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A B S T R A C T

Dynamic cavitation is known to be a typical failure mechanism in rubber-like solids. While the mechanical
behaviour of these materials is generally rate-dependent, the number of theoretical and numerical works
addressing the problem of cavitation using nonlinear viscoelastic constitutive models is scarce. It has been only
in recent years when some authors have suggested that cavitation in rubber-like materials is a dynamic fracture
process strongly affected by the rate-dependent behaviour of the material because of the large strains and strain
rates that develop near the cavity. In the present work we further investigate previous idea and perform finite
element simulations to model the dynamic expansion of a spherical cavity embedded into a rubber-like ball and
subjected to internal pressure. To describe the mechanical behaviour of the rubber-like material we have used an
experimentally calibrated constitutive model which includes rate-dependent effects and material failure. The
numerical results demonstrate that inertia and viscosity play a fundamental role in the cavitation process since
they stabilize the material behaviour and thus delay failure.

1. Introduction

An isolated cavity/void inside a solid, subjected to load either at the
cavity wall or at the remote field, expands rapidly after a critical load is
reached. This phenomenon is referred to as cavitation instability.
Cavitation is known to be a typical failure mechanism in solids.
Experimental evidences of cavitation and fracture led by cavitation
are available for different materials such as ductile metals, polymers,
elastomers and biological tissues [4,17,16,20,28,11,47]. When the
applied load (either at the cavity wall or at the remote field) is less
than the critical load for cavitation, a new equilibrium configuration is
reached after some expansion of the void. When the applied load is
higher than the critical load, the void expands at finite velocity and
ultimately leads to material failure. If the expansion velocity is high
enough, dynamic effects become meaningful and the void growth is
influenced by inertia. A large number of analytical and numerical
studies have been devoted to the analysis of quasi-static and dynamic
cavitation in a wide variety of materials
[26,12,6,5,2,25,24,35,23,13,41,18,46,14,45,21,9,39,40,37,7].

With growing applications of soft and biological materials, the study
of cavitation phenomena in elastic solids has become increasingly
important. In particular, the acclaimed review articles published by
Gent [19], Horgan and Polignone [23] and Fond [18] attracted the

attention of the Solid Mechanics community to the problem of cavita-
tion in rubber-like materials. More recently, one should highlight the
work of López-Pamies et al. [33,34] who introduced a new theory to
model static cavitation in elastomeric solids that considers general 3D
loading conditions and incorporates direct information of the under-
lying defects at which cavitation can initiate. Just one year ago, López-
Pamies and co-workers [29] pushed forward the cavitation problem in
elastomers and showed the need of including damage/failure mechan-
isms in the analysis because rubber-like materials fail at large, but finite
strains. A similar idea was developed by Lev and Volokh [31] who used
a constitutive model which incorporates failure for analyzing cavitation
in rubber. Using various nonlinear elastic material models, Lev and
Volokh [31] demonstrated the interplay between elasticity and fracture
in the development of the cavitation process.

Though most rubber-like materials are rate-dependent, there are not
many theoretical and numerical works which consider viscoelastic
constitutive models to analyze the dynamic cavitation problem. Last
year, Cohen and Molinari [10] presented a theoretical framework to
investigate dynamic cavitation in viscoelastic incompressible materials
modelled with an hereditary integral-type formulation. To facilitate
analytical solutions, Cohen and Molinari [10] considered two specific
loading cases, namely, a sudden constant deformation and a deforma-
tion that increases at constant rate. Their objective was to provide
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closed-form expressions to measure the local viscoelastic properties of
the rubber-like material through controlled relaxation experiments.
Moreover, Kumar et al. [27] just published a paper that presents new
insights into the relevance of inertial and viscous dissipation effects on
the onset of cavitation in rubber. They concluded that viscosity and
dynamic effects increase the values of the applied loads at which
cavitation occurs. In the present work, we further investigate previous
ideas and approach, using finite element simulations in ABAQUS/
Explicit, the canonical problem of a spherical void embedded at the
center of an elastic ball and subjected to internal pressure. The elastic
medium is modelled with a rate-dependent constitutive model which
accounts for material failure using energy limiters [42,44,3]. The finite
element calculations confirm the results of Cohen and Molinari [10]
and Kumar et al. [27] and show, systematically, the stabilizing effect of
viscosity and inertia.

An outline of the paper is as follows. Section 2 records the basic
equations of a viscoelastic model which describes the rate-dependent
response of Styrene Butadiene rubber within a wide range of strain
rates. Section 3 reviews a classical analytical solution for the dynamic
cavitation of a spherical void embedded into an incompressible elastic
ball and subjected to internal pressure. Section 4 presents a finite
element model developed in ABAQUS/Explicit to simulate dynamic
expansion of a spherical cavity inserted in a slightly compressible
viscoelastic ball. The finite element results are presented in Section 5
and rationalized with the predictions of the theoretical model. The
main conclusions of this research are presented in Section 6.

