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In this paper we develop a new constitutive model to describe the viscoelastic response of elastomers
subjected to high strain rates. The key and original feature of the model is that it takes into account
the failure of the material using an energy limiter. We calibrate the constitutive model for various strain
rates using the experimental data reported by Hoo Fatt and Ouyang (2008) and show the capacity of the

proposed formulation to describe the rate-dependent behavior of styrene butadiene rubber. In addition,
we implement the model into ABAQUS/Explicit using a simple scheme for the temporal integration of the
constitutive equations. Finally, we show sample numerical simulations to illustrate the joint performance
of the constitutive model and the integration algorithm.
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1. Introduction

Elastomers are used in tires, isolation bearings, shock absorbers,
coatings etc. They can be exposed to shock, vibrations, blast and
impact. An elastomer may stretch easily more than 500% under
an applied load. Failure of elastomers is a fundamental issue. The
breakdown of rubber tires because of the catastrophic crack prop-
agation results in more severe loss of capital and life than airplane
accidents. It is apparent that the correct modeling of failure can
improve the design of all kinds of parts, components and struc-
tures manufactured with rubber-like materials.

Complicated mechanical behavior of long molecular chains un-
derlies the macroscopic response of elastomers including their
strain rate dependence. The micro-structural mechanism of the
rate-dependence or viscosity is not well understood. Neverthe-
less, there are various ways to incorporate viscosity in constitu-
tive models of finite elasticity. For example, a plenty of integral
formulations of nonlinear viscoelasticity started from Green and
Rivlin (1957, 1960). Further developments are reviewed in Lockett
(1972), Carreau et al. (1997), Hoo Fatt and Ouyang (2007) and
Wineman (2009). There are also numerous differential formula-
tions of nonlinear viscoelasticity based on the introduction of in-
ternal variables and their evolution equations: Lubliner (1985);
Lion (1996); Govindjee and Reese (1997); Reese and Govindjee
(1998); Bergstrom and Boyce (1998); Huber and Tsakmakis (2000);
Miehe and Keck (2000) and Amin et al. (2006).
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All mentioned viscoelasticity theories were developed for rel-
atively low strain rates of about 1 s™'. High strain rates of 1100-
3000 s for silicone rubber were considered by Yang et al.
(2000) and Shim et al. (2004). Strain rates of about 5000 s™! for
a filled polybutadiene were studied by Quintavalla and Johnson
(2004). Recently, Hoo Fatt and Ouyang (2008) explored the dy-
namic behavior of styrene butadiene rubber (SBR) and found that
its rate-dependence is very limited at sufficiently high strain rates.
Importantly and uniquely, experiments by Hoo Fatt and Ouyang
(2008) also tracked the changing strength of SBR at varying strain
rates.

It is worth noting that most theories considered the intact ma-
terial behavior, in which the deformation description did not incor-
porate mechanical failure. However, real materials do fail and their
constitutive equations should include a description of failure. In
the context of purely elastic deformation (without viscosity) a very
simple account of material failure in the constitutive laws was pro-
posed in a series of recent publications: Volokh (2004, 2007, 2010,
2011, 2013b, 2014). The basic idea was to introduce an energy lim-
iter in the expression for strain energy. Such limiter enforces sat-
uration -the failure energy- in the strain energy function, which
indicates the maximum amount of energy that can be stored by
an infinitesimal material volume prior to rupture.

The mentioned approach of elasticity with energy limiters does
not include the viscosity effect. The first attempt to fill this gap
was made in Volokh and Trapper (2008) in a very simple quasi-
linear integral formulation. The latter theory is limited in appli-
cations and more general nonlinear viscoelastic formulation with
energy limiters is desirable. Thus, in the present paper we: (1) de-
velop a new constitutive model which includes material failure to
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describe the viscous response of rubber at high strain rates, (2)
calibrate the model for various strain rates using the experimental
data reported by Hoo Fatt and Ouyang (2008), (3) implement the
novel constitutive theory into ABAQUS/Explicit via a user subrou-
tine and (4) show the performance of the model in a series of nu-
merical examples. It is worth emphasizing that our formulation is
by no means unique and it has to be understood as a starting point
to provide new insights into the (largely unexplored) rate depen-
dent deformation and failure behavior of rubber like materials.

