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a b s t r a c t 

In many practical applications rubber components are exposed to relatively high operating 

temperatures yet very few studies can be found in the literature that deal with the tem- 

perature influence on deformation and, especially, failure of rubberlike materials. In the 

present work, we partly fill this gap providing the experimental results on uniaxial ten- 

sion and bulge tests for nitrile butadiene rubber, neoprene, and silicone for various tem- 

peratures in the range from 20 °C to 90 °C. Based on the results of the tests we develop 

novel thermoelastic constitutive models, which also incorporate a failure description via 

the method of energy limiters. Using the developed models, we study the cavitation prob- 

lem under the elevated temperatures. We find that, generally, the heating might lower ma- 

terial strength while the material stiffness is not necessarily sensitive to the temperature 

alterations. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Rubberlike materials and structures might be exposed to heating between 20 °C and 90 °C in the rubbery state. For ex-

ample, the temperature alterations can naturally occur at the tip of a propagating crack, which would affect the fracture

process. The heating, in its turn, can change material properties - stiffness and strength. The latter effect is the target of the

experimental studies and theoretical models reported in the present work. 

Coupled thermal and elastic deformations - thermoelasticity - of rubberlike materials is not a new subject yet the data

concerning both experiment and theory are quite limited ( Aboudi, 2002; Chadwick, 1974; Chadwick and Creasy, 1984; Dickie

and Smith, 1969; Holzapfel, 20 0 0; Lev et al., 2018; Morman Jr, 1995; Ogden, 1992; Saccomandi and Ogden, 2004; Volokh,

2015 ). Physical and geometrical nonlinearities inherent in rubberlike materials present a natural difficulty for experiments

and theory. For example, a constitutive model calibrated in uniaxial tension tests might fail to properly describe biaxial

stress-stretch conditions and vise versa ( Marckmann and Verron, 2006 ). 

In the present work, we examine the three rubberlike materials that were previously mentioned in Lev et al. (2018) .

These materials are commonly used in automotive, electronics and construction industries for a wide range of applica-

tions including load bearings, fuel and oil handling hoses, seals, grommets and self-sealing fuel tanks ( Gent, 2001; Rodgers,

2015 ): (a) Nitrile Butadiene Rubber (NBR), which is Sulfur vulcanized with Shore 41A, mass density of 1.14 g/cm 

3 , and the

glass transition and melting temperatures of −35 ◦C and 100 °C accordingly; (b) Neoprene, which is Sulfur vulcanized with

Shore 35A, mass density of 1.33 g/cm 

3 , and the glass transition and melting temperatures of −55 ◦C and 100 °C accordingly;
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(c) Silicone rubber, which is Peroxide vulcanized with Shore 41A, mass density of 1.13 g/cm 

3 , and the glass transition and

melting temperatures of −60 ◦C and 200 °C accordingly. 1 

We perform both uniaxial and biaxial tests. The latter tests are not direct and use the balloon inflation technique - the

bulge test ( Charalambides et al., 2002; Hamdi et al., 2006; Lev et al., 2018; Sasso et al., 2008 ). Both types of tests are done

using the same portion for each material. The material specimens are exposed to the temperatures 25 °C, 50 °C, 70 °C, 90 °C
during time not exceeding half an hour. 

We use the experimental data to develop and calibrate the thermo-hyperelastic theoretical models enhanced with the

energy limiter to describe material failure. The limiter indicates the maximum failure energy that can be stored by an in-

finitesimal material volume ( Volokh, 2007; 2010; 2013; 2015 ). As opposed to the previous work done in Lev et al. (2018) that

considered only bulge tests, we now add also the uniaxial case which allows to produce a more general set of material pa-

rameters. 

The parameters are derived via a non-linear least squares minimization procedure as done in Ogden et al. (2004) . This

procedure enables to fit multiple sets of data simultaneously. The objective function includes two sets of data from uniaxial

and bulge tests. The data-fitting is based on the Matlab non-linear least squares optimization tool ( MATLAB, 2017 ). The

three-term Ogden model was chosen after it was found that the Yeoh model, used in Lev et al. (2018) , failed to reach

an adequate simultaneous correlation level. This indicates the relatively strong advantage of the Ogden model. Performing

the simultaneous fit is important since rubber-like materials may be subjected to different biaxial stretch ratios. Calibration

based on only one load configuration can lead to an engineering error. Despite this fact, apparently because of the simplicity

of the method, most manufactures do a calibration according to uniaxial tests only. 