2. Nonlinear viscoelasticity with energy limiters

In this section we summarize the formulation of nonlinear viscoe-
lasticity with energy limiters developed by Aranda-Iglesias et al. [3]
which adapted the Eulerian constitutive framework for large inelastic
deformations previously proposed by Volokh [43].

2.1. Basic equations

Consider a material point that occupies position X in the reference
configuration Λ0 of a deformable body. The current position vector x in
the deformed configuration Λ is given by χx X= ( , t), where χ is a
bijective and twice continuously differentiable mapping. Deformation
in the vicinity of the material point is described by the deformation
gradient tensor F

F x
X

= ∂
∂

. (1)

The linear and angular momentum balance take the following forms

σ ρb adiv + = , (2)

σ σ= ,T (3)

where the divergence operator is calculated with respect to the current
coordinates x; σ is the Cauchy stress tensor; b is the body force per unit
of current volume; ρ and a are the current mass density and acceleration
vector, respectively.

The balance of linear momentum on the body surface Λ∂ reads

σn t= , (4)

where t is a prescribed traction per unit area of the surface with the unit
outward normal n.

Alternatively to (4), a surface boundary condition can be imposed
on placements

x x= , (5)

where the barred quantity is prescribed on the surface Λ∂ .
The initial conditions are

x x v v(t = 0) = , (t = 0) = ,0 0 (6)

where v is the velocity vector and x0 and v0 are prescribed in Λ.

2.2. Constitutive framework

We assume that the standard solid rheological model underlies the
constitutive equations, in which a nonlinear spring A is parallel to the
consequently joined nonlinear spring and dashpot B, see Fig. 1.

We assume an additive decomposition of the strain energy function
of the form

ψ ξ ψ ξ ψ ξB B B B( , , ) = ( , ) + ( , ),B A B B (7)

where ψA is the strain energy function of spring A which serves to
characterize the thermodynamic equilibrium states of the elastomer
and ψB is the strain energy function of spring B which serves to account
for the additional energy storage and non-equilibrium states.
Furthermore, B FF= T is the left Cauchy-Green strain tensor, BB is an
(strain like) internal variable of the model and ξ is a switch parameter
(that will be defined later). We further impose the following conditions
on the strain energy function of spring A

ψ ξ ψ ξ ψB B( , ) = − H ( ) ( ),A A
f

A
e

(8)

ψ ψ 1= ( ),A
f

A
e

(9)

ψB B→ ∞ ⇒ ( ) → 0,A
e

(10)

where ψA
f and ψ B( )A

e designate the constant bulk failure energy and the
elastic free energy of spring A, respectively. Moreover, ξH( ) is a unit
step function, i.e. zH( ) = 0 if z < 0 and zH( ) = 1 otherwise; 1 is a second-
order identity tensor; and … is a tensor norm.

The switch parameter ξ ∈ (−∞, 0] is defined by the evolution
equation

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ξ ε

ψ

ψ
ξ̇ = −H − , (t = 0) = 0,A

e

A
f

(11)

where ε0 < ⪡1 is a dimensionless precision constant. Note that a
superposed dot denotes differentiation with respect to time.

The physical interpretation of the strain energy function is straight-
forward: the response of spring A is elastic as long as the strain energy is
below its limit, ψA

f . When the limit is reached, the strain energy remains
constant for the rest of the deformation process, thereby making
material healing impossible. The parameter ξ is not an internal variable;
it works as a switch: if ξ = 0 then the process is elastic and if ξ < 0 then
the material is irreversibly damaged and the stored energy is dissipated.

In order to enforce the energy limiter in the strain energy function,
we use the following form of the elastic energy

⎛
⎝⎜

⎞
⎠⎟ψ Φ Γ

Φ
B

B
( ) =

m
1
m

,
W ( )

,A
e A

m

m (12)

where ∫Γ(s, x) = t e dt
x

∞ s−1 −t is the upper incomplete gamma function,
BW ( )A is the strain energy function of intact material, Φ is the energy

limiter and m is a dimensionless material parameter which controls the
sharpness of the transition to material failure in the stress-strain curve.
Increasing or decreasing m it is possible to simulate more or less steep
ruptures of the internal bonds accordingly.

The failure energy can be calculated as follows

Fig. 1. Rheological model for the standard solid.
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⎛
⎝⎜

⎞
⎠⎟ψ Φ Γ

Φ
1

=
m

1
m

,
W ( )

.A
f A

m

m (13)

Note that the failure energy is a constant that depends on the two
failure parameters Φ( , m) through the gamma function. There is no
need to limit the energy of spring B as long as the failure of spring A
leads to overall failure. Therefore, we define the strain energy function
for spring B as

ψ ξ ξB B( , ) = H ( ) W ( ),B B B B (14)

where BW ( )B B stands for the strain energy without failure. Note that this
formulation is valid for any pair of strain energies WA and WB used to
describe the intact behaviour of the material (see Section 2.4).

