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There are two polar contemporary approaches to the constitutive modeling of arterial wall with aniso-
tropy induced by collagen fibers. The first one is based on the angular integration (AI) of the strain energy
on a unit sphere for the analytically defined fiber dispersion. The second one is based on the introduction
of the generalized structure tensors (GST). AI approach is very involved computationally while GST
approach requires somewhat complicated procedure for the exclusion of compressed fibers.
We present some middle ground models, which are based on the use of 16 and 8 structure tensors.

These models are moderately involved computationally and they allow excluding compressed fibers
easily. We use the proposed models to study the role of the fiber dispersion in the constitutive modeling
of the arterial wall. Particularly, we study the auxetic effect which can appear in anisotropic materials.
The effect means thickening of the tissue in the direction perpendicular to its stretching. Such an effect
was not observed in experiments while some simple anisotropic models do predict it. We show that more
accurate account of the fiber dispersion suppresses the auxetic effect in a qualitative agreement with
experimental observations.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Collagen fibers variously dispersed in soft ground matrix induce
anisotropy in the arterial wall. To account for anisotropy within
non-linear elasticity Chuong and Fung (1983) generalized the
approach of anisotropic linear elasticity by introducing the expo-
nential strain energy function with the Green strain tensor instead
of the linearized strain tensor. Since then, various constitutive
models of arteries were proposed, e.g. Takamizava and Hayashi
(1987), Hayashi (1993); Humphrey (1999) and others. We note
that Fung’s approach requires a special choice of the reference
coordinates with respect to the characteristic material directions.
Instead, frame-invariant formulations of anisotropic finite elastic-
ity can be based on the introduction of the so-called structure ten-
sors, which are presented by tensor products of vectors in the
characteristic directions of anisotropy, e.g. Holzapfel et al. (2000,
2005) and Zulliger et al. (2004); and many others recently
reviewed by Holzapfel and Ogden (2010). Some relationships
between these seemingly different Fung’s and frame-invariant for-
mulations were explored by Ateshian and Costa (2009), for
example.

Alternatively to Fung’s approach, Lanir (1983) (see also Ehret
et al., 2009; Federico and Gasser, 2010; Kassab and Sacks, 2016;
Sáez et al., 2016; Gizzi et al., 2016) suggested to account for aniso-
tropy by considering angular dispersion of collagen fibers defined
analytically. This approach is physically appealing yet it generally
requires a numerical angular integration (AI) procedure on a unit
sphere. Unfortunately, hundreds or, even, thousands integration
points on the unit sphere are necessary to provide accuracy of
the model. Such integration must be done at every Gauss point
of the finite element mesh on every loading step. Thus, the AI
approach is very involved computationally. In the attempt to keep
the information about the fiber dispersion yet to reduce its compu-
tational cost, an approach of the generalized structure tensors
(GST) was introduced by Freed et al. (2005) and Gasser et al.
(2006). The idea of the GST approach is to account for the fiber dis-
persion in a structure tensor rather than in the strain energy
directly. The latter means that the numerical integration has to
be done only once for computing the components of the general-
ized structure tensors. Once computed these tensors do not change
in stress analyses in contrast to the AI approach, in which energy
should be perpetually recomputed. Unluckily, the GST approach
has its own pitfalls related with the exclusion of the compressed
collagen fibers: Federico and Herzog (2008), Cortes et al. (2010),
Pandolfi and Vasta (2012), Holzapfel and Ogden (2015), Lanir and
Namani (2015), Melnik et al. (2015), Li et al. (2016), Latorre and
Montáns (2016) and Holzapfel and Ogden (2017).

In the present work, we make an attempt to keep the advan-
tages of the fiber dispersion models avoiding numerical complica-
tions inherent in them. That can be done, in our opinion, by using
multiple yet moderate number of structure tensors whose choice
reflects upon the collagen structure of the arterial wall. Such an
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approach is not involved computationally and it allows for an easy
exclusion of the collagen fibers in compression. We use the pro-
posed models to study the role of the fiber dispersion in the consti-
tutive modeling of the arterial wall. Particularly, we study the
auxetic effect which can appear in anisotropic materials. The effect
means thickening of the tissue in the direction perpendicular to its
stretching. Such an effect was not observed in experiments while
some simple anisotropic models do predict it. We show that more
accurate account of the fiber dispersion suppresses the auxetic
effect in a qualitative agreement with experimental observations.

