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Traditional hyperelastic models usually obey requirement of material stability in various forms: Baker-
Ericksen inequalities, strong ellipticity, polyconvexity etc. It is reasonable, of course, to require stability
for the intact behavior of materials. However, all materials fail and a description of failure should be
incorporated in the constitutive law. A simple version of hyperelasticity with failure can be formulated
based on the introduction of the limiter in the strain energy density. The limited strain energy bounds
maximum achievable stress automatically. Evidently, the elasticity with the energy limiter should exhibit
material instability.

This work addresses two practically interesting calculations concerning the onset of material insta-
bility via the loss of ellipticity. First, we consider simple shear of natural rubber. We find the direction of
failure localization, which is in perfect qualitative correspondence with fracture observations in rubber
bearings after earthquakes. Interestingly, the direction of failure localization is different from the one
predicted by the criterion of maximum tension stress or stretch. Second, we consider equibiaxial tension
of a sheet of aneurysm material. We find that the isotropic aneurysm material exhibits infinitely many
possible directions of failure localization in equibiaxial tension. The latter means that the random di-
rection of cracks in equibiaxial tension experiment, e.g. membrane inflation, can be an indicator of
material isotropy. Accordingly, a preferable direction of the crack alignment can be interpreted as an
indicator of the aneurysm anisotropy.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Materials fail. This physical observationwas a bit ignored during
the development of the theory of elasticity. Indeed, various re-
quirements (Baker-Ericksen inequalities, strong ellipticity, poly-
convexity etc.) are often imposed on the constitutive models to
prevent from the appearance of material instability and failure.
More physical trend emerged recently with regard to a description
of fiber-reinforced materials. It was noted that some constitutive
models could exhibit material instabilities observed experimen-
tally: Kurashige (1981); Triantafyllidis and Abeyaratne (1983);
Danescu (1991); Merodio and Ogden (2002, 2003, 2005);
Dorfmann and Ogden (2015).

In parallel, the approach of continuum damage mechanics has
been developing, in which a damage variable is introduced to
reduce material stiffness: Simo (1987); Simo and Ju (1987);
Govindjee and Simo (1991); Johnson and Beatty (1993); Miehe
(1995); de Souza Neto et al. (1998); Ogden and Roxburgh (1999);
served.
Kaliske et al. (2001); Menzel and Steinmann (2001); Dorfmann
and Ogden (2004); Guo and Sluys (2006); De Tommasi et al.
(2008); Dal and Kaliske (2009). The damage variable requires
definition of an evolution law and damage threshold conditions.
The damage variable is the internal one, which means that its
interpretation in simple physical terms is not readily available.
Nevertheless, the introduction of the damage variable is instru-
mental when partial material damage gradually develops (like in
the case of Mullins effect).

In the cases of the abrupt rupture, much simpler approach free
of internal variables can be used based on the introduction of en-
ergy limiters (Volokh, 2004, 2007, 2013, 2014). In the latter case, the
strain energy is bounded by an energy limiter that enforces satu-
ration e the failure energy. The latter indicates the maximum
amount of energy that can be stored and dissipated by an infini-
tesimal material volume. The limiter induces stress bounds in the
constitutive equations automatically. Remarkably, the analysis of
the onset of material instability becomes simple in the absence of
internal variables.

Evidently, the strong ellipticity restriction should be violated for
the material model incorporating a failure description. However,
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the very consideration of this violation is worthwhile. Indeed, the
strong ellipticity condition comes from the analysis of the propa-
gation of a plane wave superimposed on the given state of defor-
mation. Intact material can propagate such wave while the
damaged material cannot. Thus, the direction of the superimposed
wave can tell the story of the direction of failure localization and,
ultimately, the crack orientation in the damaged material.