Based on the additive decomposition of the strain energy function ψ,
the Cauchy stress is given by

σ σ σ= + ,A B (15)

where

σ
ψ

ψ ψ ψ ψ
B

B 1 B B= 2I
∂
∂

= 2I (I + ( + I ) − ) ,A 3
−1/2 A

3
−1/2

3 3 1 1 2 2
2

(16)

σ
ψ

ψ ψ ψ ψ
B

B 1 B B= 2I
∂
∂

= 2I (I + ( + I ) − ).B B3
−1/2 B

B
B B3

−1/2
B3 B3 B1 B1 B2 B B2 B

2

(17)

The principal invariants are

B B B BI = tr , 2I = (tr ) − tr ( ), I = det ,1 2
2 2

3 (18)

B B B BI = tr , 2I = (tr ) − tr ( ), I = det ,B1 B B2 B
2

B
2

B3 B (19)

where ψ ψ= ∂ /∂Ii i and ψ ψ= ∂ /∂IBi Bi.
The constitutive law (flow rule) for the dashpot is written in the

following general form

σ β β β1 D D= + + ,B 1 2 B 3 B
2

(20)

where βs are function(al)s, generally, depending on stresses and strains
and DB is the rate of deformation tensor corresponding to the dashpot.
Note that, as demonstrated by Aranda-Iglesias et al. [3], the second law
of thermodynamics requires that the following relation is fulfilled

β β βD D D+ + ≥ 0.1 B 2 B
2

3 B
3

(21)

Following Eckart [15], Leonov [30] and Volokh [43] the relation
between BB and DB can be written as follows

B D B B D 0 B 1
▽

+ + = , (t = 0) = ,B B B B B B (22)

where

B B LB B L
▽

= ̇ − − ,B B B B
T (23)

is the Oldroyd objective rate of the (strain like) internal variable BB. In
the previous expression L refers to the velocity gradient tensor of the
whole model.

2.3. Specialization to incompressible and compressible materials

In this section we specialize the constitutive model to incompres-
sible and (slightly) compressible materials. The hypothesis of incom-
pressibility is used in Section 3 to show the analytical (classical)
solution of the dynamic (spherical) cavitation problem. Compressibility
of the material is taken into account in the numerical model presented
in Section 4.

2.3.1. Incompressible formulation
The incompressibility condition implies that Bdet = 1, Bdet = 1B and

Dtr = 0B . With these constraints, the constitutive laws for the springs
(16)–(17) are written as follows

σ ψ ψ ψ1 B B= −p + 2 ( + I ) − ,A A 1 1 2 2
2

(24)

σ ψ ψ ψ1 B B= −p + 2 ( + I ) − ,B B B1 B1 B2 B B2 B
2

(25)

where pA and pB are undefined Lagrange multipliers enforcing incom-
pressibility.

The constitutive law for the dashpot (20) can be written as

σβ β η β= 1
3

tr , = , = 0,B1 2 2 3 (26)

where η2 is the only viscosity parameter (or function).
Substitution of (26) in (20) yields

σ σ η1 D= 1
3

(tr ) + ,B B 2 B (27)

Moreover, the thermodynamic restriction requires that

η ≥ 0.2 (28)

2.3.2. Compressible formulation
Implementation of strict incompressibility is difficult (and unneces-

sary) in numerical simulations. Hence the constitutive equations are
modified by penalizing the incompressibility conditions with large bulk
moduli to implement material compressibility. The constitutive laws for
the springs are written as

σ ψ ψ ψ1 B B= 2I ((I k − k ) + ( + I ) − ),A 3
−1/2

3 1 2 1 1 2 2
2

(29)

σ ψ ψ ψ1 B B= 2I ((I k − k ) + ( + I ) − ),B B3
−1/2

B3 B1 B2 B1 B1 B2 B B2 B
2

(30)

where k1, k2 and kB1, kB2 are the penalizing bulk moduli for springs A
and B accordingly.

We note that the bulk moduli are not independent and they should
obey the condition of zero stress for B B 1= =B and D 0= . Thus, we
obtain the relations

ψ ψ ψ ψk ≈ k ⪢ + 2 , k ≈ k ⪢ + 2 ,1 2 1 2 B1 B2 B1 B2 (31)

which allow to obtain slight compressibility in the numerical simula-
tions.

The constitutive law for dashpot is specified in a simple form to
reproduce the flow rule proposed by Reese and Govindjee [36] as
follows,

σβ
η η

η
β η β=

3 − 2
9

tr , = , = 0,B1
1 2

1
2 2 3 (32)

where η1, η2 are two viscosity parameters (or functions). One of the
major advantage of this flow rule is that it takes into account for the
large deformations and hence it is suitable for rubber-like materials.