A new constitutive relation for the thermal energy contribution is developed. In contrast to the calibration done in

Lev et al. (2018) , we present here a fit using the coupled thermo-elastic theory displayed. A new relation for the tem-

perature dependence on the energy limiters is derived. 

Calibrated material models are further used to calculate the critical hydrostatic tension indicating the onset of cavitation

in the considered materials under the varying temperatures. The results of the cavitation analyses depend on the tempera-

ture through both the material stiffness and strength. The latter correlation is not surprising because cavitation is a material

failure phenomenon. 

2. Experiments 

Rubberlike materials can have fairly large uniaxial stretches ( ∼ 7 − 8 ) before they fail, which makes it difficult to test

them under temperature controlled environment. Most environmental chambers integrated with commercially available load

frames are not suitable to accommodate such large stretches ( ASTM, 2007; Vahapoglu et al., 2011 ). To overcome this issue

we have prepared uniaxial and equibiaxial test setups with temperature controlled environment that can accommodate suf-

ficiently large stretches. Both uniaxial and equibiaxial test setups are placed inside a chamber made of Polycarbonate sheets.

Walls of the chamber are insulated from inside to prevent heat loss. The temperature inside the chamber is controlled by

using a hot-air blower with integrated temperature control. Several thermocouples are placed appropriately to ensure a con-

stant and uniform temperature inside the chamber. The tests are performed for three different rubber materials; (a) NBR,

(b) Neoprene, and (c) Silicone. For each material, tests are conducted under a constant temperature environment at four

different tem peratures, 25 °C, 50 °C, 70 °C, 90 °C. Average thickness of the specimens for NBR, Neoprene, and Silicone are about

1.2, 1.2 and 1.1 mm, respectively (measured by a caliper). 

2.1. Uniaxial tension test 

The setup for conducting the uniaxial test at a constant temperature environment is shown in Fig. 1 . 

The dumbbell shaped specimen used for the uniaxial test is shown in Fig. 2 . 

The specimen is gripped tightly at the upper and lower grip section. The upper grip is attached to the frame and remain

fixed, whereas the lower grip is pulled by metallic wires connected to a rotating shaft. Two metalic wires attach the lower

grip. These cables pass through two matching holes in the floor of the chamber. This connection guides the wires and

prevents the lower grip and as a result the dumbbell from rotating. The shaft (diameter 12 mm) is mounted on the bearings

and connected to a DC motor rotating at a constant angular velocity of 1 rpm. The specimen is thus pulled at a speed

of 40 mm/min. A S-type load cell (Capacity: 250 lb at 3.7532 mV/V) is connected in series with the specimen (as shown

in Fig. 1 ) to measure the load experienced by the specimen. The elongation of the gauge section is measured using laser

displacement measurement sensors (Range: 150–10 0 0 mm ± 0.5 mm on the max range). The laser is a low class number 2

laser. Two clips with laser reflective labels are attached at the two ends of the gauge length. The labels are perpendicular

to the direction of loading and reflects the laser beam transmitted by the sensors placed above the chamber. The sensors

detect the reflected laser beams and measure the displacement of the two end points of the gauge section. The lasers are

aimed at the center of the labels close to the dumbbell so that the measured displacements from the two labels are not

affected by slight rotations of the labels that may occur throughout the test. The difference between the two displacements
1 All three rubber materials were purchased from “GUMIAN rubber products LTD”. 
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Fig. 1. Experimental setup for the uniaxial tension test. 

Fig. 2. Dimensions of Dumbbell rubber specimen for the uniaxial tension test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gives the elongation of the gauge section. The tests are done up to failure taking into account only the experiments that fail

between the two ends of the gauge length at the studied area. 

Both the load cell and laser displacement sensors are placed outside the chamber to eliminate the effects of temperature

on them. 

2.2. Bulge test 

For the equibiaxial tests we adapt the well-known “bulge test” procedure ( Charalambides et al., 2002; Hamdi et al., 2006;

Sasso et al., 2008 ). The reader is referred to our previous publication ( Lev et al., 2018 ) for a more detailed description of the

Bulge test procedure used. For the sake of convenience we repeat the main description of the bulge test. The bulge device

and schematic view of this set-up is shown in Fig. 3 (a) and (b) accordingly. 

The setup of the bulge test at a constant environmental temperature is shown in Fig. 4 . 

