decou-

led from the rest of the model. 

Fig. 2 shows the comparison between the proposed constitu-

ive model (solid lines) and the experiments (markers) reported by

oo Fatt and Ouyang (2008) . Results are shown for various stretch

ates. While the material flow stress significantly increases with

train rate, the failure stretch is largely constant for all the load-

ng rates investigated. These experimental observations are prop-

rly captured by the constitutive model which shows satisfactory

greement with the experimental evidence for all the loading con-

itions investigated. Note that our model captures the saturation

f the material viscosity at high strain rates. 

. Finite element implementation 

In this section we develop a simple integration algorithm

o implement the (slightly compressible) constitutive model into

BAQUS/Explicit code via a user subroutine. The code provides all

ariables at time t n and the deformation gradient for time t n+1 .
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Fig. 2. Comparison between the predictions of the constitutive model (solid lines) 

and the experiments (markers) performed by Hoo Fatt and Ouyang (2008) . Uniaxial 

(Cauchy) stress-stretch curves ( σ − λ). A wide range of stretch rates is explored: 

76 s −1 , 110 s −1 , 150 s −1 , 300 s −1 , 370 s −1 and 450 s −1 . 
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he goal is to update all variables of the constitutive model at time

 

n+1 . 

For that purpose we need to integrate Eq. (21) which provides

 relation between the time evolution of the (strain like) internal

ariable 
� 
B B and the strain rate in the dashpot D B . The idea of the

ntegration comes from the standard notion that the Oldroyd ob-

ective rate can be written with respect to an arbitrary reference

onfiguration z in the following form 

 

 B = 

˙ B B − LB B − B B L 
T = K 

(
∂ 

∂t 

(
K 

−1 B B K 

−T 
))

K 

T (52)

here 

 = 

∂x 

∂z 
; L = 

∂v 

∂z 

∂z 

∂x 

= 

˙ K K 

−1 (53)

Substitution of (52) in (21) yields 

 

(
∂ 

∂t 

(
K 

−1 B B K 

−T 
))

K 

T = −D B B B − B B D B (54)

ith the initial condition B B (t = 0) = 1 . 

Using the Euler explicit approximation of the time derivative

ithin the interval [t n , t n+1 ] and taking into account that D B B B =
 B D B we get (

K 

n+1 
)−1 

B 

n+1 
B 

(
K 

n+1 
)−T − ( K 

n ) 
−1 

B 

n 
B ( K 

n ) 
−T 

= −2(t n+1 − t n ) ( K 

n ) 
−1 

D 

n 
B B 

n 
B ( K 

n ) 
−T 

(55) 

n which we designated 

(•)(t n ) ≡ (•) n , (•)(t n+1 ) ≡ (•) n+1 (56)

Furthermore, taking the arbitrary reference configuration z to

e the x n we have 

 = x 

n , K 

n+1 = 

∂x 

n+1 

∂x 

n 
= F n+1 ( F n ) 

−1 
, K 

n = 1 (57)

ubstitution of (57) in (55) yields 

 

n+1 
B = K 

n+1 
(
1 − 2(t n+1 − t n ) D 

n 
B 

)
B 

n 
B 

(
K 

n+1 
)T 

(58) 

We assume now that variables F n , B 

n , D 

n , B 

n 
B 
, D 

n 
B 
, σn 

A 
, σB 

n are

nown. Besides, the deformation gradient F n+1 is provided by the

ode. Then, we update variables at time t n+1 as follows 

 

n+1 = F n+1 
(
F n+1 

)T 
(59) 

 

n+1 = F n+1 ( F n ) 
−1 

(60) 
 

n+1 
B = K 

n+1 
(
1 − 2(t n+1 − t n ) D 

n 
B 

)
B 

n 
B 

(
K 

n+1 
)T 

(61) 

n+1 
A 

= 2 

(
I n+1 
3 

)−1 / 2 ((
I n+1 
3 a − b 

)
1 + 

(
ψ 

n+1 
1 + I n+1 

1 ψ 

n+1 
2 

)
B 

n+1 

− ψ 

n+1 
2 

(
B 

n+1 
)2 

)
(62) 

n+1 
B = 2 

(
I n+1 
B3 

)−1 / 2 ((
I n+1 
B3 a B − b B 

)
1 + 

(
ψ 

n+1 
B1 + I n +1 

B1 ψ 

n +1 
B2 

)
B 

n+1 
B 

− ψ 

n+1 
B2 

(
B 

n+1 
B 

)2 
)