2. Nonlinear viscoelasticity with energy limiters
2.1. Basic equations

Consider a material point that occupies position X in the refer-
ence configuration §2y of a deformable body. The current position
vector X in the deformed configuration 2 is given by x= x (X, t),
where y is a bijective and twice continuously differentiable map-
ping. Deformation in the vicinity of the material point is described
by the deformation gradient tensor F

X
- = 1
oX (1)
The linear and angular momentum balance take the following
forms accordingly

F

dive +b = pa (2)

o=0" (3)

where the divergence operator is calculated with respect to the
current coordinates x, o is the Cauchy stress tensor, b is the body
force per unit of current volume, p and a are the current mass
density and acceleration vector correspondingly.

Balance of linear momentum on the body surface d$2 reads

on=t (4)

where t is a prescribed traction per unit area of the surface with
the unit outward normal n.

Alternatively to (4) a surface boundary condition can be im-
posed on placements

X=X (5)

where X is prescribed on the surface 952.
Initial conditions are

v(t=0)=v, (6)

where v is the velocity vector and xq and vy are prescribed in 2.

X(t=0) =Xo,

2.2. Constitutive model

In the present work we adapt the Eulerian constitutive frame-
work for large inelastic deformations developed by Volokh (2013a)
for a description of isotropic finite viscoelasticity with energy lim-
iters. We assume that the standard solid rheological model under-
lies the constitutive equations, see Fig. 1.

We assume an aditive decomposition of the strain energy func-
tion of the form

¥ (B.Bg. &) = Ya(B. &) + ¥(Bg. §) (7)

where Y, is the strain energy function of the spring A which
serves to characterize the thermodynamic equilibrium states of the
elastomer and ¥y is the strain energy function of the spring B
which serves to account for the additional energy storage and non-
equilibrium states. Furthermore, B = FF! is the left Cauchy-Green
strain tensor, Bg is an (strain like) internal variable of the model

Spring A

T
1
Spring B Dashpot B

Fig. 1. Rheological model of the standard solid.
and £ is a switch parameter (that will be defined later). We fur-

ther impose the following conditions on the strain energy function
of spring A

VUa(B.&) = ¥k —H(E)YE(B) (8)
Vi =151) (9)
IB| > co= Ys(B) >0 (10)

where 1///{ and ¥ (B) designate the constant bulk failure energy
and the elastic free energy ofthe spring A, respectively. Moreover,
H(&) is a unit step function, i.e. H(z) =0 if z < 0 and H(z) = 1 oth-
erwise; 1 is a second-order identity tensor; and || ... || is a tensor
norm.

The switch parameter & € (—oo, 0] is defined by the evolution
equation

: Vi

§=—H<8—f), Et=0)=0 (11)
¥a

where 0 < ¢ « 1 is a dimensionless precision constant.

The physical interpretation of the strain energy function is
straightforward: the response of the spring A is elastic as long as
the strain energy is below its limit, w[f\ . When the limit is reached,
the strain energy remains constant for the rest of the deformation
process, thereby making material healing impossible. The param-
eter £ is not an internal variable (like in Damage Mechanics); it
works as a switch: if £ = 0 then the process is elastic and if £ < 0
then the material is irreversibly damaged and the stored energy is
dissipated.

In order to enforce the energy limiter in the strain energy func-
tion, we use the following form of the elastic energy

R O] 1 W,u(B)™
wA(B) = mr<m’ @n) (12)
where I'(s,x) = [~ ts~le~tdt is the upper incomplete gamma
function, W,(B) is the strain energy of intact material, ® is the
energy limiter and m is a dimensionless material parameter which
controls the sharpness of the transition to material failure in the
stress-strain curve. Increasing or decreasing m it is possible to sim-
ulate more or less steep ruptures of the internal bonds accordingly.