2. Analytical formulation of the fiber dispersion models

Following the approach of continuum mechanics (Holzapfel,
2000; Volokh, 2016) we substitute the discrete atomic or molecu-
lar structure of materials with a continuous set of material parti-
cles. A particle placed at x in the reference configuration X0

moves to position yðxÞ in the current configuration X. The defor-
mation in the vicinity of the material points is described by the
deformation gradient

F ¼ GradyðxÞ; ð1Þ
or, in Cartesian coordinates: Fij ¼ @yi=@xj.

In the absence of body and inertia forces the stress tensor obeys
the linear momentum balance in X0 as follows

DivP ¼ 0; ð2Þ
where P is the first Piola-Kirchhoff stress tensor and
ðDivPÞi ¼ @Pij=@xj in Cartesian coordinates.

The linear momentum balance on the boundary @X0 presents
the natural boundary condition

Pn ¼ �t; ð3Þ
where n is the unit outward normal to @X0 and �t is a prescribed ref-
erential traction on the boundary.

Alternatively, the essential boundary condition on placements
can be prescribed

y ¼ �y: ð4Þ
We further assume that material is hyperelastic and it is com-

posed of the isotropic ground matrix with the strain energy g
and the embedded dispersed collagen fibers with the strain energy
f. Then, the first Piola-Kirchhoff stress tensor can be defined by the
following constitutive equation

P ¼ �pF�T þ 2F
@g
@C

þ 2F
@f
@C

; ð5Þ

where F�T � ðF�1ÞT; p is the unknown Lagrange multiplier enforcing
the incompressibility condition: detF ¼ 1; and

C ¼ FTF ð6Þ
is the right Cauchy-Green tensor.

The strain energy function of the dispersed fibers f is defined by

f ¼
Z
qðaÞwðkðaÞÞdK; ð7Þ

where the integration is on the unit sphere and K is the solid angle;
qðaÞ is the angular density of the fiber distribution normalized as
followsZ
qðaÞdK ¼ 4p; ð8Þ

and wðkðaÞÞ is the strain energy density (per unit reference volume)
of an individual fiber as a function of its stretch
kðaÞ ¼ Faj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a � Ca

p
P 1: ð9Þ

Here the generic material fiber direction

aðU;HÞ ¼ cosU sinHe1 þ sinU sinHe2 þ cosHe3; ð10Þ
is expressed in spherical coordinates

0 6 U 6 2p; 0 6 H 6 p: ð11Þ
Differentiating the strain energy function w with respect to the

right Cauchy-Green tensor we obtain the constitutive law in the
form

P ¼ �pF�T þ 2F
@g
@C

þ
Z p

0

Z 2p

0

q
k
@w
@k

Fa� a sinHdHdU; ð12Þ

or, in terms of the Cauchy stress,

r ¼ PFT ¼ �p1þ 2F
@g
@C

FT þ
Z p

0

Z 2p

0

q
k
@w
@k

Fa� Fa sinHdHdU;

ð13Þ
where 1 is a second-order identity tensor and the incompressibility
condition detF ¼ 1 has been taken into account.

Remark 1. Following the general trend in the literature, we
assumed that collagen fibers did not resist compression. In the
case of an individual fiber such assumption is evident, of course. It
is less evident when bundles of collagen fibers embedded in the
ground matrix are considered. Structurally integrated fibers might
resist compression (e.g. Bellini et al., 2014). To understand the
mechanical behavior of collagen fibers better it would be interest-
ing to test artery specimens with eliminated ground matrix, if
possible. The very existence of the structurally integrated collagen
fiber net after the ‘‘suppression” of the ground matrix might be a
qualitative argument in favor of the collagen resistance to
compression.
3. Specialization of the fiber dispersion and strain energies

Further specialization of the theory presented in the previous
section requires choice of g;q, and w.

It is common to use the neo-Hookean material model for the
ground matrix

g ¼ c
2
ðI1 � 3Þ; ð14Þ

where c is the shear modulus of the ground matrix and I1 ¼ trC is
the first principal invariant of C.

