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Abstract The remarkable phenomenon of the drag reduction via addition of small amounts of polymer
molecules to a Newtonian solvent was observed experimentally long ago. However, the theoretical expla-
nations of this observation are not overwhelming yet. In this note, we present a possible theoretical account
of the phenomenon. It is based on the use of the Navier–Stokes model with viscous strength for the solvent
and the upper-convected Maxwell model for the polymer solute. Simple analytical calculation shows that the
laminar flow of the solvent is stabilized by an addition of the polymer solute and, thus, the transition to the
chaotic and slower on average turbulent motion is suppressed.

1 Introduction

Interesting things can happen to the flows of Newtonian fluids with addition of small amounts of various
substances. It was Toms [23] who noticed, probably for the first time, that the addition of a small amount of
a polymer solute could reduce drag in a pipe flow at high Reynolds numbers. In other words and contrary to
intuition, Toms observed less resistance to the flow of the solution as compared to the flow of the pure solvent.
Reducing the drag, it is possible to dramatically increase the rate of flow with exciting practical implications.
It is not surprising, in view of the said, that there is an impressive body of scientific literature considering flows
with additives. For example, the bibliography prepared by Nadolink and Haigh [15] counts some 2800 sources
up to 1995. The knowledge concerning the drag reduction phenomenon was collected by Gyr and Bewersdorff
[10] the same year. One can only imagine a further extrapolation of these numbers of references to the present.
We mention a few works after 1995 by way of examples: [3,4,6,9,13,17,19,20,24,29].

Despite well-reported observations of the drag reduction phenomenon, its theoretical explanation is still
lacking. Of course, there is an objective difficulty in explaining the drag reduction phenomenon based on
the theory of a turbulent flow—the latter theory has not been finalized yet. However, the understanding of
the drag reduction on the conceptual level is also obscure. Probably, the first attempt to articulate a possible
physical scenario of the phenomenon was made by Oldroyd [16] who suggested the flow slip at the wall under
addition of the polymer solute. Tanner and Walters [22] note in this regard that “although it (the wall-slip
hypothesis) may give a description of the drag reduction phenomenon, it is not a satisfactory explanation,
since it is clear that the solvent does not slip at the wall”. A much more probable scenario of the drag reduction
is the hypothesis that the additives suppress turbulent flow and friction, making the flow (almost) laminar and
fast [14]. This hypothesis is rooted in experimental observations showing a significant decrease in the local
chaotic turbulent motions in the presence of polymer molecules. We find this scenario of the suppression of
turbulence appealing, and we suggest a simple theoretical explanation of it in the present note.
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Since we are short of a final theory of the turbulent flow, it is reasonable to not try analyzing the reverse
transition of the turbulent flow into the laminar one. Rather, it is rational to analyze the factors that can
preclude the instabilities of laminar flow triggering turbulence. So, the instability of a Newtonian solvent
should be considered in the presence of the polymer solute. The obstacle here is that the classical Navier–
Stokes constitutive model of the solvent does not predict linear instabilities in the pipe flow. The latter is
an obvious drawback of the classical theory because it contradicts experimental results with instabilities and
transition to turbulence at Reynolds numbers around ∼ 2000. To overcome this drawback, it was assumed by
some authors that finite initial perturbations could exist in the laminar flow in the form of coherent structures or
travelingwaves: [7,8,11,27]. In the presence of finite perturbations of the laminar flow, the nonlinear instability
analysis can be resorted to in order to explain transition to turbulence. The nonlinear instability analysis can
be physically appealing under specific circumstances. Unfortunately, finite flow perturbations do not generally
exist, while infinitesimal (molecular) perturbations always exist1, and so one should expect linear instability
analysis to catch the onset of the transition to turbulence.