Five thermocouples are placed inside the chamber, one at each side of a wall, named T 1 to T 4 , and an additional ther-

mocouple, T 5 , that is placed inside the bulge device (through channel B ), as shown in Fig. 4 (b). This allows monitoring also

the temperature inside the inflating balloon. A rubber sheet specimen is clamped between the top and the middle flanges

of the bulge device ( Fig. 3 (a)). Temperature control inside the inflating balloon is obtained by placing a long and narrow

preheated tube inside the chamber. Compressed air is supplied through channel A from the bottom flange. Air flows slowly

inside this tube. By the time air enters the bulge device, temperatures inside and outside the inflating balloon are almost

the same. Pressure ( P ) inside the bulge test device is measured at channel C using a pressure transducer (range 0 − 4 bar

with an accuracy of 0.5%). During the inflation, vertical displacement of the center of the rubber specimen of the bulge test

is measured using a laser displacement measurement sensor. 

The three materials, four temperature steps, and two test configuration (uniaxial and bulge test) add up to a total of 24

test cases. Each case was repeated three to five times to ensure repeatability and to extract average results. More than 100

tests all together where done throughout the work. The uniaxial and bulge tests are done using the same portion for each

material. This reduces the material factor as a reason for differences in the mechanical results. 

All the measurements mentioned (temperature, pressure, and displacement) are recorded using a data acquisition card,

and stored using a designated LabVIEW program. 
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Fig. 3. (a) Bulge test device and (b) Schematic view of bulge test. 

Fig. 4. Experimental setup for the bulge test. 

 

 

 

3. Theory 

We use the finite thermoelasticity theory and we refer the reader to Holzapfel (20 0 0) , Volokh (2016) for the general

background. 

3.1. The Helmholtz free energy 

Specifically, we choose the Helmholtz free energy density in the form 

2 

ψ(F , T , ζ ) = ψ f (T ) − H(ζ ) ψ te (F , T ) , (1)

where 

ψ te (F , T ) = φ(T ) m 

−1 Γ (m 

−1 , W (F , T ) m φ(T ) −m ) , 

ψ f (T ) = φ(T ) m 

−1 Γ (m 

−1 , 0) . 
(2)

and Γ (s, x ) = 

∫ ∞ 

t s −1 e −t dt is the upper incomplete gamma function. 
x 

2 We generalize the theory setting of Volokh (2015) by introducing the temperature dependence of the energy limiter. 
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Here, we designated failure energy ψ f ( T ) and thermoelastic energy ψ te ( F , T ) depending on the deformation gradient F

and absolute temperature T . Material healing is prevented by the step function: H(ζ ) = 0 if ζ < 0 or H(ζ ) = 1 otherwise.

The Helmholtz free energy without failure is designated by W ( F , T ) while φ( T ) is the energy limiter and m is a material

parameter. 

We note that ζ ∈ (−∞ , 0] is calculated from the evolution equation 

˙ ζ = −H(ε − ψ te /ψ f ) , ζ (0) = 0 , (3) 

in which 0 < ε � 1 is a precision limit. 

According to (1) deformation is reversible as long as ψ is less than ψ f . The strain energy stays fixed after reaching this

limit and, hence, the deformation becomes irreversible. Note that ζ is a switch function rather than internal variable: if

ζ = 0 then the deformation is hyperelastic and if ζ < 0 then the deformation is irreversible. 

Constitutive law for the first Piola–Kirchhoff stress tensor, P , is derived from (1) by using a thermodynamic reasoning

( Volokh, 2014 ) 

P = 

∂ψ 

∂F 
= −H 

∂ψ te 

∂F 
= H exp [ −W 

m φ−m ] 
∂W 

∂F 
. (4) 

The reader should notice that in the cases where material unloading is not relevant we can set ζ ≡ 0 ⇒ H ≡ 1. 

The incompressibility condition J = det F = 1 typical of most rubberlike materials should be modified in the case of the

thermoelastic coupling as follows, for example, 

J = det F = exp [3 γ0 (T − T 0 )] (5) 

in order to account for the material volume alteration under heating, where γ 0 is a constant of thermal expansion. 

With the latter restriction we can rewrite the constitutive Eq. (4) in the form 

P = 

∂ψ 

∂F 
− κ JF −T , (6) 

where κ is the unknown Lagrange multiplier. 

Alternatively, we may write the constitutive equation in terms of the Cauchy stress 

σ = J −1 PF T = J −1 ∂ψ 

∂F 
F T − κ1 , (7) 

where 1 is the identity tensor. 