This work addresses two practically interesting calculations
concerning the onset of material instability via the loss of ellipticity.
First, we consider simple shear of natural rubber. This kind of
deformation approximately appears in rubber bearings used to
isolate structures, like buildings and bridges, from their founda-
tions in order to minimize the destructive effect of earthquake
motions. Second, we consider equibiaxial tension of a sheet of
aneurysm material. Aneurysms are local dilations in arteries,
resembling inflated balloons, that are prone to rupture with high
mortality risks. Aneurysms are in the state of biaxial tension and
the character of their fracture can help to understand their
structure.

2. Theoretical background

In this section, we summarize the theoretical background for the
convenience of the reader. More detailed developments can be
found in Truesdell and Noll (2004), Antman (1995), and Ogden
(1997), for example. Our notation follows Volokh (2016),
particularly.

2.1. Initial-boundary-value problem (IBVP)

The initial-boundary-value problem (IBVP) of finite elasticity for
incompressible material can be written as follows

r0
v2y
vt2

¼ DivPþ b0;

PFT ¼ FPT;

P ¼ vj

vF
�PF�T;

detF ¼ 1

Pn0 ¼ t0 or y ¼ y;

yðt ¼ 0Þ ¼ y0;

vy
vt

ðt ¼ 0Þ ¼ v0;

(1)

where r0 is the referential mass density; y is the placement of a
material point in the current configuration U of a body, which was
placed at x in the reference configuration U0; P is the first Piola-
Kirchhoff stress and (DivP)i¼vPij/vxj; b0 is the body force per unit
reference volume; F¼Grady(x) is the deformation gradient; j is the
strain energy density per unit reference volume; P is the Lagrange
multiplier; n0 is an outward unit normal to the body surface vU0 in
the reference configuration; t0 is the prescribed Lagrangean trac-
tion on vU0; y is the prescribed surface placement; and y0 and v0
are the prescribed initial placement and velocity.

Eq. (1)1�2 are the linear and angular momenta balance inU0; Eq.
(1)3 is the hyperelastic constitutive law; Eq. (1)4 is the incom-
pressibility condition; Eq. (1)5 is the natural or essential boundary
condition on vU0; Eq. (1)6�7 are the initial conditions in U0.

2.2. Incremental IBVP

Let us superimpose small (infinitesimal) increments on
placements y/y þ ~y where tilde designates increment. Then, the
incremental Eq. (1) takes form

r0
v2~y
vt2

¼ Div~P;

~PFT þ P~F
T ¼

�
~PFT þ P~F

T�T
;

~P ¼ v2j

vFvF
: ~FþPF�T~F

T
F�T � ~PF�T;

~F : F�T ¼ 0;
~Pn0 ¼ 0 or ~y ¼ 0;

~yðt ¼ 0Þ ¼ 0;

v~y
vt

ðt ¼ 0Þ ¼ 0;

(2)

where ~F ¼ v~y=vx; double contraction reads A:B¼AijBij; and we as-
sume that body force b0, traction t0, and prescribed placements y
are “dead”, i.e. they do not depend on deformation.

It is convenient to reformulate the incremental IBVP in the form
where the current configuration U is the referential one

r
v2~y
vt2

¼ div~s;

~sþ s~L
T ¼

�
~sþ s~L

T�T
;

~s ¼ A : ~L þP~L
T � ~P1;

~L : 1 ¼ 0;

~sn ¼ 0 or ~y ¼ 0;

~yðt ¼ 0Þ ¼ 0;

v~y
vt

ðt ¼ 0Þ ¼ 0;

(3)

where ðdiv~sÞi ¼ v~sij=vyj; 1 is the second-order identity tensor and

r ¼ r0;
~s ¼ ~PFT;
s ¼ PFT;
~L ¼ ~FF�1;

n ¼ F�Tn0

���F�Tn0

����1
:

(4)

Eq. (3)1�2 are the linear and angular momenta balance in U; Eq.
(3)3 is the hyperelastic constitutive law; Eq. (3)4 is the incom-
pressibility condition; Eq. (3)5 is the natural or essential boundary
condition on vU; Eq. (3)6�7 are the initial conditions in U.