A simple way to modify the classical Navier–Stokes theory is to relax the assumption of the unbounded
linear dependence of stress on deformation rate.Volokh [25,26] suggested to limit the linear stress-deformation-
rate dependence by viscous strength beyondwhich thefluidwould become idealwith negligible viscous friction.
The constitutive theory with the bounded stress automatically allows for the local loss of material stability and
transition to turbulence. The modified Navier–Stokes theory with the viscous strength is used in the present
work for the solvent, while the standard upper-convected Maxwell theory is used for the polymer solute. The
general constitutive equations are summarized in Sect. 2, and they are applied to the analysis of a pipe flow in
Sect. 3. A brief discussion of the obtained results is presented in Sect. 4.

2 Constitutive model

We consider the following constitutive equation for the mixture of water and polymer molecules:

σ = −p1 + 2ηD + τ , (1)

where σ is the Cauchy stress, τ is the stress due to the polymer solute, p is the unknown pressure, 1 is the
second-order identity tensor, η is the water viscosity, and D is the deformation rate

2D = gradv + (gradv)T. (2)

The velocity field v obeys the incompressibility condition

divv = 0. (3)

It is important to note that the water viscosity η is not constant. Rather, it is defined as follows [25,26]:

η = η0 exp[−(D : D/Φ2)m], (4)

where D : D = Di j Di j in Cartesian coordinates and the sum is performed over the repeated indices; η0 =
10−3 N s/m2 is a constant (initial) water viscosity, and m and Φ are additional material constants.

It is seen from Fig. 1 that the viscosity coefficient has two main modes: linearly viscous fluid:

η = η0 when D : D < Φ2, (5)

and ideal fluid:
η = 0 when D : D > Φ2, (6)

and by increasing m, it is possible to sharpen the step function.
The first mode corresponds to the classical Navier–Stokes model with viscous friction. The second mode

corresponds to the loss of viscosity. These twomodes reflect upon Landau’s remark that “…for the large eddies
which are the basis of any turbulent flow, the viscosity is unimportant” ([12], Section 33: “Fully developed
turbulence”).

1 Molecules/atoms are never at rest. Even in solids, where they are well bonded, heat propagates due to the local molec-
ular/atomic vibrations. In fluids, where molecules are much less bonded, it is natural to expect their constant local perturbed
(infinitesimal) motion superimposed on the global flow.
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Fig. 1 The meaning of the viscosity coefficient

Fig. 2 Stress versus deformation rate in shear flow

For largem (m → ∞), Volokh [26] calibratedΦ = 848.5s−1 for the critical Reynolds number Recr ≈ 2400
based on the experiments by Avila et al. [1].

To show how the viscous strength works, it is instructive to consider the steady shear flow described by
the deformation rate D = D12(e1 ⊗ e2 + e2 ⊗ e1) and stress (without τ ) σ = −p1+ σ12(e1 ⊗ e2 + e2 ⊗ e1)
tensors, where ei is a Cartesian basis vector. In this case, the constitutive law (1) takes the following reduced
form: σ12 = 2η0D12 exp[−(2D2

12/Φ
2)m]; it is presented graphically in Fig. 2.

The limit points have the following horizontal coordinates: D12/Φ = ±2−1/2(2m)−1/(2m). In the case of
m → ∞, we get the critical deformation rate Dcr

12 = ±Φ/
√
2 and the critical stress σ cr

12 = ±√
2Φη0.

It is interesting to note that the recent molecular dynamics simulations by Raghavan and Ostoja-Starzewski
[21] favor the modified Navier–Stokes model with viscous strength.