Substituting (32) in (20) yields

σ σ
η η

η
η1 D=

3 − 2
9

(tr ) + .B
1 2

1
B 2 B

(33)

Moreover, the thermodynamic restriction requires that

η η η≥ 0, 3 ≥ 2 .2 1 2 (34)

2.4. Material parameters

Following Aranda-Iglesias et al. [3], we use the formulation
proposed by López-Pamies [32] for the intact strain energy functions

W
α

μ
α

μB( ) = 3
2

(I − 3 ) + 3
2

(I − 3 ),
α

α α
α

α α
A

(1− )

1
1 1

(1− )

2
2 1

1
1 1

2
2 2

(35)

and

W
α

μ
α

μB( ) = 3
2

(I − 3 ) + 3
2

(I − 3 ).
α

α α
α

α α
B B

(1− )

B1
B1 B1

(1− )

B2
B2 B1

B1
B1 B1

B2
B2 B2

(36)
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The viscosity function is taken from Hoo Fatt and Ouyang [22] and
reads as follows

η = (C (1 − exp (C (I − 3))) + C ) (C I + C I + C I + C ).2 1 2 1 3 4 B1
3

5 B1
2

6 B1 7 (37)

The complete constitutive model has 17 parameters: 6 for spring A
(μ1, μ2, α1, α2, m, Φ), 4 for spring B (μB1, μB2, αB1, αB2) and 7 for the
dashpot (C1, C2, C3, C4, C5, C6, C7). Aranda-Iglesias et al. [3] calibrated
the constitutive model to describe the mechanical behaviour of Styrene
Butadiene rubber. Small particles of Styrene Butadiene rubber are
added to a large number of semi-crystalline brittle polymers to increase
their toughness ([8]). In these rubber–modified polymers major source
of toughening comes from the energy consumed by the deformation of
rubber particles before they fail due to cavitation ([38]). Due to higher
toughness most of these polymers are used in impact applications. Thus
study of cavitation in Styrene Butadiene rubber is important.

The values of the parameters are listed in Table 1. Moreover, the
bulk moduli (k2, k2, kB1, kB2) take the value10 MPa3 for all the numerical
simulations reported in this paper. The material density is 900 kg/m3.

Note that, in agreement with the experimental evidence reported by
Hoo Fatt and Ouyang [22], the constitutive model captures the rate-
independent response of the material at sufficiently low and high strain
rates. In the quasi-static limit and for strain rates above ≈2000 s−1 the
branch B of the rheological model will exhibit purely elastic response.

3. Theoretical model

We present the main features of the analytical (classical) solution
for the dynamic cavitation of a spherical void embedded in an
incompressible elastic ball and subjected to internal pressure. Note
that the material is taken as purely elastic, i.e. viscous effects are not
accounted for. The analytical solution will be used in Section 5 as a
reference to rationalize the finite element results presented in Section 5.

3.1. Radially symmetric dynamic deformations

If the material is deformed so that the spherical symmetry is
maintained, the motion is given by

θ Θ ω Ωr = r (R, t), = , = , (38)

where θ ω(r, , ) denote the current coordinates of a point having
coordinates Θ Ω(R, , ) in the undeformed configuration. For the motion
described in (38), the deformation gradient tensor is

F e E e E e E= ∂r
∂R

⊗ + r
R

⊗ + r
R

⊗ ,θ Θ ω Ωr R (39)

where E E E( , , )Θ ΩR and e e e( , , )θ ωr are reference and current base
vectors in standard spherical coordinate system, respectively. More-
over, the displacement of a material point is

u e= u (r, t) ,r r (40)

where u (r, t) = r (t) − Rr . Next, relying on the incompressibility condi-
tion, the velocity and acceleration of a material point are given as

⎛
⎝⎜

⎞
⎠⎟v u e= ̇ = ȧ a

r
,

2

r (41)

⎛
⎝⎜

⎞
⎠⎟v ė = 2aȧ + a ä

r
− 2a ȧ

r
,

2 2

2

4 2

5 r
(42)

where a = a(t) is the radius of the cavity in the current configuration. In
the undeformed configuration this is denoted as a = a(0)0 .

Moreover, the Eulerian form of the conservation of linear momen-
tum along the radial direction is

σ σ σ
ρ

d
dr

+
2 ( − )

r
= v̇ ,θθrr rr

0 r (43)

where ρ0 is the (constant) material density and v̇r denotes the radial
acceleration.

The boundary conditions of the problem are

σ σ(r = a) = − P (t), (r = b) = 0,rr rr (44)

where P(t) is the pressure applied at the cavity wall. Note that b = b(t) is
the outer radius of the ball in the current configuration. In the
undeformed configuration this will be denoted as b = b(0)0 .

