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Rubber bearings, used for seismic isolation of structures, undergo
large shear deformations during earthquakes as a result of the
horizontal motion of the ground. However, the bearings are also
compressed by the weight of the structure and possible traffic on
it. Hence, failure analysis of rubber bearings should combine
compression and shear. Such combination is considered in the
present communication. In order to analyze failure, the strain
energy density is enhanced with a limiter, which describes rubber
damage. The inception of material instability and the onset of
damage are marked by the violation of the condition of strong
ellipticity, which is studied in the present work. Results of the
studies suggest that horizontal cracks should appear because of
the dominant shear deformation in accordance with the experi-
mental observations. It is remarkable that compression delays
failure in terms of the critical stretches.
[DOI: 10.1115/1.4040018]

1 Introduction

Rubber bearings are widely used in structural engineering yet
the problem of their design is not completely resolved [1]. Among
the difficulties, there is a necessity to understand and describe
large deformations and failure of rubberlike materials. Thus, the
purpose of this communication is to offer new approaches to
attack the problem. The general idea is to analyze the onset of
failure via the study of the violation of the condition of strong
ellipticity under the prescribed shear-compression deformation.

We note that the traditional hyperelastic constitutive models are
aimed at a description of the intact material behavior. In the latter
case, various conditions are often imposed on the strain energy
density functions in order to preclude material instability and
provide the existence of the solution of a static boundary value
problem. More physically appealing models should include a pos-
sibility and proper description of material failure. Few constitutive
models developed in the past could capture the inception of mate-
rial instability [2–6]. Interestingly, the material instability was
observed in the mentioned works as an outcome of the specific
and unintentional choice of the material models. Traditional sys-
tematic way to describe failure is based on continuum damage
mechanics where internal damage variables are utilized in order to
decrease and, ultimately, cancel material stiffness. The damage
variable is described by an evolution equation and critical thresh-
old condition [7–16]. While continuum damage mechanics is use-
ful for considering gradual damage (e.g., Mullins effect), a much

simpler framework without internal variables can describe the
abrupt material failure [17]. This framework is based on the use of
the limiting failure energy in the stored energy function. The
limited stored energy automatically limits stresses defined by con-
stitutive equations and it can be used for analysis of the onset of
failure.

Recently, the approach of energy limiters was used for failure
analyses, via the loss of strong ellipticity, in rubberlike materials
under various deformations, including simple shear [18]. Evi-
dently, the simple shear deformation is not enough for the consid-
eration of mechanical behavior of rubber bearings in earthquakes.
Combined compression-shear deformation should be considered.
The latter is possible by using the deformation law proposed in
Ref. [19]. For example, this law has been used for a calibration of
very soft brain tissue [20]. Below, we use the compression-shear
deformation law to perform failure analysis in rubber bearings.

2 Governing Equations

We refer to Ref. [21], for example, on the general background,
and below, we briefly summarize the relevant generic equations
and their specific forms.

The finite elasticity theory includes the equations of balance for
linear and angular momenta in the reference configuration X0

q0@
2y=@t2 ¼ DivPþ b0

PFT ¼ FPT
(1)

where q0 is the mass density, y is the current position of material
particle, “Div” is with respect to x designating the reference
position of material particle, b0 is the body force, P is the first
Piola–Kirchhoff stress, and F ¼ Grady is the deformation
gradient.

For incompressible hyperelastic material, the stress is defined
by

P ¼ @w=@F�PF�T; detF ¼ 1 (2)

where w is the density of the stored energy and P is a Lagrange
multiplier.

Natural or essential boundary conditions are defined on @X0

Pn0 ¼ �t0 or y ¼ �y (3)

where n0 is an outward unit normal to @X0, �t0 is the given traction
on @X0, y is related to x which is defined on @X0, and �y is
prescribed.

Initial conditions are given in X0 at t ¼ 0

y ¼ y0; @y=@t ¼ v0 (4)

Introducing increments of all variables, designated with tildes,
it is possible to set the corresponding incremental initial-
boundary-value problem assuming the current configuration X as
the referential one.

Skipping details of manipulations, the incremental momenta
balance takes the form

q@2~y=@t2 ¼ div~r

~r þ r~L
T ¼ ð~r þ r~L

TÞT
(5)

where q ¼ q0, “div” is with respect to y, r ¼ PFT is the Cauchy

stress, ~L ¼ ~FF�1, and ~F ¼ Grad~y.
The incremental Cauchy stress is defined by the incremental

constitutive law

~r ¼ A : ~L þP~L
T � ~P1; tr~L ¼ 0; (6)

where the elasticity tensor A has the following Cartesian compo-
nents: Aijkl ¼ FjsFlm@

2w=@Fis@Fkm; and 1 is the identity tensor.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received March 8, 2018; final
manuscript received April 17, 2018; published online May 15, 2018. Assoc. Editor:
Shaoxing Qu.