In (3)3 we introduced the fourth-order elasticity tensor A with
Cartesian components

Aijkl ¼ FjsFlm
v2j

vFisvFkm
: (5)

In the particular case of the strain energy j(I1) depending only
on the first invariant I1¼F:F we have

Aijkl ¼ 4j11FisFkmFjsFlm þ 2j1dkiFjmFlm; (6)

where

j1≡
vj

vI1
; j11≡

vj1
vI1

:
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2.3. Superimposed plane wave

In the case of the propagation of plane waves we assume in-
cremental solutions in the form

~yðyÞ ¼ rgðs,y �wtÞ;
~P ¼ Yg0ðs,y �wtÞ; (7)

where unit vector r is called the wave polarization; unit vector s is
the direction of the wave propagation; w is the wave speed; and
prime designates differentiation with respect to the argument of
function g.

Substituting (7) in the linear momentum balance (3)1 and
incompressibility condition (3)4 we obtain respectively

rw2r ¼ LðsÞr� Ys;
r,s ¼ 0;

(8)

where

Lmi ¼ Amnijsnsj (9)

is the acoustic tensor.
It should not be missed that the entries of the elasticity tensorA

are uniform for the assumed homogeneous deformation state.
Moreover, we can calculate Y by taking the scalar product of (8)1

with s

Y ¼ s,LðsÞr: (10)

Now, we can rewrite (8) in the form

rw2r ¼ L�ðsÞr;
r,s ¼ 0;

(11)

where

L�ðsÞ ¼ LðsÞ � s5LðsÞs (12)

is the modified acoustic tensor for incompressible material.
We note that L�ðsÞ is not symmetric. It is singular because zero

eigenvalue corresponds to the left eigenvector s

L�Ts ¼ ðL� s5LsÞTs ¼ LTs�Ls ¼
�
LT �L

�
s ¼ 0: (13)

Thus, at most, there are two real plane waves and both them are
transverse because of the incompressibility condition (11)2.

The scalar product of (8)1 with r provides the real wave speeds
for the strong ellipticity condition

rw2 ¼ r,LðsÞr� Yr,s ¼ r,LðsÞr>0: (14)

In the case of the strain energy depending on the first invariant
only j(I1) we substitute (6) in the acoustic tensor and we get

Lik ¼ Aijklsjsl ¼ 4j11FisFkmFjsFlmsjsl þ 2j1dkiFjmFlmsjsl; (15)

or

LðsÞ ¼ 4j11ðBsÞ5ðBsÞ þ 2j1ðs,BsÞ1; (16)

where B¼FFT is the left Cauchy-Green tensor.
The speed of a plane wave can now be calculated as follows

rw2 ¼ 4j11ðr,BsÞ2 þ 2j1ðs,BsÞ: (17)
2.4. Elasticity with energy limiters

In order to enforce a material failure description, we use the
following form of the strain energy function

jðF; zÞ ¼ jf � HðzÞjeðFÞ; (18)

where

jeðFÞ ¼
F

m
G

�
1
m
;
WðFÞm
Fm

�
; jf ¼ jeð1Þ: (19)

Here jf and je(F) designate the constant bulk failure energy and
the elastic energy respectively; H(z) is a unit step function, i.e.
H(z)¼0 if z<0 and H(z)¼1 otherwise; Gðs; xÞ ¼ R∞x ts�1e�tdt is the
upper incomplete gamma function; W(F) is the strain energy of
intact (without failure) material; F is the energy limiter, which is
calibrated in macroscopic experiments; and m is a dimensionless
material parameter, which controls the sharpness of the transition
to material failure on the stress-strain curve. Increasing or
decreasingm it is possible to simulatemore or less steep ruptures of
the internal bonds accordingly.

The switch parameter z2(�∞,0] is defined by the evolution
equation

_z ¼ �H

 
ε� je

jf

!
; zðt ¼ 0Þ ¼ 0; (20)

where 0<ε≪1 is a dimensionless precision constant.
The physical interpretation of (18) is straightforward: material

response is hyperelastic as long as the strain energy is below its
limit - jf. When the limit is reached, then the strain energy remains
constant for the rest of the deformation process, thereby making
material the healing impossible. Parameter z is not an internal
variable. It functions as a switch: if z¼0 then the process is elastic
and if z<0 then the material is irreversibly damaged and the strain
energy is dissipated.