It remains to define the constitutive law for the stress τ due to the polymer solute—the upper-convected
Maxwell model [5,18]

τ + λ
�
τ = G1, (7)

where λ is the relaxation time; G = npkBT is the polymer shear modulus with np representing the number
of molecular sub-chains (crosslinks) per unit volume, kB designating the Boltzmann constant and T for the
absolute temperature; and the Oldroyd objective rate of the stress is defined as follows:

�
τ = ∂τ

∂t
+ (gradτ )v − (gradv)τ − τ (gradv)T. (8)

Remark 1 We emphasize that the constitutive model for the solvent used in our work—the Navier–Stokes
model with the viscous strength has clear experimental roots. For example, Fig. 2 of [2] shows the dependence
of the friction factor on the Reynolds number in the pipe flow. The green colored points designate experiments.
At the critical Reynolds numbers of about 2000, the laminar flow becomes unstable (white points) and the
instability and transition to turbulence take place. Also, Wygnanski and Champagne [28] summarize the
experimental data on the schematic diagram shown in Fig. 2(b) of their paper. Again, the pipe flow becomes
unstable after passing the Reynolds number of approximately 2000. The instability appears in the form of
slugs that are developed under very small disturbances. The classical Navier–Stokes model fails to describe
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Fig. 3 Flow in a pipe

these instabilities. The reason is that the Navier–Stokes model can only capture kinematic instabilities of
the flow. The generalized Navier–Stokes model with viscous strength bounds stresses, and consequently, it
automatically introduces material instabilities, which trigger the transition to turbulence.

Remark 2 We should also emphasize that the traditional non-Newtonian fluid models with shear thinning are
qualitatively different from the consideredNavier–Stokesmodel with viscous strength. For example, in the case
of shear flow, the limit points (Fig. 2) are absent in the traditional non-Newtonian or generalized Newtonian
models. Shear thinning means the decrease in the positive slope of the stress–deformation rate curve rather
than the transition of the slope from positive to negative. The latter transition produces the limit point, which
is the indication of material instability. Contrary to the model considered in the present work, traditional shear
thinning models do not introduce material instabilities.

3 Flow in a pipe

We consider the axisymmetric flow in a pipe—Fig. 3.
Neglecting body forces, the flow must obey the linear momentum balance equation

ρ
∂v
∂t

+ ρ(gradv)v = divσ , (9)

where ρ ≈ 103 kg/m3 is the solution density which is approximately equal to the water density for small
amounts of the added polymer.

We use cylindrical coordinates r, ϕ, z with the unit basis vectors

gr = cosϕ e1 + sin ϕ e2, gϕ = − sin ϕ e1 + cosϕ e2, gz = e3. (10)

We assume that the process is steady: ∂v/∂t = 0, and the distribution of velocities is axisymmetric,

v = v(r)gz, (11)

which obeys the incompressibility condition (3).
Under this assumption, the velocity gradient takes the form

gradv = ∂v

∂r
gz ⊗ gr , (12)

and the deformation rate is

D = 1

2

∂v

∂r
(gz ⊗ gr + gr ⊗ gz). (13)

With account of the kinematic assumptions, the momentum balance equation (9) becomes

∂σrr

∂r
+ ∂σr z

∂z
+ 1

r
(σrr − σϕϕ) = 0,

∂σrϕ

∂r
+ ∂σϕz

∂z
+ 2

r
σrϕ = 0,

∂σr z

∂r
+ ∂σzz

∂z
+ 1

r
σr z = 0.

(14)
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The constitutive equation (1) takes the componentwise form

σrr = −p + τrr ,

σϕϕ = −p + τϕϕ,

σzz = −p + τzz,

σrϕ = τrϕ,

σr z = η
∂v

∂r
+ τr z,

σϕz = τϕz .

(15)

We further assume that the components of tensor τ depend on the radial coordinate only and, consequently,
its Oldroyd rate is calculated as follows:

�
τ = −∂v

∂r
{(gz ⊗ gr )τ + τ (gr ⊗ gz)}

= −∂v

∂r
{τrr (gz ⊗ gr + gr ⊗ gz) + τrϕ(gz ⊗ gϕ + gϕ ⊗ gz) + 2τr zgz ⊗ gz}.