The failure energy can be calculated as follows

[ 1 Wa()™
wf\:wxa):mr(m,gfrf) (13)
Note that the failure energy is a constant that depends on the
two failure parameters (®, m) through the gamma function. There
is no need to limit the energy of spring B as long as the failure of
spring A leads to the overall failure. Therefore, we define the strain
energy function for the spring B as

Vs(Bg. &) = H(§)Wg(Bp) (14)
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where Wg(Bg) stands for the strain energy without failure. Note
that this formulation is valid for any pair of strain energies Wy
and Wp used to describe the intact behavior of the material.

Based on the additive decomposition of the strain energy func-
tion v, the Cauchy stress is given by

O =0p+0p (15)

where

oa=21;'" aawB*‘B 21,2 (Isys1 + (Y1 + L1 Y2)B — ¥,B%)  (16)

op = 2] 1/2 8wBB

0Bg
= 2153 (Tes¥es1 + (Y1 + g1 ¥2) By — ¥p2B3) (17)
The principal invariants are given by
I =trB, 2I, = (trB)? — tr(B)?, I; = detB (18)
Ig; = trBg, 2l = (trBg)? — tr(Bg)?, I3 = detBg (19)

and we use the shot notation ¥; = dv/0d1; and {rg; = 0 /0l;.
The constitutive law (flow rule) for the dashpot is written in
the following general form

op = B11 + BoDg + B3D} (20)

where f; is a function(al), generally, depending on stresses and
strains, and Dy is the rate of deformation tensor corresponding to
the dashpot.

Following Eckart (1948), Leonov (1976) and Volokh (2013a), we
introduce the following evolution equation which relates Bz and
Dg

v

Bg +DgBg + BgDg =0, Bg (t = 0) =1 (21)
where

v .

Bg = By — LBy — BgLT (22)

is the Oldroyd objective rate of the (strain like) internal variable
Bg. In previous expression L refers to the velocity gradient tensor
of the whole model.

2.3. Thermodynamic restrictions

We write the Clausius-Duhem dissipation inequality in the fol-
lowing form

oy A
oa+0p) DLV B-12 1 :By>0 23
( A+ B) 3 9B B3 8B ( )
where D is the strain rate measure corresponding to the whole
model.

The second and third terms in previous expression can be
rewritten as

oy v
1/2 12 24
I3V 5E :B=2I; =gB:D (24)
L 31/f oy
172 o1 1,2 25
I3 ? S Bo = 20537 5By D - 21,7 By < Dy (25)
where the relations B=LB+BLT and Bg=Bg(L—Dg)"+

(L —Dg)Bg (the latter is derived from Eqgs. (21
been used.

) and (22)) have

Substitution of (24) and (25) in (23) yields

(aA—213”28‘/’B+aB—21 ”23;3/’ BB> :D

:Dg>0 (26)

Using the constitutive Eqs. (16) and (17), previous equation re-
duces to

05:Dg >0 (27)

Substituting the flow rule (20) in the latter inequality we get
the final thermodynamic restriction

B1trDg + B,trD2 + BstrD3 > 0. (28)

As pointed out by Volokh (2013a), an alternative formulation for
the constitutive model could be developed using the multiplicative
decomposition of the deformation gradient tensor into elastic and
viscous parts. Nevertheless, the difference between the present for-
mulation and the alternative based on the multiplicative decompo-
sition of F is mostly formal: the expressions for the stresses remain
unchanged.

2.4. Specialization to incompressible and compressible materials

In this section we specialize the constitutive formulation to in-
compressible and (slightly) compressible materials. The hypothesis
of incompressibility is used in Section 3 to approach analytically
the uniaxial tension problem and calibrate the constitutive model.
Compressibility of the material is taken into account in Section 4 to
integrate the constitutive equations and implement the model into
a finite element code.

2.4.1. Incompressible formulation

The incompressibility condition implies that detB=1,
detBg =1 and trDg = 0. The constitutive laws for the springs
(16)-(17) are written as follows

oa=—pal +2(Y1 +11Y2)B — 29, B? (29)

o5 = —ppl +2(Yp1 + Ip1Vp2)Bs — 2/p2B3 (30)

where pa and pg are undefined Lagrange multipliers enforcing in-
compressibility.