For the fiber dispersion function q, we choose the model of a
human artery adventitia following Holzapfel et al. (2015) based
on experiments by Schriefl et al. (2012)

qðU;HÞ ¼ qopðHÞqipðUÞ; ð15Þ
where

qopðHÞ ¼ 2

ffiffiffiffiffiffi
2b
p

r
exp½�2b cos2 H�

erfð
ffiffiffiffiffiffi
2b

p
Þ

; 0 6 H 6 p; ð16Þ

and

qipðUÞ ¼ 1
2

qI
ip þ qII

ip

� �
;

qI
ip ¼ exp½a cos 2ðU� aÞ�

I0ðaÞ ; 0 6 U� a 6 2p;

qII
ip ¼ exp½a cos 2ðU� ðp� aÞÞ�

I0ðaÞ ; 0 6 U� ðp� aÞ 6 2p:

ð17Þ



Fig. 2. Out-of-plane fiber dispersion density.

Fig. 3. In-plane fiber dispersion density.
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Here qipðUÞ and qopðHÞ describe the in-plane and out-of-plane dis-
persions, accordingly; a and b are material constants; a is the angle
between the mean fiber direction and the circumferential direction
e1;

I0ðaÞ ¼ 1
p

Z p

0
exp½a cos x�dx ð18Þ

is the modified Bessel function of the first kind of order 0; and the
error function is defined as

erfð
ffiffiffiffiffiffi
2b

p
Þ ¼ 2ffiffiffiffi

p
p

Z ffiffiffiffi
2b

p

0
exp½�x2�dx: ð19Þ

We note that U is the angle in the tangent plane, defined by
local unit vectors e1 and e2, of artery measured from the circumfer-
ential direction e1; and H is the out-of-plane angle measured from
the radial direction e3 – Fig. 1.

The reader should not miss that Holzapfel et al. (2015) used
angle p=2�H instead of H used in the present work.

Figs. 2 and 3 present the out-of-plane and in-plane distribution
densities with the following dispersion parameters

a ¼ 47:99�; a ¼ 2:54; b ¼ 19:44: ð20Þ
Finally, we choose the strain energy function of the individual

fiber in the form (Holzapfel et al., 2000)

w ¼ k1
2k2

fexp½k2ðI4 � 1Þ2� � 1g; ð21Þ

where k1; k2 are material parameters and

I4 ¼ C : a� a ¼ kðaÞ2 ð22Þ
is the fourth invariant.

Substitution of the chosen functions in the constitutive law (13)
yields

r ¼ �p1þ cBþ
Z p

0

Z 2p

0
qopqipxFa� Fa sinHdHdU; ð23Þ

where

x ¼ k1fI4 � 1g exp½k2fI4 � 1g2�; ð24Þ
and

B ¼ FFT ð25Þ
is the left Cauchy-Green tensor.

The braces in (24) can be interpreted as Macaulay brackets to
account for the fiber response in tension only

fxg ¼ 0; x < 0
x; x P 0

�
; ð26Þ
Fig. 1. Local coordinate frame for the arterial wall.
defined, for example, as

fxg ¼ 1
2
ðxþ xj jÞ: ð27Þ
4. Dispersion models with multiple structure tensors

Unfortunately, the integrals over the unit sphere can be com-
puted analytically in the very special cases only and, generally, a
numerical integration is necessary. The generic formulas allowing
for the integration on the sphere are called the cubature formulas.
Via the cubature formulas the strain energy density (7) can be
rewritten in the form

f ¼
XN
i¼1

bðiÞqðiÞwðiÞ; ð28Þ

where bðiÞ is a weighting factor and

qðiÞ ¼ qðaðiÞÞ; wðiÞ ¼ wðkðiÞÞ; kðiÞ ¼ kðaðiÞÞ P 1; aðiÞ ¼ aðUðiÞ;HðiÞÞ
ð29Þ

with N points ðUðiÞ;HðiÞÞ chosen on the unit sphere.
Accordingly, the normalization condition (8) reads

XN
i¼1

bðiÞqðiÞ ¼ 4p; ð30Þ

and the constitutive law (13) takes form

r ¼ �p1þ 2F
@g
@C

FT þ
XN
i¼1

bðiÞqðiÞ

kðiÞ
@wðiÞ

@kðiÞ
FaðiÞ � FaðiÞ: ð31Þ

Specializing the fiber dispersion and the strain energies follow-
ing the previous section we get

r ¼ �p1þ cBþ
XN
i¼1

cðiÞxðiÞFaðiÞ � FaðiÞ; ð32Þ



126 K.Y. Volokh / Journal of Biomechanics 61 (2017) 123–130
where

cðiÞ ¼ bðiÞqðiÞ
opq

ðiÞ
ip ; xðiÞ ¼ k1fIðiÞ4 � 1g exp½k2fIðiÞ4 � 1g2�; ð33Þ

and

IðiÞ4 ¼ C : aðiÞ � aðiÞ; qðiÞ
op ¼ qopðHðiÞÞ; qðiÞ

ip ¼ qipðUðiÞÞ: ð34Þ
It is important to note that after the application of cubature formu-

las the general fiber dispersion model can be interpreted as a model
based on multiple structure tensors. Indeed, we can consider dyads
aðiÞ � aðiÞ, and their ‘‘push-forward” to the current configuration

FaðiÞ � FaðiÞ, at integration points as structure tensors given by the
characteristic direction aðiÞ.