Substituting (42) in (43) and integrating the balance of linear
momentum along the radial coordinate using the boundary conditions
defined in (44), we get

P(t) = P + P ,Eq Dyn (45)

where

∫ σ σ
P = −

2 ( − )
r

dr,θθEq

a

b
rr

(46)

and

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥ρP = (2ȧ + aä) 1 − a

b
− ȧ

2
1 − a

b
.Dyn

0
2

2 4

4
(47)

The first term in (45) is the pressure due to the elastic response and
depends on the difference of the principal stresses. The second term in
(45) is the pressure due to inertial effects and depends on the mas
density ρ0, the outer radius of the elastic ball b, the size of the cavity a
and the velocity ȧ and acceleration ä at which the cavity grows.

3.2. Non-viscous quasi-static bounds

The rate sensitivity of the viscoelastic material described in Section
2 is restricted to a finite range of strain rates. As discussed in Section
2.4, at sufficiently low and high strain rates the dashpot does not play
any role in the response of the rheological model presented Fig. 1. The
lower bound of the viscous regime corresponds to the mechanical
response defined by spring A (only) and the upper bound to the joint

Table 1
Material parameters for Styrene Butadiene rubber as taken from Aranda-Iglesias et al. [3].
Spring A

μ1 (MPa) α1 μ2 (MPa) α2 m Φ (MPa)
0.391 1.045 2.162 −3.065 30 7.5

Spring B

μB1 (MPa) αB1 μB2 (MPa) αB2
3.99 0.382 2.868 −11.295

Dashpot B

C1 (MPa·s) C2 C3 (MPa·s) C4 C5 C6 C7
23.095 7.421 × 10−8 −8.458 × 10−7 −872.52 −7975.595 22150.457 27310.182
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response of springs A and B. Next, for the quasi-static case, we derive
theoretical solutions for the lower and upper bounds that will be used to
rationalize the finite element simulations reported in Section 5.

• Lower bound solution
Considering only spring A, the strain energy function becomes

ψ ψ ξB B( ) = ( , ),A (48)

which yields

⎛
⎝⎜

⎞
⎠⎟ψ ξ

Φ
= H ( ) exp −

W ∂W
∂I

.1
A
m

m
A

1 (49)

• Upper bound solution
Considering springs A and B, the strain energy function becomes

ψ ψ ξ ψ ξB B B( ) = ( , ) + ( , ),A B (50)

which yields

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ψ ξ

Φ
= H ( ) exp −

W ∂W
∂I

+
∂W
∂I

.1
A
m

m
A

1

B

1 (51)

Using the definitions of σrr and σθθ given in (24) we obtain

σ σ ψ− = 2 (B − B ).θθ θθrr 1 rr (52)

Inserting (52) into (45) and neglecting the inertia term we obtain

⎛
⎝⎜

⎞
⎠⎟∫ ψP (t) = − 4 (I (r)) R

r
− r

R
dr
r

,
a

b

1 1

4

4

2

2 (53)

with

I (r) = R
r

+ 2 r
R

and R (r, a) = (r − a + a ) .1

4

4

2

2
3 3

0
3 1/3

(54)

Replacing ψ1 in (53) by (49) and (51) we obtain the lower bound
Plower and upper bound Pupper solutions for the static pressure, respec-
tively. These are shown in Fig. 2 as a function of the normalized void
radius a/a0. We observe that Plower and Pupper increase rapidly (and almost
linearly) for short values of a/a0 and saturate for large values of a/a0.
Within the whole range of values of a/a0 explored, Plower goes below
Pupper, as expected. Critical pressures corresponding to unstable expan-
sion of void are obtained as P ≈ 2 MPalower

cr and P ≈ 9.5 MPaupper
cr . Failure

at the cavity surface (r = a) will occur when material failure criteria
discussed in Section 2 is satisfied. Note that, to obtain the solutions

plotted in Fig. 2 we have used b = 1000a0 0. This ratio between the inner
and outer radius of the elastic ball is large enough to make the solution
virtually independent of b0 ([42]).

4. Numerical model

This section describes the features of the axisymmetric finite
element model developed to simulate dynamic spherical cavity expan-
sion. The numerical analyses are carried out using the finite element
program ABAQUS/Explicit ([1]). The problem setting is of a very large
sphere of radius b = 100 mm0 with a small cavity in its center of radius
a0. Three values of a0 are explored in the numerical calculations
presented in Section 5, namely 0.01, 0.1 and1 mm. Due to the symmetry
of the model, only the Θ ≥ 0 half of the specimen has been analyzed
(see Fig. 3). The solid is initially at rest, stress and strain free, and a
pressure P(t) is applied at the cavity wall.