3.2. Deformations for experimental calibration 

Using Cartesian basis vectors e 1 , e 2 , e 3 and the corresponding axial stretches λ1 , λ2 , λ3 , we can specify the deformation

gradient for homogeneous deformations 

F = λ1 e 1 � e 1 + λ2 e 2 � e 2 + λ3 e 3 � e 3 , 

λ1 λ2 λ3 = J(T ) = exp [3 γ0 (T − T 0 )] , 
(8) 

and, consequently, we will get only diagonal principal values of stresses 

P 1 = 

∂ψ 

∂λ1 

− κ Jλ−1 
1 , 

P 2 = 

∂ψ 

∂λ2 

− κ Jλ−1 
2 , 

P 3 = 

∂ψ 

∂λ3 

− κ Jλ−1 
3 . 

(9) 

In the case of uniaxial tension we set 

λ1 = λ, λ2 = λ3 = J 1 / 2 λ−1 / 2 . (10) 

Further assuming P 2 = P 3 = 0 , we find the Lagrange multiplier 

κ = J −1 λ2 
∂ψ 

∂λ2 

= (Jλ) −1 / 2 ∂ψ 

∂λ2 

, (11) 

and the axial stress takes the following form 

P = P 1 = 

∂ψ 

∂λ1 

− J 1 / 2 λ−3 / 2 ∂ψ 

∂λ2 

. (12) 

On the other hand, we calculate 

∂ ˆ ψ 

∂λ
= 

3 ∑ 

k =1 

∂ψ 

∂λk 

∂λk 

∂λ
= 

∂ψ 

∂λ1 

− J 1 / 2 λ−3 / 2 ∂ψ 

∂λ2 

(13) 
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where 

ˆ ψ (λ, T ) = ψ(λ, J 1 / 2 λ−1 / 2 , J 1 / 2 λ−1 / 2 , T ) . (14)

Substitution of (13) in (12) yields 

P = 

∂ ˆ ψ 

∂λ
, (15)

or, in terms of the Cauchy stress, 

σ = σ1 = J −1 λ1 P 1 = J −1 λ
∂ ˆ ψ 

∂λ
. (16)

In the case of equibiaxial tension we have 

λ1 = λ2 = λ, λ3 = Jλ−2 . (17)

Further assuming P 3 = 0 , we find the Lagrange multiplier 

κ = J −1 λ3 
∂ψ 

∂λ3 

= λ−2 ∂ψ 

∂λ3 

, (18)

and the axial stresses P = P 1 = P 2 take the following form 

P = P 1 = P 2 = 

∂ψ 

∂λ1 

− Jλ−3 ∂ψ 

∂λ3 

. (19)

Then, we calculate 

∂ ψ̌ 

∂λ
= 

3 ∑ 

k =1 

∂ψ 

∂λk 

∂λk 

∂λ
= 2 

∂ψ 

∂λ1 

− 2 Jλ−3 ∂ψ 

∂λ3 

, (20)

where 

ψ̌ (λ, T ) = ψ(λ, λ, Jλ−2 , T ) . (21)

So, finally, we have for the equibiaxial tension 

P = P 1 = P 2 = 

1 

2 

∂ ψ̌ 

∂λ
, (22)

or 

σ = σ1 = σ2 = J −1 λ1 P 1 = 

λ

2 J 

∂ ψ̌ 

∂λ
. (23)

The bulge test means inflation of a thin membrane. Locally, the deformation is biaxial. However, this deformation is not

homogeneous and it depends on the location of the point of interest. For example, the deformation is equibiaxial on the top

of the inflating membrane. Unfortunately, analytical solutions for the problem of the membrane inflation are not available

and numerical finite element analysis should be done for every loading case. We refer the reader to the works ( Balakhovsky

and Volokh, 2012; Fried, 1982; Lev et al., 2018 ), for instance, where details of such analyses are presented. Obviously, the

iterative parameter fit is necessary when the numerical analysis of the membrane inflation is used. 

3.3. The Helmholtz free energy without failure 

There is a large number of proposals to choose the strain energy for the intact behavior of rubberlike materials

( Marckmann and Verron, 2006 ). We have chosen the three-term Ogden function ( Ogden, 1972; 1997 ) based on the use of

the principal stretches. We introduce the Helmholtz free energy function for the intact material based on the thermoelastic

generalization of the Ogden model 

W (λ1 , λ2 , λ3 , T ) = T T −1 
0 W 0 (λ1 , λ2 , λ3 ) + Q(T ) , 

W 0 (λ1 , λ2 , λ3 ) = 

3 ∑ 

k =1 

μk α
−1 
k 

(λαk 

1 
+ λαk 

2 
+ λαk 

2 
− 3) , 

Q(T ) = c 0 T 0 ln [ T /T 0 ] , 

(24)

where μk , αk , and c 0 are material constants; Q ( T ) designates the purely thermal energy; and T ≥ T 0 . 