The choice of the integration scheme and, consequently, struc-
ture tensors is by no means unique or trivial. In the following sub-
sections we will consider four models. The first one is based on the
21 integration points on the unit sphere following the Bazant and
Oh (1986) scheme. The second and third ones are proposed in the
present work and they are based on 16 and 8 structures tensors
respectively. The difference between the second and third models
is that the former accounts for the out-of-plane fiber dispersion
while the latter does not. The fourth is the HGO model (Holzapfel
et al., 2000) including only two structure tensors.

4.1. Bazant and Oh model with 21 structure tensors

Bazant and Oh (1986) proposed a number of integration
schemes on a unit sphere. The most popular and simple one is
the 42-point integration scheme, which is summarized in Table 1
for out-of-plane and in-plane angular densities. This scheme is
reduced to 21 points with account of symmetry.

A way to control the efficiency of the proposed angular integra-
tion scheme is to check the numerical normalization condition
(30). Substituting for (30) from Table 1 we compute the following
result

X21
i¼1

bðiÞqðiÞ
opq

ðiÞ
ip ¼ 1:28: ð35Þ

This value is unacceptably far from the necessary 4p, which
means failure of the integration scheme. This result shows that
large numbers of integration points are necessary to catch the ani-
sotropy via AI models. Such conclusion is also in a qualitative cor-
Table 1
Bazant and Oh 21-point model.

i aðiÞ1 aðiÞ2 aðiÞ3 HðiÞ ðradÞ

1 0.0 0.0 1.0 0.0
2 0.707 0.0 0.707 0.786
3 1.0 0.0 0.0 1.571
4 0.836 0.388 0.388 1.172
5 0.388 0.388 0.836 0.581
6 0.707 0.707 0.0 1.571
7 0.388 0.836 0.388 1.172
8 0.0 0.707 0.707 0.786
9 0.0 1.0 0.0 1.571
10 �0.388 0.836 0.388 1.172
11 �0.707 0.707 0.0 1.571
12 �0.388 0.388 0.836 0.581
13 �0.836 0.388 0.388 1.172
14 �0.707 0.0 0.707 0.786
15 �0.836 �0.388 0.388 1.172
16 �0.388 �0.388 0.836 0.581
17 �0.388 �0.836 0.388 1.172
18 0.0 �0.707 0.707 0.786
19 0.388 �0.836 0.388 1.172
20 0.388 �0.388 0.836 0.581
21 0.836 �0.388 0.388 1.172
respondence with results of Alastrue et al. (2009a, 2009b) who
showed that in the case of anisotropy large number of the integra-
tion points on the unit sphere is necessary. Forsell et al. (2013)
used from N ¼ 240 to N ¼ 4322 integration points to describe ani-
sotropy reasonably well.

In summary, from hundreds to thousands integration points on
a unit sphere are necessary to use the physically appealing AI mod-
els. That is a truly high cost in view of the fact that such integration
must be done at every Gauss point of the finite element mesh on
every loading step.

4.2. Model with 16 structure tensors with out-of-plane fiber dispersion

Motivated by computational expenses of the traditional AI
model, we present here its reduced version based on a moderate
number of structure tensors or, equivalently, integration points
on the unit sphere. Our main idea is that the general angular inte-
gration methods are expensive because they are universal. How-
ever, the fiber dispersion functions are specific and the latter
should be taken into account during angular integration. Actually,
the dispersion densities are computationally attractive because
they are collections of hat-like patterns comprising ascending
and descending branches of highly smooth monotonic functions.
The latter qualitative notion suggests the idea to use the one-
point Gauss integration for every segment (solid angle) of the mesh
where fiber dispersion is nonzero.

For example, we partition the sphere as shown in Table 2,
where symmetry has been taken into account and the angular
ranges for Ki are defined in the second and third columns of the
table.