Journal of Applied Mechanics JULY 2018, Vol. 85 / 074503-1Copyright VC 2018 by ASME



We assume that external loads and given surface positions of
material points do not depend on deformation (dead) and we can
write the incremental boundary conditions on @X

~rn ¼ 0 or ~y ¼ 0 (7)

where n ¼ jF�Tn0j�1
F�Tn0 is a unit outward normal to @X.

The initial conditions in X are

~y ¼ 0; @~y=@t ¼ 0 (8)

If the strain energy wðI1Þ depends on the first principal invariant
I1 ¼ F : F only, then we have

Aijkl ¼ 4w11FisFkmFjsFlm þ 2w1dkiFjmFlm (9)

where w1 � @w=@I1 and w11 � @w1=@I1.
A plane wave solution of the incremental equations (5) is

considered

~y ¼ kgðm � y� wtÞ; ~P ¼ !g0ðm � y� wtÞ (10)

in which k, m, and w are polarization, direction, and speed of
the wave accordingly, prime is derivative with respect to the
argument of g, and ! is the amplitude of the increment of the
Lagrange multiplier.

Substituting the solution in the incremental equations (5), we
get

qw2k ¼ Kk� !m; k �m ¼ 0 (11)

where K is the acoustic tensor with components Kmi ¼ Amnijmnmj.
Calculating the dot product of (11)1 with m, we can get ! and,

consequently, rewrite (11) in the form

qw2k ¼ K�k; k �m ¼ 0 (12)

where K� ¼ K�m� Km designates acoustic tensor for incom-
pressible material.

Note that K�Tm ¼ 0 and, consequently, K� is singular the left
eigenvector m corresponding to zero eigenvalue. Thus, no more
than two real waves exist which are transverse due to incompressi-
bility (12)2. Calculating the dot product of (11)1 with k gives the
wave speed obeying the condition of strong ellipticity

qw2 ¼ k � Kk > 0 (13)

If the strain energy w depends on I1 only, then the acoustic ten-
sor is simple

K ¼ 4w11ðBmÞ � ðBmÞ þ 2w1ðm � BmÞ1 (14)

in which the left Cauchy–Green tensor B ¼ FFT is used.
In this particular case, the wave speed is calculated as

qw2 ¼ 4w11ðk � BmÞ2 þ 2w1ðm � BmÞ (15)

Finally, we specify the strain energy including a material failure
description in the form

wðF; fÞ ¼ wf � HðfÞweðFÞ (16)

where

weðFÞ ¼ Um�1Cðm�1;WðFÞmU�mÞ; wf ¼ weð1Þ (17)

and

Cðs; xÞ ¼
ð1

x

ts�1e�tdt

is the upper incomplete gamma function.

Here, we designated failure energy wf and elastic energy weðFÞ.
Material healing is prevented by the step function: HðfÞ ¼ 0 if
f < 0 or HðfÞ ¼ 1 otherwise. The stored energy without failure is
designated by WðFÞ, while U is the energy limiter and m is a
material parameter.

We note that f 2 ð�1; 0� is calculated from the evolution
equation

_f ¼ �Hð�� we=wfÞ; fð0Þ ¼ 0 (18)

in which 0 < �� 1 is a precision limit.
According to Eq. (16), deformation is reversible as long as w is

less than wf . The strain energy stays fixed after reaching this limit
and, hence, the deformation becomes irreversible. Note that f is a
switch function rather than internal variable: if f ¼ 0, then the
deformation is hyperelastic, and if f < 0, then the deformation is
irreversible.

Constitutive law is derived from Eq. (16) by using a thermody-
namic reasoning [22]

P ¼ �HðfÞ@weðFÞ=@F (19)

The reader should notice that in the cases where material
unloading is not relevant, we can set f � 0) HðfÞ � 1. The lat-
ter simplification is done in the present work.

3 Compression Combined With Shear in Rubber

Bearings

Following Ref. [19], we define the compression-shear deforma-
tion law as

y1 ¼ k�1=2x1 þ kcx2; y2 ¼ kx2; y3 ¼ k�1=2x3 (20)

and, consequently, we calculate

F ¼ k�1=2e1 � e1 þ kce1 � e2 þ ke2 � e2 þ k�1=2e3 � e3;

B ¼ ðk�1 þ k2c2Þe1 � e1 þ k2ce1 � e2 þ k2ce2 � e1

þk2e2 � e2 þ k�1e3 � e3

(21)

where e1; e2; e3 are Cartesian basis vectors, k is the axial stretch,
and c is the amount of shear.

Specific forms of the unit vectors in the directions of wave
propagation and wave polarization are chosen as follows:

m ¼ cos ae1 þ sin ae2;

k ¼ �b sin ae1 þ b cos ae2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
e3

(22)

where a is the angle in plane x1 � x2 and 0 	 b 	 1 is an arbitrary
multiplier.