The model has been meshed using a total of 15,000 four-node
axisymmetric reduced integration elements, CAX4R in ABAQUS nota-
tion. This number of elements results from placing 50 elements along
the circumferential direction and 300 along the radial direction. The
mesh shows radial symmetry in an attempt to retain the symmetry of
the problem and minimize the potential interference of the mesh on the
calculations. The elements size is constant along the circumferential
direction whereas it decreases along the radial direction as the cavity is
approached. Namely, the dimensions of the elements located at the
cavity wall are: 0.3 μm × 0.23 μm for a = 0.01 mm0 , 3 μm × 23 μm for
a = 0.1 mm0 and 31 μm × 252 μm for a = 1 mm0 . Small elements are
required to capture the high gradients of stress and strain which arise
close to the cavity. A mesh convergence study has been performed, and
the time evolution of different critical output variables, namely stress,
strain and cavitation velocity were compared against a measure of mesh
density until the results converged satisfactorily.

The set of constitutive equations describing the material behaviour
presented in Section 2 are implemented into the finite element code
through a user subroutine. For that task, we have used the numerical
scheme developed by Aranda-Iglesias et al. [3].

5. Results and discussion

In this section we present finite element results for the spherical
void expansion problem using two different loading conditions: (1)
monotonically increasing pressure and (2) constant pressure. Both
loading conditions, widely used in the numerical analysis of cavitation
problems ([37,27]), show clear evidences of the stabilizing effect
played by viscosity and inertia in the expansion of the void. In selected

Fig. 2. Lower bound Plower and upper bound Pupper solutions for the static pressure as a

function of the normalized void radius a/a0.

Fig. 3. Axisymmetric finite element model developed to analyze dynamic spherical cavity
expansion.
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cases, the numerical results are further rationalized with the predictions
of the theoretical model described in Section 3.

5.1. Loading condition 1: monotonically increasing pressure

A pressure is applied at the cavity wall at constant rate
(Ṗ = constant). According to Wu et al. [46], different pressure rates
represent loading conditions of different severity/intensity (impulsive
loading, impact loading, shock loading…). Fig. 4 shows the applied
pressure P versus the normalized void radius a/a0 for different values of
Ṗ. Namely, Fig. 4(a) shows data for the purely elastic material that
results from considering only spring A and Fig. 4(b) shows results for
the (full) viscoelastic constitutive model. In any case, the failure of the
material is taken into account using the energy limiter in spring A. The
first occurrence of failure at the cavity wall is identified with * in the
P − a/a0 curves. The initial cavity size is a = 0.1 mm0 . The theoretical
solutions for the pressures corresponding to the lower and upper non-
viscous quasi-static bounds (Plower and Pupper, see Section 3.2) are also
plotted. For the purely elastic material, since only spring A is consid-
ered, we have that P = Plower upper.

Firstly, we pay attention to Fig. 4(a). For applied pressure rates
Ṗ < 10 MPa/s5 , the P − a/a0 curves coincide with P = Plower upper, as inertia
effects play a negligible role in the void expansion process. The failure
occurs at a/a ≈ 1.60 , when applied pressure becomes higher than
P ≈ 2 MPalower

cr . For applied pressure rates Ṗ > 10 MPa/s5 the P − a/a0

curves deviate from P = Plower upper. The cavity wall withstands a pressure
larger than Plower

cr due to the contribution of inertia effects. The
difference in pressure increases with a/a0. Moreover, the slope of the
P − a/a0 curves increases with Ṗ, which reveals the stabilizing effect of
inertia. Note that a P − a/a0 curve with slope tending to 0 represents an
unstable growth of the void. The failure occurs for a/a ≈ 4.30 . This value
is much larger than the one corresponding to Ṗ < 10 MPa/s5 . It becomes
apparent that inertia effects delay failure and improve the energy abortion
capacity of the material. This is a key result of our investigation which helps
to understand the performance of rubber-like materials under impact
loading.

Secondly, we focus on Fig. 4(b). For applied pressure rates
Ṗ ≤ 10 MPa/s5 the P − a/a0 curves lie within the lower and upper bound
solutions. Within this range of pressure rates, the increasing pressure at
the cavity wall with Ṗ is mostly caused by the effect of viscosity. Inertia
effects seem to have a secondary contribution to the cavity expansion
process. Note that Pupper does not correspond to a possible equilibrium
solution but to the maximum load that can be carried by the cavity
without intervention of inertia effects. Viscosity impedes to the cavity
to reach an equilibrium condition for applied pressures larger than
Plower

cr . The cavity radius at the time of failure (a/a ≈ 4.3)0 is much larger
than for the rate-independent material (a/a ≈ 1.6)0 . It becomes apparent
that, in absence of meaningful inertia effects, viscosity delays failure
and improves the energy absorption capacity of the material. For
applied pressure rates Ṗ > 10 MPa/s5 , the P − a/a0 curves run above
the upper bound Pupper. The viscoelastic material withstands cavity
pressures larger than P ≈ 9.5 MPaupper

cr , thanks to inertia effects. Inertia
controls the void expansion process at a large extent and the P − a/a0
curves for the purely elastic material and the rate-dependent material
become similar.