Constitutive equations can be derived from (18) via a thermo-
dynamic argument. Let us consider the dissipation inequality

P : _F� _jðF; zÞ � 0; (21)

where P is the first Piola-Kirchhoff stress tensor.
The energy increment is calculated as follows

_jðF; zÞ ¼ �dðzÞ _zjeðFÞ � HðzÞ vjeðFÞ
vF

: _F; (22)

where d(z) is the Dirac delta.
We notice that

dðzÞ _z ¼ 0 (23)

for all values of z. Indeed, the case of zs0 follows immediately from
the definition of Dirac's delta. In the case of z¼0, we note that the
relation z ¼ R _zdt ¼ 0 along with the definition of _z as a step
function in (20) imply _z≡0 since a non-positive integrand must be
identically zero for the integral to vanish.

Substitution of (22) and (23) in the dissipation inequality (21)
yields

�
Pþ HðzÞ vjeðFÞ

vF

�
: _F � 0; (24)

and the constitutive equations are obtained following the Coleman-
Noll procedure



K.Y. Volokh / European Journal of Mechanics A/Solids 63 (2017) 36e42 39
P ¼ �HðzÞ vjeðFÞ
vF

: (25)

The switch parameter z does not contribute to the energy
increment contrary to the traditional internal variables of damage
mechanics. Moreover, it does nor require a threshold condition or
physically motivated evolution equation. The introduction of the
switch parameter is a purely formal mathematical tool to provide
the irreversibility of failure when the failure energy is reached.

We should finally note that the use of the switch parameter is
important in the cases of material unloading. The latter cases are
not considered in the present work and we can set henceforth

z≡00HðzÞ≡1: (26)
Fig. 1. Cauchy stress [MPa] versus stretch in uniaxial tension of natural rubber: dashed
line designates the intact model; solid line designates the model with the energy
limiter.
3. Simple shear in rubber bearings

In simple shear we have

y1 ¼ x1 þ gx2; y2 ¼ x2; y3 ¼ x3; (27)

and

F ¼ 1þ ge15e2;
B ¼ 1þ gðe15e2 þ e25e1Þ þ g2e15e1:

(28)

where e1,e2,e3 are Cartesian basis vectors and g is amount of shear.
Then, we calculate

Bs ¼ sþ �gs2 þ g2s1
�
e1 þ gs1e2;

s,Bs ¼ 1þ 2gs2s1 þ g2s21;
r,Bs ¼ gs2r1 þ g2s1r1 þ gs1r2;

(29)

and, thus, we obtain for the weighted squared wave speed

rw2 ¼ 4j11

�
gs2r1 þ g2s1r1 þ gs1r2

�2 þ 2j1

�
1þ 2gs2s1

þ g2s21
�
: (30)

Let us further specify the wave direction and polarization vec-
tors accordingly

s ¼ cosae1 þ sinae2;

r ¼ �b sinae1 þ b cosae2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
e3;

(31)

where a is the angle in plane x1�x2 and 0�b�1 is an arbitrary
multiplier.

The wave speed depends on a, b and g:

rw2 ¼ 4j11g
2b2
�
cos2a� sin2a� gcosa sina

�2
þ2j1

�
1þ 2gcosasinaþ g2cos2a

�
:

(32)

Then, we calculate from (18) (H≡1)

j1 ¼ W1exp
�
�Wm

Fm

�
;

j11 ¼
 
W11 �

mWm�1

Fm W2
1

!
exp

�
�Wm

Fm

�
;

(33)

where we use the Yeoh model for the intact material behavior
W ¼ c1ðI1 � 3Þ þ c2ðI1 � 3Þ2 þ c3ðI1 � 3Þ3;
W1 ¼ c1 þ 2c2ðI1 � 3Þ þ 3c3ðI1 � 3Þ2;
W11 ¼ 2c2 þ 6c3ðI1 � 3Þ;