We note that the purely thermal energy Q ( T ) is concave and positive and, consequently, we have for the heat capacity 

c = −T 
∂ 2 W 

∂T 2 
= −T 

∂ 2 Q 

∂T 2 
= c 0 

T 0 
T 

> 0 . (25)
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Table 1 

Material constants for the heat capacity calibration. 

μ1 [MPa] μ2 [MPa] μ3 [MPa] α1 α2 α3 T 0 [K] γ 0 [1/K] 

0.63 0.0012 −0 . 01 1.3 5.0 −2 . 0 293.15 22 . 333 · 10 −5 

Fig. 5. Temperature versus stretch (for η = −1 . 40042 [ MPa / K] ); points designate Joule’s experimental data ( Joule et al., 1859 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some authors (e.g. Holzapfel, 20 0 0; Volokh, 2016 ) assume the constant heat capacity, c = c 0 , corresponding to the fol-

lowing thermal energy: Q(T ) = c 0 (T − T 0 − T ln [ T /T 0 ]) . This function is concave yet negative , which means the decrease of

the thermal energy under the increase of the temperature. The latter property might be questionable. 

In order to calibrate the initial heat capacity, c 0 , we consider the problem of the inversion point, showing the dependence

of temperature on uniaxial stretch for the fixed entropy. The entropy is calculated from the constitutive law with account of

the thermoelastic incompressibility constraint ( Volokh, 2016 ) 

η = −∂W 

∂T 
− κ

∂ J 

∂T 
. (26) 

We choose the specific material data shown in Table 1 ( Holzapfel, 20 0 0 ) for the calibration of the initial heat capacity. 

For an adiabatic stretching the entropy is constant and we assume a reference state for which λ = 1 at T = 293 . 15 K .

Substituting these values and the material constants from Table 1 in (26) , we find a best fit curve to Joule’s experimental

data ( Joule et al., 1859 ) for which: c 0 = 1 . 4 [ MPa / K] and η = −1 . 40042 [ MPa / K] . The calibrated temperature-stretch diagram

is shown in Fig. 5 . The inversion point is reproduced by the theory in accordance with the experimental observations. 

3.4. Calibration 

The material parameters are found using a nonlinear least squares optimization method with the help of the Lsqurvefit

tool in the Optimization Toolbox of MATLAB ( MATLAB, 2017 ). The method minimizes the sum of the squared residuals. The

residual, res i = σ test 
i 

− σ fit 
i 

, is defined as the difference between the stresses of the test value, σ test 
i 

, and the fitted value, σ fit 
i 

,

at a given stretch point λi . The error estimate is given by S = 

∑ n 
i =1 res 2 

i 
, where n is the number of stretch points included

in the fit. 

In the uniaxial case, the analytical stress-stretch relationships given in Section 3.2 represent the test directly and the

experimental results can be straightforwardly compared to the analytical description for every stretch. 

The case of biaxial tension is subtler. This test is routine when the intact behavior of material is examined. However, the

biaxial tension test becomes very sensitive to imperfections when the specimen is stretched to failure and the homogeneous

stress-stretch state turns to disadvantage rather than merit. In order to overcome the difficulties of the direct biaxial loading

the bulge test is often used in the literature, e.g. Hamdi et al. (2006) , Lev et al. (2018) . In this test, material failure always

starts on the top of the inflating membrane and it is not sensitive to boundary conditions. Unfortunately, there is a cost

for such improvement of the experimental reliability - the stress-stretch state is not homogeneous and, consequently, the

theoretical interpretation of the test results is not trivial. 

Our idea is to find the equibiaxial stretches on the top of the inflating membrane. It cannot be done purely experimen-

tally because any physical marks on the specimen would have finite length while the stretches of interest are pointwise.

Instead, we choose a material model and its parameters and simulate the membrane inflation by using the finite element
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Fig. 6. Experimental p − δ curves for (a) Nitrile Butadiene Rubber at 70 °C; (b) Neoprene at 50 °C; (c) Neoprene at 90 °C; and (d) Silicone at 25 °C. Simulation 

results are shown in dashed lines. 