Next, we analyze the role played by the initial void radius (a )0 in the
cavity expansion process. While the quasi-static case is not sensitive to
the initial dimensions of the cavity [10], inertial resistance to motion
increases with the void size [46]. The (full) viscoelastic constitutive
model is used in the analysis. Fig. 5 shows the applied pressure P versus
a/a0 for three different initial void radius: a = 0.01 mm0 (green),
a = 0.1 mm0 (blue) and a = 1 mm0 (black). Results are shown for two
different applied pressure rates: Ṗ = 10 MPa/s6 (solid line) and
Ṗ = 5·10 MPa/s6 (dotted line). These pressure rates (the greatest in-
vestigated in Fig. 4) favour that inertia effects play a role in the cavity
expansion process. The P − a/a0 curves are always above the upper
bound solution Pupper. Increasing a0 has the same effect on the P − a/a0

curve that increasing Ṗ. As the initial cavity radius increases, the

Fig. 4. Applied pressure P versus the normalized void radius a/a0 for different values of Ṗ.
(a) Purely elastic constitutive model and (b) viscoelastic constitutive model. The symbol *
indicates the first occurrence of failure (i.e. ψ ψ=A A

f ) at the cavity wall. The initial cavity

size is a = 0.1 mm0 .

Fig. 5. Applied pressure P versus the normalized void radius a/a0 for three different initial
void radius: a = 0.01 mm0 (green), a = 0.1 mm0 (blue) and a = 1 mm0 (black). Results are
shown for two different applied pressure rates: Ṗ = 10 MPa/s6 (solid line) and
Ṗ = 5·10 MPa/s6 (dotted line). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).
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pressure at the cavity wall and the (normalized) size of the void at the
time of failure also do.

5.2. Loading condition 2: constant pressure

The pressure rises from zero to P0 at a given rate Ṗ and then remains
constant during the rest of the loading process. Fig. 6 shows the growth
rate of the void ȧ versus the normalized void radius a/a0 for different
values of Ṗ, P0 and a0. The symbol *indicates the first occurrence of
failure at the cavity wall. The (full) viscoelastic constitutive model is
used in the calculations. Recall that, due to viscosity, the cavity cannot
find an equilibrium configuration for applied pressures larger than
Plower

cr .

• Fig. 6 (a) considers P = 10 MPa0 , a = 0.1 mm0 and four different
values of Ṗ: 104, 105, 106 and 10 MPa/s7 . The case of a suddenly
applied pressure (Ṗ → ∞) is also investigated. The value of P0 is
larger than the critical equilibrium pressure Plower

cr . For Ṗ = 10 MPa/s4

and Ṗ = 10 MPa/s5 , the expansion velocity is an increasing function
of a/a0. As Ṗ increases the growth rate of the cavity ȧ also does. The
failure of the material occurs before the constant pressure P0 is
reached. For these two cases, the loading condition is essentially
identical to the one considered in Section 5.1. For Ṗ = 10 MPa/s6 ,

Ṗ = 10 MPa/s7 and Ṗ → ∞, the ȧ − a/a0 curve increases rapidly,
reaches a maximum and then decreases slowly. In absence of
failure, the expansion velocity of the cavity would reach a constant
value (horizontal asymptote in the graph) which identifies the
steady-state cavitation regime [37]. The value of the steady-state
expansion velocity is determined by P0 and does not depend on Ṗ.
This is apparent from the results obtained for Ṗ = 10 MPa/s6 ,
Ṗ = 10 MPa/s7 and Ṗ → ∞, which virtually coincide for the largest
values of a/a0 reached. The increase of inertia effects with the applied
pressure rate ceases shortly after the constant pressure is reached.

• Fig. 6(b) considers Ṗ = 10 MPa/s7 , a = 0.1 mm0 and four different
values of P0: 4, 6, 8 and 10 MPa. Recall that all the values of P0 are
larger than the critical equilibrium pressure Plower

cr . For P = 4 MPa0
and P = 6 MPa0 the ȧ − a/a0 curves show an oscillatory response
during the first stages of loading. The value of ȧ turns from positive
to negative (and vice versa) several times. The amplitude and
velocity of the oscillations is gradually reduced until the steady-
state cavitation regime (ȧ = constant) is reached. For P = 8 MPa0 a
single loop is observed in the graph and ȧ only takes negative values
within a small range of the ratio a/a0. The size of the cavity
increases, almost, during the whole loading process. For
P = 10 MPa0 the response of the elastic ball is not oscillatory. No
exceptions, the cavity size increases monotonically during loading.
Note that the value of the steady-state expansion velocity increases with

Fig. 6. Growth rate of the void ȧ versus the normalized void radius a/a0. (a) We consider P = 10 MPa0 , a = 0.1 mm0 and four different values of Ṗ: 104, 105, 106 and 10 MPa/s7 . The case of
Ṗ → ∞ is also taken into account. (b) We consider Ṗ = 10 MPa/s7 , a = 0.1 mm0 and four different values of P0: 4, 6, 8 and 10 MPa. (c) We consider P = 10 MPa0 , Ṗ = 10 MPa/s7 and three
different values of a0: 0.01, 0.1 and 1 mm.
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P0. The rise of the growth rate of the cavity with the applied pressure
boosts the contribution of inertia effects to the expansion process.