The fourth and fifth columns of this same table give the angular
coordinates of the Gauss points on the sphere segments; the sixth
column provides their integration weights; the seventh and eighth
columns provide the dispersion densities at the Gauss points.

We note that the weight functions are computed as follows

bðiÞ ¼ 2 sinHðiÞ 4UðiÞ 4HðiÞ; ð36Þ
where factor 2 is necessary to account for the symmetry of the inte-
gration points in the interval 180� 6 4UðiÞ 6 360�, which was not
included in the Table 2; 4UðiÞ and 4HðiÞ are the lengths (in radians)
of the corresponding segments given in columns 2 and 3 of Table 2.

To control the quality of the discretization we compute the nor-
malization condition
UðiÞ ðradÞ bðiÞ qðiÞ
op qðiÞ

ip

0.0 0.053 0 0.226243
0.0 0.040 0 0.226243
0.0 0.053 7.03586 0.226243

0.435 0.050 0.0200111 0.874887
0.785 0.050 0 1.8546
0.786 0.040 7.03586 1.85558
1.136 0.050 0.0200111 1.23005
1.571 0.040 0 0.38408
1.571 0.053 7.03586 0.38408
2.006 0.050 0.0200111 1.23141
2.356 0.040 7.03586 1.85518
2.357 0.050 0 1.8542
2.707 0.050 0.0200111 0.87363
3.142 0.040 0 0.226244
3.577 0.050 0.0200111 0.876145
3.927 0.050 0 1.855
4.278 0.050 0.0200111 1.22869
4.712 0.040 0 0.384081
5.147 0.050 0.0200111 1.22943
5.498 0.050 0 1.85478
5.848 0.050 0.0200111 0.875459



Table 2
Model with 16 structure tensors.

Ki 4UðiÞ 4HðiÞ UðiÞ HðiÞ bðiÞ qðiÞ
op qðiÞ

ip cðiÞ ¼ bðiÞqðiÞ
opq

ðiÞ
ip

K1 ½0�;20�� ½75�;90�� 10� 82:5� 0:181207 3.62778 0.321159 0.211123
K2 ½20�;48�� ½75�;90�� 34� 82:5� 0:25369 3.62778 1.40162 1.28996
K3 ½48� ;70�� ½75�;90�� 59� 82:5� 0:199328 3.62778 1.57071 1.13581
K4 ½70�;90�� ½75�;90�� 80� 82:5� 0:181207 3.62778 0.528086 0.347153
K5 ½90�;110�� ½75�;90�� 100� 82:5� 0:181207 3.62778 0.528086 0.347153
K6 ½110�;132�� ½75�;90�� 121� 82:5� 0:199328 3.62778 1.57071 1.13581
K7 ½132� ;160�� ½75�;90�� 146� 82:5� 0:25369 3.62778 1.40162 1.28996
K8 ½160�;180�� ½75�;90�� 170� 82:5� 0:181207 3.62778 0.321159 0.211123
K9 ½0�;20�� ½90�;105�� 10� 97:5� 0:181207 3.62778 0.321159 0.211123
K10 ½20�;48�� ½90�;110�� 34� 97:5� 0:25369 3.62778 1.40162 1.28996
K11 ½48� ;70�� ½90�;110�� 59� 97:5� 0:199328 3.62778 1.57071 1.13581
K12 ½70�;90�� ½90�;110�� 80� 97:5� 0:181207 3.62778 0.528086 0.347153
K13 ½90�;110�� ½90�;110�� 100� 97:5� 0:181207 3.62778 0.528086 0.347153
K14 ½110�;132�� ½90�;110�� 121� 97:5� 0:199328 3.62778 1.57071 1.13581
K15 ½132� ;160�� ½90�;110�� 146� 97:5� 0:25369 3.62778 1.40162 1.28996
K16 ½160�;180�� ½90�;110�� 170� 97:5� 0:181207 3.62778 0.321159 0.211123
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X16
i¼1

bðiÞqðiÞ
opq

ðiÞ
ip ¼

X16
i¼1

cðiÞ ¼ 11:94: ð37Þ

It is still not the analytically expected 4p yet we observe a dra-
matic improvement as compared to the universal integration
scheme presented in the previous sub-section. It should also be
noted that we use only 16 structure tensors instead of 21 in the
previous sub-section. Thus, a physically reasonable integration
scheme should be used instead of a universal formal rule. We
emphasize that the normalization condition is a test for the accu-
racy of the representation of anisotropy. The closer the result to
4p the better is the approximation. Of course, the reader might fur-
ther improve the accuracy at the expense of more accurate integra-
tion schemes with more structure tensors. We do not do that in the
present work.