Then, we have

Bm ¼ ðcos aðk�1 þ k2c2Þ þ ck2 sin aÞe1

þ ðk2c cos aþ k2 sin aÞe2;

m � Bm ¼ cos 2aðk�1 þ k2c2Þ þ ck2 sinð2aÞ þ k2 sin 2a;

k � Bm ¼ b sinð2aÞðk2 � k�1 � k2c2Þ=2þ bck2 cosð2aÞ

(23)

and, consequently, the weighted squared wave speed (15) can be
expressed as

qw2 ¼ 4w11ðb sinð2aÞðk2 � k�1 � k2c2Þ=2þ bck2 cosð2aÞÞ2

þ2w1ð cos 2aðk�1 þ k2c2Þ þ ck2 sinð2aÞ þ k2 sin 2aÞ
(24)
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Then, we obtain from Eq. (16) (H � 1)

w1 ¼ W1 exp½�WmU�m�;
w11 ¼ ðW11 � mWm�1U�mW2

1Þexp½�WmU�m�
(25)

where we use the Yeoh stored energy function

W ¼ c1ðI1 � 3Þ þ c2ðI1 � 3Þ2 þ c3ðI1 � 3Þ3;
W1 ¼ c1 þ 2c2ðI1 � 3Þ þ 3c3ðI1 � 3Þ2;

W11 ¼ 2c2 þ 6c3ðI1 � 3Þ
(26)

with I1 ¼ k2ð1þ c2Þ þ 2=k:
Material constants for this model were calibrated in one-, two-

and three-dimensional stress–strain states [21] for natural rubber
vulcanizate—see Table 1.

For the sake of illustration, the stress–strain curve for the con-
sidered model is shown in Fig. 1.

Material instability sets in when the wave speed is zero

qw2 ¼ f1f2 ¼ 0 (27)

where

f1 ¼ 4ðW11 � mWm�1U�mW2
1Þðb sinð2aÞðk2 � k�1 � k2c2Þ=2

þ cosð2aÞbck2Þ2 þ 2W1ð cos 2aðk�1 þ k2c2Þ þ ck2 sinð2aÞ
þ k2 sin 2aÞ;

f2 ¼ exp½�WmU�m� (28)

The split conditions read

f1 ¼ 0; f2 ¼ 0 (29)

Function f2 depending on amount of shear is shown graphically
in Fig. 2 for various amounts of compression.

The reader should note the numerical convergence to zero,
which means that the theoretical “infinity” very fast becomes the
digital one.

Hence, the critical conditions get the graphical representation
in terms of two curves depending on a, b, c, and k—Fig. 3.

The reader should note that f2 does not depend on a and b,
while for f1 the magnitude of c increases with the decreasing b for

all compression stretches. The lowest amount of shear is always
obtained for a ¼ p=2 (or a ¼ 3p=2), which can be interpreted as
localization of failure along axis x1 and, consequently, the crack
should appear in the horizontal direction. Remarkably, the on-site
observation shown in Photo 3 of paper [23] perfectly confirms the
theoretical prediction.

It is also remarkable that the increase of compression (decrease
of stretch) leads to the increase of the critical amount of shear cor-
responding to failure. In other words, compression delays failure.
Physically, the latter fact can be explained as follows. Failure in
shear is triggered by huge tension of material filaments,1 which
were vertical before deformation. Compression delays transition
of the filaments to tension, including the critical tension. Of
course, such explanation is not absolute and the game of strains is
more sophisticated. Nevertheless, the explanation might give
some intuition concerning the deformation and failure process.

Finally, it is interesting to see the correlation between the loss
of strong ellipticity and the material strength in shear—Fig. 4.

Fig. 1 Cauchy stress versus stretch for uniaxial tension.
Dashed line is for the model without failure and solid line is for
the model with failure.

Fig. 2 Convergence of f2(c) to zero for various amounts of
compression

Fig. 3 Shear versus the orientation of the superposed acoustic
wave. Curves f1 5 0 (b 5 1) and f2 5 0 are presented for various
values of compression stretch. The minimum shear indicates
the inception of instability through the loss of strong ellipticity.

Table 1 Material constants for the natural rubber vulcanizate

c1 (MPa) c2 (MPa) c3 (MPa) U (MPa) m

0.298 0.014 0.00016 82 10

1By filaments, we mean the aligned collections of material points following the
continuum mechanics approach in which real physical particles are replaced
(averaged) by the abstract material points (representative volumes).
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The diagrams show the dependence of the Cauchy shear stress on
the amount of shear. The limit points indicate the strength, while
the elliptical markers on the curves indicate the loss of the strong
ellipticity.

4 Conclusion

In this note, we analyzed failure of rubber bearings under
combined shear and compression. We included a failure descrip-
tion in the constitutive model via an energy limiter. This model
had been calibrated for a natural rubber vulcanizate under various
stress–strain states. The onset of failure was associated with the
loss of the strong ellipticity for the incremental boundary-value
problem. We found that the failure should localize into cracks in
the direction of shear—the horizontal direction. The latter predic-
tion was in perfect qualitative agreement with the on-site observa-
tions. We also found that the superimposed compression delayed
the onset of the critical failure stretches, which would be good
from the structural design standpoint.
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