The constitutive law for the dashpot (20) is written in the fol-
lowing simple form

1
B = 3tos, Ba=1m2. B3=0 (31)

where 7, is the only viscosity parameter or function.
Substitution of (31) in (20) leads to
1
op = §(UUB)1 + 172Dg (32)
Substitution of (32) in (27) yields
1N2trDg > 0 (33)

This dissipation inequality is obeyed imposing the following re-
striction on the viscosity

>0 (34)

2.4.2. Compressible formulation

Material compressibility is required to implement the constitu-
tive equations into a numerical code. The constitutive laws for the
springs (16)-(17) are written as follows

oa =21;"%((I3a = b)1+ (Y1 +1192)B — ¥,B) (35)
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s = 2153/* ((Is3ap — bp) 1+ (¥e1 + Ig1Vs2)Bs — V2B3) (36)

where a, b and ag, by are the penalizing bulk moduli for springs A
and B, respectively (see Trapper and Volokh, 2010).

We note that the bulk moduli are not independent and they
should obey the conditions of zero stress for B=Bg =1 and D =0

O=a-b+v¥1+2¥,, 0=ag—Dbg+ Vs +2¥m (37)
Thus, choosing (for B=Bg =1 and D = 0)
axb>» Y +2v, ap~bg> Yp +2¢m (38)

it is possible to enforce incompressibility in computations.
Following Reese and Govindjee (1998), we write the constitu-
tive law for the dashpot as

3, —2
pr =L Lroy, Bs=0 (39)
M

where 1y and 7, are two viscosity parameters or functions.
Substitution of (39) in (20) leads to

_3m—2m,

B2 =y,

1 D 4
om (trog)1 + 17;Dg (40)
Substitution of (40) in (27) yields
611 — 42
W(trag)z +mptrD > 0 (41)

This dissipation inequality is obeyed imposing the following re-
strictions on the viscosities

3m > 2m, (42)

Furthermore, to enhance incompressibility we can impose
m > n2.

12 >0,

3. Calibration of the constitutive model

In this section the (incompressible) constitutive model is cali-
brated to describe the mechanical behavior of styrene butadiene
rubber. For the calibration we use dynamic tensile tests for various
stretch rates performed by Hoo Fatt and Ouyang (2008). Therefore,
we restrict our attention to the case when then material undergoes
uniaxial tension

X = AXjeq + A12 (Xze; + Xse3) (43)

The left Cauchy-Green tensor B and the internal variable Bg ad-
mit the spectral representations

B=2Ae;@e+1'(e;@e+e3®e3) (44)

Bg=Aje;®e; +A5' (e, @€ +e3®e3) (45)

which fulfill the incompressibility conditions: detB=1 and
detBB =1.
Consequently, the stress-stretch curve, ¢ ~ A , is given by the

following equation

o =2(A = A7) (Y1 + A7) +2(A3 — A5") (VB + A5 2)

(46)
where, Ag(t) is given by the following evolution equation
. . 4)p B B
by =30 = 32 (A = 2) (Ve + 241 V2)
Ap(t=0) =1 (47)

In the case of steady stretching A =1 + }Lt, with constant X, the
evolution equation can be rewritten as follows

ds . A s B
dT—)L )»3*3}72}\()\3*)\3 )(1/f31+)»3 1/’32)
Ap(A=1)=1 (48)

Table 1
Material parameters for SBR rubber.
Spring A
J1[MPa] o 2[MPa] oy m O[MPa]
0.391 1.045 2.162 —3.065 30 75
Spring B
upi[MPa]  ap fp2[MPa] ap
3.99 0.382 2.868 -11.295
Dashpot B
Ci[MPas] G, C3[MPa.s]
23.095 7.421.107%  -8.458.107
C4 C5 Cs C7
—872.52 —7975.595 22150.457 27310.182

We use the formulation proposed by Lopez-Pamies (2010) for
the intact strain energy functions

317011 " o 3(1—0{2) o o
J— 1 2
WA(B)_Wm(Q -3%) + % pa(If? - 3%2) (49)
3 1o 3(1-ag)
W (Bs) = S — (I = 3%") + = —um (I —3") (50)

The viscosity function is taken from Hoo Fatt and Ouyang
(2008)

M2 = (Ci (1 - exp(Ca(Iy — 3))) + C3)(Cal§; + Cs1g; + Colg1 + C7)
(51)