(16)

Then, (7) reads

τrr = G,

τϕϕ = G,

τzz − 2λτr z
∂v

∂r
= G,

τrϕ = 0,

τr z − λτrr
∂v

∂r
= 0,

τϕz − λτrϕ
∂v

∂r
= 0,

(17)

or, after some rearrangement,

τrr = G,

τϕϕ = G,

τzz = G

(
1 + 2

(
λ
∂v

∂r

)2
)

,

τrϕ = 0,

τr z = λG
∂v

∂r
,

τϕz = 0.

(18)

Substituting these components of the tensor τ into the constitutive law for the components of the Cauchy
stress, we obtain

σrr = −p + G,

σϕϕ = −p + G,

σzz = −p + G

(
1 + 2

(
λ
∂v

∂r

)2
)

,

σrϕ = 0,

σr z = (η + λG)
∂v

∂r
,

σϕz = 0.

(19)
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The obtained stresses can be further substituted in the equations of the linear momentum balance (14), and
the latter reduce to

∂

r∂r

{
r(η + λG)

∂v

∂r

}
= ∂p

∂z
. (20)

Adding the boundary conditions

v(r = d/2) = 0,
∂v

∂r
(r = 0) = 0, (21)

in which d is the internal diameter of the pipe, we complete the formulation of a two-point boundary-value
problem.

We note that for m → ∞ the viscosity is a step function—(5) and (6)—and we can solve the problem
analytically as follows:

v = d2 − 4r2

16(η + λG)

∂p

∂z
. (22)

This result suggests that the laminar flow of water with a polymer solute is essentially parabolic, similarly
to the laminar flow of pure water in a pipe.

Let us analyze this simple solution. First, we assume that there are no polymer molecules in water. Then,
we set λG = 0 and we get

v = d2 − 4r2

16η

∂p

∂z
. (23)

In the linearly viscoelastic mode (5), we obtain the classical Poiseuille flow

v = d2 − 4r2

16η0

∂p

∂z
. (24)

However, when the critical viscous strength is reachedwith the onset of the ideal fluidmode (6), the velocity
becomes uncertain and, generally, tends to a singularity:

v ∼ d2 − 4r2

0

∂p

∂z
. (25)

For the critical Reynolds number (∼ 2400), an instability happens close to the internal surface of the
pipe—we refer the reader to [26] for the details, which are skipped here.

Remarkably, the addition of the polymer solute regularizes the problem even in the case where the viscous
strength of water is reached:

v = d2 − 4r2

16λG

∂p

∂z
. (26)

Thus, the addition of the polymer molecules stabilizes the laminar flow and delays the instability which
triggers the subsequent transition to turbulence! Such stabilization is provided even by a small amount of the
solute. It is worth emphasizing that the addition of large amounts of the solute obviously stabilizes the flow,
yet it may also slow down the flow because of the significant increase in viscosity. The latter notion is also in
a good qualitative agreement with the experimental data reported by Toms [23].

4 Discussion

Turbulent flow is related to turbulent (non-viscous) friction which, in its turn, slows the motion down and
develops high drag. So, it is natural to assume that the drag can be reduced by suppressing turbulent motion
and transforming it to the laminar mode. In the latter case, viscous rather than turbulent friction is the main
internal process in the flow. Experiments show that such reverse transition from turbulent to laminar flow can
be achieved by spreading small amounts of additives in the solvent. Particularly, polymer solutes can help.

In the present note, we showed why an addition of a polymer solute could delay the transition to turbulence
or suppress it. For that purpose, we used the modified Navier–Stokes theory with the viscous strength for the
solvent. The latter theoretical feature allowed us to combine both linearly viscous behavior of the classical
Navier–Stokes model characteristic of the laminar flow and the ideal fluid behavior characteristic of the
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turbulent flow. Besides, we used the upper-convected Maxwell model for the solute. We solved the problem
of the flow in a pipe, and we found that the velocity distribution is parabolic like in the case of the laminar
flow of pure Newtonian solvent. However, we found that the material instability related to the loss of viscous
friction is suppressed by the polymer solute. Simple analytical formulas show that.
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