(63) 

 

n+1 
B = 

2 

9 η1 

(tr σn+1 
B ) 1 + 

1 

ηn+1 
2 

dev σn+1 
B (64)

To remove the failed element the following condition should be

beyed at one of the element Gauss points 

(ξ n+1 ) = 0 (65) 

here 

n+1 = −(t n+1 − t n )H 

( 

ε −
(
ψ 

e 
A 

)n+1 (
ψ 

f 
A 

)n+1 

) 

+ ξ n , ξ 0 = 0 (66)

. Numerical simulations 

In this section we show sample finite element computations

onducted in ABAQUS/Explicit which illustrate the joint perfor-

ance of the constitutive model and the integration algorithm.

he calculations simulate the dynamic tension tests performed by

oo Fatt and Ouyang (2008) . 

.1. Finite element model 

Fig. 3 shows the ASTM D638 type IV dumbbell specimen used

n the experiments of Hoo Fatt and Ouyang (2008) . In the numer-

cal calculations, due to the symmetry of the model, we have only

odeled 1/4 of the specimen. The finite element model is initially

t rest and unstretched. The mechanical boundary conditions are

hown in Fig. 3 , where u i are the components of the displace-

ent vector u , θ i are the components of the rotation vector θ and

 1 = v imp is the impact (loading) velocity. 

The finite element model has been meshed using a total of

560 eight-node solid elements with reduced integration and

ourglass control, C3D8R in ABAQUS notation. Three elements are

laced through the thickness of the model. In the gauge of the

pecimen, the elements show an aspect ratio 0.2: 1: 1. Short el-

ments along the axial direction are required to capture (accu-

ately) the failure of the specimen since the material undergoes

arge axial strains ( λ > 5) before fracture. Elements with larger

xial dimension are badly stretched by the time of fracture and

he failure process is not properly described. Furthermore, a mesh

onvergence study was performed, in which the time evolution of

he stress, strain and strain rate fields were compared against a

easure of mesh density until the results converged satisfactorily.

e hold that viscosity and inertia act as regularization factors that

ontribute to the well-possessedness of the problem, see Molinari

1997) and Needleman (2008) . We assume that this minimizes the

purious influence of the mesh in the solution of the boundary

alue problem. 
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Fig. 3. Geometry and dimensions (in mm ) of the ASTM D638 type IV dumbbell specimen. Finite element model, mesh and mechanical boundary conditions applied in the 

calculations. 

Fig. 4. Comparison between the numerical calculations (solid lines) and the exper- 

iments (markers) performed by Hoo Fatt and Ouyang (2008) . Unixiaxial (Cauchy) 

stress-stretch curves ( σ − λ). Various stretch rates are considered: 76 s −1 , 110 s −1 , 

150 s −1 , 300 s −1 , 370 s −1 and 450 s −1 . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Finite element calculations. Force-time curves ( F − t ) measured at both ends 

of the model: loaded site and central section. The applied stretch rate is 76 s −1 . 
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5.2. Sample results 

Fig. 4 compares the experimental (axial) stress-stretch curves

reported by Hoo Fatt and Ouyang (2008) with our finite ele-

ment calculations. In the computations the stress is calculated as

σ = 

F 
A 0 

λ where F is the axial force measured in the loaded site of

the model, A 0 is the initial cross-section area of the gauge and λ
is the axial stretch calculated measuring the increase in length of

the sample gauge referred to as L in Fig. 3 . The stretch rate which

denotes each loading case in the simulations corresponds to the

(average) value of ˙ λ registered in the specimen gauge during the

calculations. The maximum stretch shown in the numerical results

corresponds to the onset of failure. Beyond this point, the stress

state is no longer uniaxial. The agreement between experiments

and numerical calculations reveals the satisfactory performance of
he (simple) integration algorithm presented in the previous sec-

ion. 