Thus, the proposed model contains 17 parameters: six for
spring A (1, o, @1, oz, m, @), four for spring B (up1, p2, &1, *p2)
and seven for the dashpot (C;,Cy,C3,C4,Cs,Cq,Cy), see Table 1.
The calibration process developed in this paper consists on two
stages. In the first stage, the 15 visco-elastic parameters are de-
termined by fitting simultaneously the experimental data reported
by Hoo Fatt and Ouyang (2008) for various stretch rates: 76s~1,
110571, 15051, 3005~ !, 370 s 'and 450s~!. The genetic algorithm
and the non-linear unconstrained minimization algorithm (fmin-
search) inbuilt in the MATLAB Optimization Toolbox have been
used for this task. It is important to note that this method does not
warrantee a global optimal solution. Nevertheless, the agreement
between the model and the experimental results is very good. In
the second stage, the energy limit & is directly determined from
the failure stretch and the parameter m is selected depending on
the desired sharpness of the transition to material failure in the
stress-strain curve.

A salient feature of the energy limiter formulation is its sim-
plicity and applicability to already existing visco-elastic models.
Note that the calibration of the two failure parameters is decou-
pled from the rest of the model.

Fig. 2 shows the comparison between the proposed constitu-
tive model (solid lines) and the experiments (markers) reported by
Hoo Fatt and Ouyang (2008). Results are shown for various stretch
rates. While the material flow stress significantly increases with
strain rate, the failure stretch is largely constant for all the load-
ing rates investigated. These experimental observations are prop-
erly captured by the constitutive model which shows satisfactory
agreement with the experimental evidence for all the loading con-
ditions investigated. Note that our model captures the saturation
of the material viscosity at high strain rates.

4. Finite element implementation

In this section we develop a simple integration algorithm
to implement the (slightly compressible) constitutive model into
ABAQUS/Explicit code via a user subroutine. The code provides all
variables at time t" and the deformation gradient for time t™+1.
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o[MPa]
301

>1=765" © 1=300s""
25F  +1=110s"" % 1=370s""
0 1=1505" o 1=4505""

20f

Fig. 2. Comparison between the predictions of the constitutive model (solid lines)
and the experiments (markers) performed by Hoo Fatt and Ouyang (2008). Uniaxial
(Cauchy) stress-stretch curves (o —A). A wide range of stretch rates is explored:
7657, 110s~', 150s~', 300s~!, 370s~! and 450s~".

The goal is to update all variables of the constitutive model at time
tn+1_

For that purpose we need to integrate Eq. (21) which provides
a relation between the time evolution of the (strain like) internal

variable IVSB and the strain rate in the dashpot Dg. The idea of the
integration comes from the standard notion that the Oldroyd ob-
jective rate can be written with respect to an arbitrary reference
configuration z in the following form

IVSB =B — LBy — BgL" = l(<88t(l(‘1BBK‘T)>KT (52)

where

K= %; = %% =KK! (53)
Substitution of (52) in (21) yields

l((aat(l(1BBI(T)>I(T = —DgBg — BgDg (54)

with the initial condition Bg(t =0) = 1.

Using the Euler explicit approximation of the time derivative
within the interval [t", t"*1] and taking into account that DgBg =
BgDg we get

(Kn+1)71Bg+l (Kn+l)7T _ (I(n)—1Bg (I(n)_T

= —2(t" —t")(K") 'DIBR(K") " (55)
in which we designated
(O () = ()", (o)(t") = (o)™ (56)

Furthermore, taking the arbitrary reference configuration z to
be the x™ we have

oxn+1 _
— n’ Kn+1 — — FnH Fn 17 Kn =1 57
z2=Xx X (F*) (57)
substitution of (57) in (55) yields

Bgﬂ — K+ (1 —2(t1 = t“)Dg)Bg(KnH)T (58)

We assume now that variables F", B", D", By, Dg, o}, og" are
known. Besides, the deformation gradient F**! is provided by the
code. Then, we update variables at time t™*! as follows

Bll+1 — Fn+l (FnH)T (59)

Kn+l — Fn+1 (Fn)*l (60)