• Fig. 6(c) considers P = 10 MPa0 , Ṗ = 10 MPa/s7 and three different
values of a0: 0.01, 0.1 and 1 mm. The growth rate of the void first
increases, reaches and maximum and then gradually decreases until
ȧ becomes constant. Note that drop between the maximum and the
steady value of ȧ increases with the void size. Moreover, the growth
rate of the void in the steady-state regime significantly increases
with the void size. The increase of the cavitation velocity with the void
size leads to larger contribution of inertia effects to the expansion
process.

Fig. 7 shows the failure time tf versus the applied pressure rate Ṗ for
four different values of P0 and three different values of a0. All the values
of P0 considered are greater than the critical equilibrium pressure Plower

cr .
The green marks *indicate, in each case, the rise time, i.e. the time
required to reach P0. For a given value of P0, the rise time decreases
linearly with the applied pressure rate Ṗ, as expected.

• Fig. 7 (a) shows results for the purely elastic constitutive model.

Irrespective of P0, the t − Ṗf curves are rather similar. For the lowest
values of Ṗ considered, the failure occurs before the constant value
of P0 is reached and tf decreases linearly with Ṗ. For the greatest
values of Ṗ explored the failure occurs after the constant value of P0
is reached and tf becomes largely independent of Ṗ. As previously
shown in Fig. 6(a), the pressure rate used to reach P0 barely affects
the cavity expansion process, including the failure time, in the
regime of constant pressure. Moreover, irrespective of the value of P0
considered, the size of the cavity delays failure. The delay is mild
when the failure occurs before the cavity pressure becomes constant,
but it is very significant when failure occurs during the regime of
constant cavity pressure. It is apparent that, for the loading
condition investigated in this section of the paper, the influence of
inertia effects in the expansion process becomes especially relevant
when the cavity pressure is constant.

• Fig. 7(b) shows results for the (full) viscoelastic constitutive model.
For all the cases analyzed, the failure time is greater than the one
corresponding to the purely elastic counterpart. The difference is
especially significant in the loading cases in which inertia effects are
less important, i.e. low values of a0 and P0. In other words, the

Fig. 7. Failure time tf versus the applied pressure rate Ṗ for (a) purely elastic and (b) viscoelastic materials. Four different values of P0 are considered: 4, 6, 8 and 10 MPa. Three different
values of a0 are considered: 0.01, 0.1 and 1 mm.
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stabilizing effect of viscosity is exposed as long as inertia effects do not
control the loading process. The results for a = 0.01 mm0 and
a = 0.1 mm0 are practically identical for all the values of P0 and Ṗ
explored. Furthermore, the results for P = 4 MPa0 are virtually
independent of a0 and Ṗ. In this case, unlike what happened for
the purely elastic material, the failure occurs after the pressure has
reached the constant cavity pressure.

6. Conclusions

In this paper we have conducted a comprehensive finite element
analysis to identify the roles of viscosity and inertia in the dynamic
expansion of a spherical void embedded into a deformable ball and
subjected to internal pressure. The ball is modelled with a nonlinear
viscoelastic constitutive theory which incorporates material failure.
Numerical simulations, in which the viscosity of the constitutive model
has been alternatively switched on and off, have been performed for
different loading rates, applied pressures and void sizes. If the pressure
at the cavity wall is greater than the critical equilibrium pressure,
viscous and inertia effects play a role in the void expansion process,
stabilize the material behaviour and delay failure. In a general manner,
viscous effects are important as long as the cavity pressure does not
exceed the upper bound of the rate-dependent material response, i.e.
inertia effects become meaningful after the cavity pressure exceeds the
upper bound of the rate-dependent material response. Nevertheless, the
specific contribution of inertia and viscous effects to the cavity
expansion process is highly dependent on the void size. Inertia effects
are significantly more important as the cavity size increases.

All in all, this research has shown the need of including viscous and
inertia effects in the analysis of elastomers subjected to dynamic
loading conditions. This is a key outcome since elastomers are currently
widely used in tires, isolation bearings, shock absorbers… and many
other applications in which they are frequently subjected to shocks,
blasts and impacts. In this regard, the prospective work is to extend the
application of the viscoelastic constitutive model used in this paper to
the aforementioned engineering problems and identify/quantify the
actual contribution of viscous and inertia effects to the performance of
elastomeric structures subjected to various kinds of dynamic loadings.
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