Remark 2. We should note that the partition presented in Table 2
has been done by trials-and-errors and neglecting some intervals
where qop ! 0. It is hoped that the readers might find a more
formal procedure. Such formalization, if successful, could be
important far beyond the topic of the present work.
4.3. Model with 8 structure tensors without out-of-plane fiber
dispersion

In the previous sub-section, we made account of the out-of-
plane dispersion by partitioning the corresponding density func-
tion into two - columns 3 and 5 of Table 2. In the present subsec-
tion, we condense the out-of-plane dispersion into the tangent
plane as shown in Table 3.

The normalization condition is calculated as follows

X8
i¼1

bðiÞqðiÞ
opq

ðiÞ
ip ¼

X8
i¼1

cðiÞ ¼ 12:45; ð38Þ
Table 3
Model with 8 structure tensors.

Ki 4UðiÞ 4HðiÞ UðiÞ HðiÞ

K1 ½0�;20�� ½82�;98�� 10� 90�

K2 ½20�;48�� ½82�;98�� 34� 90�

K3 ½48�;70�� ½82�;98�� 59� 90�

K4 ½70�;90�� ½82�;98�� 80� 90�

K5 ½90�;110�� ½82�;98�� 100� 90�

K6 ½110�;132�� ½82�;98�� 121� 90�

K7 ½132�;160�� ½82�;98�� 146� 90�

K8 ½160�;180�� ½82�;98�� 170� 90�
and its value is reasonably good.
This model is essentially simple and accurate for the in-plane

fiber dispersion. Actually, the models with the in-plane fiber dis-
persion dominate the literature and it will be instructive to use
the presented model in the subsequent computations.

4.4. Holzapfel-Gasser-Ogden model with 2 structure tensors

In addition to the models presented in the previous subsections
we take the HGO model (Holzapfel et al., 2000) as a limit with two
structure tensors only. In the latter case there is no fiber dispersion
and we set

cð1Þ ¼ cð2Þ ¼ 1; ð39Þ
and

Hð1Þ ¼ Hð2Þ ¼ 90�; Uð1Þ ¼ 47:99�; Uð2Þ ¼ 132:01�: ð40Þ
Obviously, the fiber dispersion is completely ‘condensed’ in

material constants k1 and k2 in this case.

5. Uniaxial tension in circumferential and axial directions

In this section we examine the models considered above in the
cases of uniaxial tension in circumferential and axial directions of
an artery.

Deformation is prescribed in the form

F ¼ k1e1 � e1 þ k2e2 � e2 þ k�1
1 k�1

2 e3 � e3; ð41Þ
where in-plane stretches of the arterial wall k1 and k2 are indepen-
dent and the out-of-plane stretch is derived from the incompress-
ibility condition: k3 ¼ k�1

1 k�1
2 .

In this case, the fourth (pseudo-) invariant of the i-th structure
tensor is
bðiÞ qðiÞ
op qðiÞ

ip cðiÞ ¼ bðiÞqðiÞ
opq

ðiÞ
ip

0:194955 7.03588 0.321159 0.440527
0:272937 7.03588 1.40162 2.6916
0:214451 7.03588 1.57071 2.36997
0:194955 7.03588 0.528086 0.724365
0:194955 7.03588 0.528086 0.724365
0:214451 7.03588 1.57071 2.36997
0:272937 7.03588 1.40162 2.6916
0:194955 7.03588 0.321159 0.440527
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IðiÞ4 ¼ ðk1 cosUðiÞ sinHðiÞÞ2 þ ðk2 sinUðiÞ sinHðiÞÞ2 þ ðk�1
1 k�1

2 cosHðiÞÞ2:
ð42Þ

The principal stresses coincide with the local coordinate axes
and they can be written as follows

r1 ¼ �pþ ck21 þ
XN
i¼1

cðiÞxðiÞk21 cos
2 UðiÞ sin2 HðiÞ;

r2 ¼ �pþ ck22 þ
XN
i¼1

cðiÞxðiÞk22 sin
2 UðiÞ sin2 HðiÞ;

r3 ¼ �pþ ck�2
1 k�2

2 þ
XN
i¼1

cðiÞxðiÞk�2
1 k�2

2 cos2 HðiÞ:

ð43Þ

Assuming thin layer, r3 ¼ 0, we calculate the unknown
Lagrange parameter p and obtain

r1 ¼ c k21�k�2
1 k�2

2

� �
þ
XN
i¼1

cðiÞxðiÞ k21 cos
2UðiÞ sin2HðiÞ �k�2

1 k�2
2 cos2HðiÞ

� �
;

r2 ¼ c k22�k�2
1 k�2

2

� �
þ
XN
i¼1

cðiÞxðiÞ k22 sin
2UðiÞ sin2HðiÞ �k�2

1 k�2
2 cos2HðiÞ

� �
:

ð44Þ
Fig. 4. Uniaxial tension in circumferential (top) and axial (bottom) direction for the 16 str
lateral stretches (right). Red diamonds show the experimental data. (For interpretation
version of this article.)

Table 4
Calibration of three models.

c ½kPa� k1 ½kPa� k2

Model with 16 structure tensors 5.0 2.23 1.63
Model with 8 structure tensors 5.0 2.04 1.58

HGO model with 2 structure tensors 10:0 7:5 27:5
We emphasize that, contrary to the isotropic case, both
stretches k1 and k2 are independent and must be found from the
simultaneous solution of the previous equations.

In particular, in the case of the uniaxial tension in the circum-
ferential direction we have

r1ðk1; k2Þ ¼ r;
r2ðk1; k2Þ ¼ 0;

ð45Þ

where r is the Cauchy tension.
Alternatively, in the case of the uniaxial tension in the axial

direction we have

r1ðk1; k2Þ ¼ 0;
r2ðk1; k2Þ ¼ r:

ð46Þ

Based on the experimental data presented in Holzapfel et al.
(2015) and using the least squares fit we calibrate the 16-, 8-,
and 2- structure tensors models described above as shown in
Table 4.

We solve the system of Eqs. (45) and (46) to generate the stress-
stretch and stretch-stretch curves presented in Figs. 4–6 for the
considered constitutive models.

Remarkably, we observe the ‘auxetic effect’ in the case of the HGO
model shown on the bottom right of Fig. 6 where the lateral stretch
becomes positive at tension for k2 > 1:35. This effect is not observed
in the other models discussed in the range of interest - it is model-
dependent!

Remark 3. It is important to emphasize that the experimental data
from Holzapfel et al. (2015) used for the calibration does not
exactly correspond to the used fiber dispersion data from Schriefl
et al. (2012). ‘‘Imaging and material data were obtained from
different but comparable tissues” (Holzapfel et al., 2015). This
ucture tensors model. Cauchy stress [kPa] versus stretch in circumferential (left) and
of the references to colour in this figure legend, the reader is referred to the web



Fig. 6. Uniaxial tension in circumferential (top) and axial (bottom) direction for the HGO model. Cauchy stress [kPa] versus stretch in circumferential (left) and lateral
stretches (right). Red diamonds show the experimental data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 5. Uniaxial tension in circumferential (top) and axial (bottom) direction for the 8 structure tensors model. Cauchy stress [kPa] versus stretch in circumferential (left) and
lateral stretches (right). Red diamonds show the experimental data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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notion can, probably, explain some divergence of the experiment
and fiber-dispersion models. It is also interesting that the fiber
dispersion ‘smears’ anisotropy as expected intuitively.
6. Conclusion

In this paper, we introduced new constitutive models of the
arterial wall, which accounted for the collagen fiber dispersion.
We used neither full angular integration (AI) nor generalized struc-
ture tensors (GST) popular in the literature. Instead, we used the
multiple (16 and 8) structure tensors introduced on the basis of
the specific angular distribution of collagen fibers. The introduced
models are computationally attractive in contrast to the AI
approach and they allow for an easy exclusion of compressed fibers
in contrast to the GST approach.

We applied the developed models to analysis of uniaxial ten-
sion in circumferential and axial directions of an arterial wall.
We found that the proposed models did not exhibit any auxetic
effect as was consistent with experiments: Skacel and Bursa
(2016), Holzapfel (2017). In contrast to the proposed model, more
simple anisotropic model based on 2 structure tensors does pre-
dict the auxetic effect - see analyses in Latorre et al. (2016) and
Murphy and Biwa (2017). Apparently, the account of the fiber dis-
persion via multiple structure tensors improves the physical
appeal of constitutive modeling.
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