Bo*! = K™ (1 - 2(t™" — t")D})By(K™)' (61)

GRH — 2(];+1)—1/2((Ig+la _ b)l + (wln-ﬂ + IliH—] ¢;+1)Bn+l

— el (Bn+1)2) (62)

opt = 2(15") (155" an = Do) 1+ (v + I By

- vl (B)) (63)

devop! (64)

n+1

2
n+1 __ n+1
Dy = o, (trogt )1+ :

To remove the failed element the following condition should be
obeyed at one of the element Gauss points

HE™) =0 (65)

where

e\n+1
%) +&" E%=0 (66)

(Vi

é-nﬂ — 7(tn+1 _ tn)H & —

5. Numerical simulations

In this section we show sample finite element computations
conducted in ABAQUS/Explicit which illustrate the joint perfor-
mance of the constitutive model and the integration algorithm.
The calculations simulate the dynamic tension tests performed by
Hoo Fatt and Ouyang (2008).

5.1. Finite element model

Fig. 3 shows the ASTM D638 type IV dumbbell specimen used
in the experiments of Hoo Fatt and Ouyang (2008). In the numer-
ical calculations, due to the symmetry of the model, we have only
modeled 1/4 of the specimen. The finite element model is initially
at rest and unstretched. The mechanical boundary conditions are
shown in Fig. 3, where u; are the components of the displace-
ment vector u, 6; are the components of the rotation vector § and
vy = vimP js the impact (loading) velocity.

The finite element model has been meshed using a total of
7560 eight-node solid elements with reduced integration and
hourglass control, C3D8R in ABAQUS notation. Three elements are
placed through the thickness of the model. In the gauge of the
specimen, the elements show an aspect ratio 0.2: 1: 1. Short el-
ements along the axial direction are required to capture (accu-
rately) the failure of the specimen since the material undergoes
large axial strains (A > 5) before fracture. Elements with larger
axial dimension are badly stretched by the time of fracture and
the failure process is not properly described. Furthermore, a mesh
convergence study was performed, in which the time evolution of
the stress, strain and strain rate fields were compared against a
measure of mesh density until the results converged satisfactorily.
We hold that viscosity and inertia act as regularization factors that
contribute to the well-possessedness of the problem, see Molinari
(1997) and Needleman (2008). We assume that this minimizes the
spurious influence of the mesh in the solution of the boundary
value problem.
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Fig. 3. Geometry and dimensions (in mm) of the ASTM D638 type IV dumbbell specimen. Finite element model, mesh and mechanical boundary conditions applied in the

calculations.
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Fig. 4. Comparison between the numerical calculations (solid lines) and the exper-
iments (markers) performed by Hoo Fatt and Ouyang (2008). Unixiaxial (Cauchy)
stress-stretch curves (o — A). Various stretch rates are considered: 76s~', 110s71,
150s71, 300s~', 370s~! and 45051,

5.2. Sample results

Fig. 4 compares the experimental (axial) stress-stretch curves
reported by Hoo Fatt and Ouyang (2008) with our finite ele-
ment calculations. In the computations the stress is calculated as
o= A—FOA where F is the axial force measured in the loaded site of
the model, Ag is the initial cross-section area of the gauge and A
is the axial stretch calculated measuring the increase in length of
the sample gauge referred to as L in Fig. 3. The stretch rate which
denotes each loading case in the simulations corresponds to the
(average) value of } registered in the specimen gauge during the
calculations. The maximum stretch shown in the numerical results
corresponds to the onset of failure. Beyond this point, the stress
state is no longer uniaxial. The agreement between experiments
and numerical calculations reveals the satisfactory performance of

F[N]
30f

3 — Central section

=== Loaded site

20 LR

o t=0.046s (3

0 0.002

0
or 2) t=0.026s
1) t=0.012s

O : n n n 1 n n n n 1 n n n n 1 n n n n 1 n n n n J t[S]
0.00 0.01 0.02 0.03 0.04 0.05

Fig. 5. Finite element calculations. Force-time curves (F — t) measured at both ends
of the model: loaded site and central section. The applied stretch rate is 7651,

the (simple) integration algorithm presented in the previous sec-
tion.