 

 

 

 

 

 

 

 

 

 

method. In particular, we use quadrilateral three-node axisymmetric shell elements within ABAQUS (6.14) software. Mate-

rial parameters are fitted by comparing simulations with experiments using the Lsqurvefit MATLAB tool. Examples of such

fits up to the points of failure are shown in Fig. 6 where the internal balloon pressure, p , is tracked against the vertical

displacement of the membrane pole, δ. 

The material parameters are fitted for the intact three-term Ogden model. The stretches and stresses on the top of the

membrane calculated for the experimentally fitted theoretical model are considered as the experimental equibiaxial stretches .

In this, somewhat sophisticated, way we extract the purely equibiaxial data for the further fit of the theoretical models

including failure. 

Now, we can advance to a simultaneous uniaxial-equibiaxial fit of the material parameters. The the squared residuals are

given by S = 

∑ n 
i =1 (res u ) 

2 
i 

+ 

∑ n 
i =1 (res e ) 

2 
i 
, where residuals res u = σ test 

u − σ fit 
u and res e = σ test 

e − σ fit 
e are for the cases of uniaxial

and equibiaxial tension accordingly. We emphasize again that σ test 
e is taken from the bulge test fit while σ fit 

e is calculated

based on the formulas from Section 3.2 . 

Results of the simultaneous uniaxial and biaxial tension fit are presented in Table 2 and Figs. 7 , 8 and 9 for Nitrile

Butadiene Rubber, Neoprene, and Silicone accordingly. 
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Fig. 7. On the left: Cauchy stress versus stretch for Nitrile Butadiene Rubber in uniaxial (UA) and equibiaxial (EB) tension at various temperatures; black 

points are for tests and solid red lines are for theory. On the right: Failure envelope; black for experiments and red for theory. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. On the left: Cauchy stress versus stretch for Neoprene in uniaxial (UA) and equibiaxial (EB) tension at various temperatures; black points are for 

tests and solid red lines are for theory. On the right: Failure envelope; black for experiments and red for theory. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. On the left: Cauchy stress versus stretch for Silicone in uniaxial (UA) and equibiaxial (EB) tension at various temperatures; black points are for tests 

and solid red lines are for theory. On the right: Failure envelope; black for experiments and red for theory. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Material parameters for the three-term generalized thermoelastic Ogden 

model with energy limiters ( m = 100 ). 

Nitrile Butadiene Rubber Neoprene Silicone 

μ1 [MPa] −3 −1 . 674 · 10 −4 −0 . 0011 

μ2 [MPa] −0 . 002 −0 . 2729 5.0 

μ3 [MPa] 0.3563 0.1356 0.046 

α1 −0 . 0498 −3 . 6384 −3 . 1414 

α2 −2 . 94 −0 . 7328 0.1387 

α3 2.5773 3.2445 3.6 

φ[MPa] for 25 °C 20 28 19 

φ[MPa] for 50 °C 42 49 52 

φ[MPa] for 70 °C 66 73 77 

φ[MPa] for 90 °C 86 94 100 

Table 3 

Material constants for the energy limiter function. 

Nitrile Butadiene Rubber Neoprene Silicone 

φ0 [MPa] 20 28 19 

β[MPa/K] 1.005 0.995 1.2655 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameter m (see Eq. (2) ), is a dimensionless parameter controlling the sharpness of transition to the material failure

on the stress-strain curve ( Volokh, 2007; 2010; 2013 ). Our tests show brittle failure behaviour for which we assume m = 100

for all calibrations. Further increase of this parameter does not affect results and the differences are negligible. 

It is interesting to observe that the material stiffness is not very sensitive to the temperature alterations while the mate-

rial strength can change significantly. The latter notion becomes very clear when the failure envelopes for various tempera-

tures are placed on the same diagram - Fig. 10 . 

The strength of NBR is most affected by heat and the Silicone material is least affected. It can be observed that the most

significant decrease in ultimate biaxial stretches occurs when temperature rises from 25 °C to 50 °C. For this case NBR and

Neoprene ultimate stretches decrease by 30% and 19% respectively. Silicone shows a much better thermal resistance and its

ultimate stretches decrease by 5% only. 

We should also note that we considered the discrete values of the energy limiters at various temperatures. It can be

readily observed - Fig. 11 - that these discrete values lie on the straight lines and, consequently, they can be described by a

simple linear approximation 

φ(T ) = φ0 + β(T − T 0 ) , (27)

where the energy limiter at the reference temperature φ0 and material constant β are given in Table 3 . 