Fig. 5 illustrates force-time curves (F-t) measured at both ends

f the model: loaded site and central section (see Fig. 3 ). The ap-

lied stretch rate is 76 s −1 . We observe that both curves practically

verlap each other. The specimen is largely equilibrated. The only

ifference resides at the very beginning of loading when inertia ef-

ects lead to slight fluctuations in the force recorded in the loaded

ite. 

The force first increases and reaches a local maximum for t ≈
.005 s which leads to localization of deformation in the gauge, see

ig. 6 . The local maximum corresponds to the attainment of the

onsidère condition. Beyond the local maximum, the deformation

ends to increase quickly until a minimum is reached in the F-t

urve for t ≈ 0.012 s. The minimum corresponds to the change of

urvature in the corresponding σ - λ characteristic shown in Fig. 4 .
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Fig. 6. Finite element calculations. Contours of axial stretch λ. The applied stretch 

rate is 76 s −1 . 

Fig. 7. Finite element calculations. Contours of axial stretch rate ˙ λ. The applied 

stretch rate is 76 s −1 . 
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Fig. 8. Finite element calculations. Force-time curves ( F − t ) measured at both ends 

of the sample: loaded site and central section. The applied stretch rate is 450 s −1 . 

Fig. 9. Finite element calculations. Contours of axial stretch λ. The applied stretch 

rate is 450 s −1 . 

Fig. 10. Finite element calculations. Contours of axial stretch rate ˙ λ. The applied 

stretch rate is 450 s −1 . 

6

 

m  

t  

t  
he subsequent increase in strength stabilizes the flow stress lead-

ng to largely uniform distributions of stretch ( Fig. 6 ) and stretch

ate ( Fig. 7 ) within the gauge of the specimen. Heterogeneity in

he field variables is just observed immediately before the maxi-

um force is reached for t ≈ 0.046 s, see Figs. 6 and 7 . Then, rapid

ocalization of deformation occurs within a small zone of the sam-

le gauge leading to material failure. 

Fig. 8 shows force-time curves (F-t) measured at the loaded

ite and the central section. The applied stretch rate is 450 s −1 ,

he highest explored in this paper. At the beginning of loading we

bserve significant fluctuations in the force which are caused by

he propagation of stress waves within the specimen. It is appar-

nt that, for this loading rate, inertia effects are meaningful. The

tretch rate fields within the specimen are rather heterogeneous,

ee Fig. 10 . These fluctuations are progressively attenuated and, for

 ≥ 0.002 s, both curves become practically coincident (the speci-

en is largely equilibrated) and the field variables show uniform

istributions along the gauge (see Figs. 9 and 10 ). A maximum in

he F-t curves is reached for t ≈ 0.0094 s which leads to fast strain

ocalization and subsequent material failure. 

These numerical examples demonstrate the ability of the con-

titutive model and the integration algorithm developed in this pa-

er to simulate deformation and failure of structures (or compo-

ents, or parts...) manufactured with non-linear viscoelastic mate-

ials and subjected to dynamic loading. 
. Concluding remarks 

In this work we have developed a new viscoelastic constitutive

odel to describe deformation and failure of elastomers subjected

o high strain rates. The model has been calibrated for styrene bu-

adiene rubber using experimental data reported in the literature
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and implemented into ABAQUS/Explicit via a user subroutine. Fi-

nite element simulations of dynamic tensile experiments reported

by Hoo Fatt and Ouyang (2008) have been carried out to exem-

plify the joint performance of the constitutive model and the in-

tegration algorithm. The simplicity of the constitutive theory and

the efficiency of the implementation scheme make the formula-

tion developed in this research especially suited to study engineer-

ing applications in which rate-dependent rubber-like materials are

subjected to dynamic deformation and failure. 
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