Fig. 5 illustrates force-time curves (F-t) measured at both ends
of the model: loaded site and central section (see Fig. 3). The ap-
plied stretch rate is 76 s~!. We observe that both curves practically
overlap each other. The specimen is largely equilibrated. The only
difference resides at the very beginning of loading when inertia ef-
fects lead to slight fluctuations in the force recorded in the loaded
site.

The force first increases and reaches a local maximum for t ~
0.005 s which leads to localization of deformation in the gauge, see
Fig. 6. The local maximum corresponds to the attainment of the
Considére condition. Beyond the local maximum, the deformation
tends to increase quickly until a minimum is reached in the F-t
curve for t ~ 0.012s. The minimum corresponds to the change of
curvature in the corresponding o-A characteristic shown in Fig. 4.
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Fig. 6. Finite element calculations. Contours of axial stretch A. The applied stretch
rate is 76s71.

Symmetry axis

Stretch-rate [s]

250.0
208.3
166.7
125.0
83.3
41.7
0.0
—41.7
-83.3
-125.0
-166.7
—-208.3
—250.0

Fig. 7. Finite element calculations. Contours of axial stretch rate . The applied
stretch rate is 761,

The subsequent increase in strength stabilizes the flow stress lead-
ing to largely uniform distributions of stretch (Fig. 6) and stretch
rate (Fig. 7) within the gauge of the specimen. Heterogeneity in
the field variables is just observed immediately before the maxi-
mum force is reached for t ~ 0.046s, see Figs. 6 and 7. Then, rapid
localization of deformation occurs within a small zone of the sam-
ple gauge leading to material failure.

Fig. 8 shows force-time curves (F-t) measured at the loaded
site and the central section. The applied stretch rate is 450571,
the highest explored in this paper. At the beginning of loading we
observe significant fluctuations in the force which are caused by
the propagation of stress waves within the specimen. It is appar-
ent that, for this loading rate, inertia effects are meaningful. The
stretch rate fields within the specimen are rather heterogeneous,
see Fig. 10. These fluctuations are progressively attenuated and, for
t > 0.002s, both curves become practically coincident (the speci-
men is largely equilibrated) and the field variables show uniform
distributions along the gauge (see Figs. 9 and 10). A maximum in
the F-t curves is reached for t ~ 0.0094 s which leads to fast strain
localization and subsequent material failure.

These numerical examples demonstrate the ability of the con-
stitutive model and the integration algorithm developed in this pa-
per to simulate deformation and failure of structures (or compo-
nents, or parts...) manufactured with non-linear viscoelastic mate-
rials and subjected to dynamic loading.

FIN] t=9.42107%
30— Central section
=== Loaded site

t=5-107s

t=5-10"s

0.002

1 s s s 1 s s s 1 s s s J t[s]

ol . N
0.000 0.002 0.004 0.006 0.008 0.010

Fig. 8. Finite element calculations. Force-time curves (F — t) measured at both ends
of the sample: loaded site and central section. The applied stretch rate is 450s~'.

|

Fig. 9. Finite element calculations. Contours of axial stretch A. The applied stretch
rate is 4505,

@ t=5-10"

Symmetry axis

i

2 t=5107%

IS

ymmetry ax

S

Stretch-rate [s7]
500.0
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416.7
375.0
3333
291.7
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166.7
125.0
83.3
41.7
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Fig. 10. Finite element calculations. Contours of axial stretch rate . The applied
stretch rate is 450s~1.

() t=9.4210%

6. Concluding remarks

In this work we have developed a new viscoelastic constitutive
model to describe deformation and failure of elastomers subjected
to high strain rates. The model has been calibrated for styrene bu-
tadiene rubber using experimental data reported in the literature
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and implemented into ABAQUS/Explicit via a user subroutine. Fi-
nite element simulations of dynamic tensile experiments reported
by Hoo Fatt and Ouyang (2008) have been carried out to exem-
plify the joint performance of the constitutive model and the in-
tegration algorithm. The simplicity of the constitutive theory and
the efficiency of the implementation scheme make the formula-
tion developed in this research especially suited to study engineer-
ing applications in which rate-dependent rubber-like materials are
subjected to dynamic deformation and failure.
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