Fig. 11 presents a different behaviour compared to the energy limiter as function of temperature relation reported in

Lev et al. (2018) . This results from the different theory used for calibration. Here we use the new fully coupled thermoelastic

theory developed. 

4. Cavitation 

In this section we apply the developed constitutive theory to the study of the cavitation problem. Unstable expansion of

microscopic voids under remote hydrostatic tension is a typical failure scenario for many materials. There is a large body

of the literature on this subject in general and for the hyperelastic materials ( Ball, 1982; Cohen and Durban, 2010; Fond,

2001; Gent, 1990; Gent and Lindley, 1959; Henao, 2009; Horgan and Polignone, 1995; Lev and Volokh, 2016; Volokh, 2011;

Williams and Schapery, 1965 ), in particular. Below, we generalize the cavitation analysis for the case of thermoelasticity, yet

we restrict our considerations by the isothermal processes. 

We use spherical coordinates r , ϕ, θ to describe the position of a generic material point in the current configuration,

whose position in the initial configuration is described by coordinates R, Φ, Θ . We consider a very thick spherical shell

with the initial internal and external radii A and B accordingly. The centrally-symmetric deformation has the form 

r = r(R, T ) , ϕ = Φ, θ = Θ. (28)

In this case, the deformation gradient is diagonal and the principal stretches coincide with the stretches along the lines

of the spherical coordinates. Thus, we have 

λ1 = 

∂r 

∂R 

, λ2 = λ3 = 

r 

R 

, (29)

where index 1 is for the radial direction and indices 2 and 3 are for the hoop directions. 
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Fig. 10. Biaxial failure envelopes for considered materials. 

 

 

Similarly, diagonal components of the Cauchy tensor are the principal stresses and the constitutive equations can be

written in the following form 

σ1 = σrr = λ1 
∂ψ 

∂λ1 

− κ, 

σ2 = σϕϕ = λ2 
∂ψ 

∂λ2 

− κ, 

σ3 = σθθ = λ3 
∂ψ 

∂λ3 

− κ. 

(30) 

The stresses obey the equilibrium equation 

∂σ1 

∂r 
+ 2 

σ1 − σ2 

r 
= 0 , (31) 

and boundary conditions 

σ1 (a ) = 0 , σ1 (b) = g, (32) 

where g is the hydrostatic tension and a = r(A ) and b = r(B ) are the internal and the external radii of the sphere after the

deformation. 



Y. Lev et al. / Journal of the Mechanics and Physics of Solids 122 (2019) 538–554 551 

Fig. 11. Energy limiter as a function of the temperature. 

 

 

 

 

 

 

 

 

 

 

We note that the thermoelastic incompressibility condition 

λ1 λ2 λ3 = 

∂r 

∂R 

r 2 

R 

2 
= J(T ) (33)

can be integrated and we can get the deformation law in the form 

r 3 − a 3 = J(R 

3 − A 

3 ) . (34)

Then, we have 

λ ≡ r/R = (J −1 − J −1 a 3 r −3 + A 

3 r −3 ) −1 / 3 , (35)

and 

λ1 = Jλ−2 , λ2 = λ3 = λ. (36)

By using the chain rule for differentiation, we can rewrite the equilibrium equation in the form 

r 
∂λ

∂r 

∂σ1 

∂λ
= 2(σ2 − σ1 ) , (37)

and calculate the factor on the left hand side of this equation as follows 

r∂ λ/∂ r = −r (J −1 − J −1 a 3 r −3 + A 

3 r −3 ) −4 / 3 (J −1 3 a 3 r −4 − 3 A 

3 r −4 ) / 3 

= (J −1 − J −1 a 3 r −3 + A 

3 r −3 ) −4 / 3 (J −1 − J −1 a 3 r −3 + A 

3 r −3 − J −1 ) 

= λ4 (λ−3 − J −1 ) . 