(34)

and

I1 ¼ 3þ g2: (35)

This model is calibrated as follows (Volokh, 2013) for Natural
Rubber vulcanizate

c1 ¼ 0:298 MPa;
c2 ¼ 0:014 MPa;
c3 ¼ 0:00016 MPa;
F ¼ 82:0 MPa;
m ¼ 10:

(36)

The Cauchy stress - stretch curve for the Yeoh model enhanced
with the energy limiter is shown in Fig. 1, where also the results are
shown for the intact material model. Failure occurs at the limit
point at critical stretch lcr¼7.12 in accordance with experimental
data from Hamdi et al. (2006).

By using the Yeoh model with the energy limiter it is possible to
find the critical failure stretches - the failure envelope - by using the
critical condition in the form:
ðv2j=vl21Þðv2j=vl22Þ � ðv2j=vl1vl2Þ2 ¼ 0, where l1 and l2 are axial
stretches. Comparison of the theory with the experimental data
from Hamdi et al. (2006) is shown in Fig. 2.

Somewhat lower critical stretches in equal biaxial tension are
reasonable in view of the high imperfection sensitivity of the
experiments.

With account of the material specifications we can find the
unknown wave parameters from the condition of the vanishing
wave speed

rw2 ¼ f1f2 ¼ 0; (37)

where

f1 ¼ 4

 
W11 �

mWm�1

Fm W2
1

!
g2b2

�
cos2a� sin2a� gcosasina

�2

þ2W1

�
1þ 2gcosasinaþ g2cos2a

�
;

f2 ¼ exp
�
�Wm

Fm

�
:

(38)

The split conditions read



Fig. 2. Failure envelope for biaxial tension of natural rubber: theory ( ) versus
experiment ( ).

Fig. 4. Dependence of the amount of shear on the orientation of the superimposed
acoustic wave. Curves f1¼0 (b¼1) and f2¼0 are presented in blue and red accordingly.
The minimum amount of shear shown by stars corresponds to the onset of instability
via the loss of ellipticity. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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f1 ¼ 0; f2 ¼ 0: (39)

The exponential function f2 is shown graphically in Fig. 3.
We note that the function converges to zero numerically very

fast and the theoretical “infinity” becomes the actual digital one at
the starred point.

Thus, the split critical conditions can be represented graphically
as two curves in terms of a, b and g - Fig. 4.

We note that f2 does not depend on a and b while in the case of
f1 the magnitude of g increases with the decreasing b. The lowest
magnitude of g¼6.92843 is obtained for a¼p/2 or a¼3p/2, which
means that failure localizes along axis x1 or the crack is expected in
the horizontal direction.

It is interesting to compare the obtained qualitative result with
the prediction based on the popular criterion of maximum stress or
stretch. The left Cauchy-Green tensor has the following compo-
nents for g¼6.92843

½B� ¼
2
41þ 6:928432 6:92843 0

6:92843 1 0
0 0 1

3
5:

Solving the eigenproblem for this matrix we find that the largest
principal stretch occurs in direction

0:99e1 þ 0:14e2;

which almost coincides with x1. The latter means that the crack is
expected in the vertical direction, that is along axis x2.

Remarkably, we have quite opposite predictions based on the
strong ellipticity and maximum stretch criteria. Unfortunately, we
do not have the experimental data for the considered material. The
Fig. 3. Convergence of the exponential function f2(g) to zero.
“best approximation” of simple shear failure available in the liter-
ature is shown in Fig. 5.

Although the appearance of the horizontal crack is in a good
agreement with the previous analysis the comparison is mainly
qualitative. The reason is that thematerial of the real rubber bearing
is different from natural rubber. Besides, we ignored the pressure
from the bridge assuming that deformations triggered by the
pressure were much smaller than the deformations triggered by
the earth movement. Of course, a more realistic numerical study
would be interesting. The latter study would go far beyond the
scope of the present note.
4. Equibiaxial tension in aneurysms

In the case of equibiaxial tension of aneurysm material we have

y1 ¼ lx1; y2 ¼ lx2; y3 ¼ l�2x3; (40)

where l is the stretch in the direction of tension.
The deformation gradient and the left Cauchy-Green tensor take

the following forms accordingly

F ¼ le15e1 þ le25e2 þ l�2e35e3;
B ¼ l2e15e1 þ l2e25e2 þ l�4e35e3:

(41)

Then, we calculate

Bs ¼ l2e1s1 þ l2e2s2 þ l�4e3s3;
s,Bs ¼ l2s21 þ l2s22 þ l�4s23;
r,Bs ¼ l2r1s1 þ l2r2s2 þ l�4r3s3;

(42)

and, thus, we have for the weighted squared wave speed

rw2 ¼ 4j11

�
l2r1s1 þ l2r2s2 þ l�4r3s3

�2 þ 2j1

�
l2s21 þ l2s22

þ l�4s23
�
;

(43)

Substitution of the wave direction and polarization vectors from
(31) yields

rw2 ¼ 2j1l
2
: (44)

Similar to the case of the rubber bearing we use the reduced



Fig. 5. Fracture of the bridge rubber bearing after the 2011 Great East Japan Earthquake (From Takahashi, 2012). Horizontal cracks are observed on the right.

Fig. 7. Convergence of the exponential function f2(g) to zero.
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intact Yeoh strain energy enhanced with the energy limiter and
calibrate the model as follows (Volokh, 2015)

W ¼ c1ðI1 � 3Þ þ c2ðI1 � 3Þ2; (45)

where

c1 ¼ 0:52 MPa; c2 ¼ 3:82 MPa; F ¼ 0:255 MPa; m ¼ 1: (46)

It is possible to reduce the Yeoh model in the case of the
aneurysm because of much smaller stretches. A reasonable exper-
imental fit in the latter case can be done with less constants.

The Cauchy stress - stretch curve for this constitutive model is
shown in Fig. 6, where also the experimental data from Raghavan
and Vorp (2000) is presented.

With account of the latter specification we can find the critical
parameters a, b and l of the loss of ellipticity from the condition of
zero wave speed

rw2 ¼ f1f2 ¼ 0; (47)

where

f1 ¼ 2
n
c1 þ 2c2

�
2l2 þ l�4 � 3

�o
l2;

f2 ¼ exp
	
�
�
c1
�
2l2 þ l�4 � 3

�
þ c2

�
2l2 þ l�4 � 3

�2�m

F�m


:

(48)

We note that f1>0 for l>1 and, consequently, the ellipticity is
lost for f2¼0 - Fig. 7.

We note that in the latter case the critical stretch and the loss of
ellipticity do not depend on the wave direction and polarization.
The latter means that the failure localization or crack can happen in
any direction and there is an infinite bifurcation multiplicity. It is
clear intuitively that ” something” needs to break symmetry. We
Fig. 6. Cauchy stress [MPa] versus stretch for theory and experiment ( ) in uniaxial
tension of AAA material.
gave a formal basis for the latter notion. No such calculations, to the
best of our knowledge, have been done in the literature previously.

5. Discussion

We used elasticity with energy limiters to analyze the onset of
material instability via the loss of ellipticity in soft solids. Two
practically interesting cases were considered. The first was the
natural rubber in the state of simple shear. The latter state
approximately corresponds to the loading of rubber bearings used
in buildings and bridges to isolate the main structure from the
ground motion during the earthquakes. We found that failure
localized in horizontal direction, parallel to the shearing, in perfect
qualitative correspondence with the field observations after
earthquakes. Second, we considered equibiaxial tension of an
aneurysm. We found that the isotropic aneurysm material exhibi-
ted infinitely many possible directions of failure localization in
equibiaxial tension. The latter means that the random direction of
cracks in equibiaxial tension experiment, e.g. membrane inflation,
can be an indicator of material isotropy. Consequently, a preferable
direction of the crack alignment can be interpreted as an indicator
of the aneurysm anisotropy.
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