(38)

We also introduce the reduced Helmholtz free energy function 

ψ̄ (λ, T ) = ψ(Jλ−2 , λ, λ, T ) (39)

and calculate 

∂ ψ̄ /∂λ = (∂ ψ/∂ λi )(∂ λi /∂ λ) 

= −2 Jλ−3 ∂ ψ/∂ λ1 + ∂ ψ/∂ λ2 + ∂ ψ/∂ λ3 

= −2 λ−1 (σ1 + κ) + 2 λ−1 (σ2 + κ) 

= 2 λ−1 (σ2 − σ1 ) , 

(40)

or 

2(σ2 − σ1 ) = λ∂ ψ̄ /∂λ. (41)

Back substitution of (38) and (41) in (37) yields 

∂σ1 

∂λ
= 

1 

1 − λ3 J −1 

∂ ψ̄ 

∂λ
. (42)



552 Y. Lev et al. / Journal of the Mechanics and Physics of Solids 122 (2019) 538–554 

Fig. 12. Hydrostatic tension versus normalized void radius for three materials. Dashed lines show the intact material behavior without the energy limiter. 

 

 

 

 

 

 

 

Integrating this equation from λa = a/A to λb = b/B and accounting for the boundary conditions (32) we get 

g = 

∫ λa 

λb 

∂ ψ̄ /∂λ

λ3 J −1 − 1 

dλ. (43) 

Finally, we assume that there is no stretching far from the cavity λb = 1 while the cavity boundary can expand and we

get 

g(λa , T ) = 

∫ λa 

1 

∂ ψ̄ /∂λ

λ3 J −1 − 1 

dλ. (44) 

Calculations based on the developed formula are presented graphically in Fig. 12 . 

Horizontal lines in Fig. 12 represent the unstable expansion of voids - cavitation. This instability is a material failure phe-

nomenon and it would not appear in the absence of the failure description within the constitutive model (energy limiter). It

is interesting that the critical stretch (horizontal axis) of the onset of cavitation always decreases with the increasing tem-

perature while the critical hydrostatic tension (vertical axis) might increase as in the case of Silicone. Such slight increase in

the critical tension can be explained by the increase of the material stiffness with heating. In the case of NBR, the drop of

the critical stretch is so pronounced ( Fig. 10 ) that the temperature-dependent material stiffening cannot elevate the critical

cavitation tension. 
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5. Conclusions 

Experiments, theory, and application concerning the coupled thermo-mechanical behavior of rubberlike materials have

been considered in the present study. 

Experiments have been done on Nitrile Butadiene Rubber, Neoprene, and Silicone for various temperatures in the range

from 20 °C to 90 °C. The experiments included the tracking of deformation and failure of the rubberlike materials in uniaxial

and equibiaxial tension. The latter was done indirectly by using the bulge test in which a thin specimen membrane was

inflated up to rupture. A methodology was developed for the interpretation of the experimental results based on the finite

element simulations with the iterative fit of material constants. The equibiaxial stress-stretch state at the pole of the inflated

membrane was used for further calibration of the material model. The latter calibration was based on the simultaneous fit

of uniaxial and equibiaxial data. 

Constitutive theories have been developed to describe the thermoelastic behavior of rubberlike materials. Energy limiters,

depending on the temperature were introduced in the Helmholtz free energy in order to describe material failure. The

Ogden three-term hyperelastic model was generalized to include the thermal energy. A new form of the thermal energy

was proposed in (24) 3 , which was concave yet positive. The theoretical model was calibrated for Nitrile Butadiene Rubber,

Neoprene, and Silicone. 

As opposed to our previous work ( Lev et al., 2018 ) that includes only bulge tests, here we add uniaxial tests that serve

as a validation of the results. Biaxial failure envelopes are build from the ultimate stretches obtained from our two indepen-

dent test configurations ( Hamdi et al., 2006 ). The calibration is done simultaneously to fit both data sets. Only few papers

present simultaneous calibration using multiple test data ( Ogden et al., 2004 ). The calibration is done using a new coupled

thermo-elastic theory, which leads to a new energy limiter as function of temperature relation ( Eq. (27) and Fig. 11 ). The

circular biaxial failure envelopes can be found in the literature only for room temperature ( Hamdi et al., 2006 ). The circu-

lar envelopes for different tem peratures ( Fig. 10 ) are novel and offers an immediate view of material thermal resistance.

Envelopes that are close together are thermally resistant while envelopes that are apart are less resistant. 

Application of the constitutive theories to analysis of cavitation problem has been considered. A new simple formula for

thermoelastic cavitation (44) was developed and applied to Nitrile Butadiene Rubber, Neoprene, and Silicone. It was found

that the onset of cavitation was affected by the interplay between the reduced material strength and the increased material

stiffness as a result of heating. 

Summarizing the most interesting results in one sentence we would conclude that the stiffness of rubberlike materials only

slightly depends on the temperature alterations while the strength might be significantly decreased by heating, depending on the

specific material. 
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